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ON SPREADS ADMITTING PROJECTIVE 
LINEAR GROUPS 

VIKRAM JHA AND MICHAEL J. KALLAHER 

In t roduc t ion . In [8] Jha raised the following problem. 

(*) Let T be a spread whose components are subspaces of V2n(GF(q)). 
Suppose G ^ Aut T leaves a set of q + 1 components invariant while 
acting transitively on T\A. 

Find the possibilities for T or, more generally, the possibilities for 
(G, T, n, q). 

Many special cases of (*) have been settled. For instance, Cohen et al 
[1] have shown that if G fixes two non-zero points of V, that do not both 
lie in the same component of T, then T is the spread associated with 
either a Hall plane or the Lorimer-Rahilly plane of order 16 (LR-16) 
[14], [18]. 

Another such result is given in [8] ; there it is shown that if g is a prime 
number and G is a one-dimensional projective unimodular group then 
r is the spread associated with one of the following translation planes: 

(1) the Desarguesian planes of order 4, 8, or 9; 
(2) the nearfield plane of order 9; 
(3) LR-16; 
(4) the translation plane JW-16, obtained by transposing the slope 

maps of LR-16 [19]. 
The purpose of this article is to study (*) when G is a group of type 

PSL(n, w) when n ^ 3. Our object will be to show that under these 
conditions T is the spread associated with LR-16 or JW-16 and G is 
PSL(3, 2). Thus, in terms of translation planes, our result may be stated 
as follows. 

THEOREM A. Let T1CO be a translation plane with order >q but which 
admits a group of kern homologies of order q — 1. Suppose further that the 
translation complement of T1CO admits a group G such that; 

(i) G leaves invariant a set A of q + 1 slopes and acts transitively on 
/œ\A; and 

(ii) G == PSL(n, w) for some prime power w and some w ^ 3 . 
Then G ^ PSL(3, 2) and TTZ- is either LR-16 or JW-16. 

Received August 10, 1980 and in revised form February 16, 1981. The first author 
was a postdoctoral fellow at Washington State University during the preparation of this 
article. The second author was supported in part by an NSF grant. 

1487 

https://doi.org/10.4153/CJM-1981-114-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-114-6


1488 V. JHA AND M. J. KALLAHER 

There are two main stages in the proof of the above theorem. 
Stage 1 (Section 2). The object here is to show that it is impossible 

for q and w to be relatively prime. This is achieved by using lower bounds 
for the degrees of the projective representations of Ln(w) obtained by 
Harris and Hering [3]. 

Stage 2 (Section 3). Having shown that q and w are both powers of the 
same prime p, we refine and extend Jha's arguments in [9] to show that 
G has a large enough planar p-group to force irlco to be of order 16. A 
theorem of Johnson and Ostrom then yields the conclusions of Theorem A. 

The authors would like to thank the referee who pointed out one 
glaring error and made several pertinent remarks. 

0. Preliminaries. We assume familiarity with the basic theory of 
linear groups [6, Kapitel II] and translation planes [5], [16]. Below we 
discuss some results that are especially relevant to this work, beginning 
with projective linear groups PSL(n, w). 

Mitchell and Hartley [15], [2] have determined all maximal subgroups 
of PSL(3, w). By considering the indexes of these groups one obtains 

1. RESULT. PSL(3y w) has no non-trivial representation as a permutation 
group of degree <w2 + w + 1. 

A similar result, that applies to PSL(n, w)} may be deduced from [3]. 

2. RESULT. Suppose G = PSL(n, w) for n ^ 3 and assume G Çjt_ 
PSL(S, 4). Let K be any field such that (w, char K) = 1. 

Assume that there is a non-trivial group homomorphism 

p: G->GL(N,K). 

Then j 

(a) N è (w71-1 - l ) / ( » , w - 1); and 
(b) N è wn~l — 1 provided that (n, w) 9e (3, w) when w is a power of 2. 

Proofs. [3, Theorems 4.2 and 4.3]. Since a permutation representation 
of G on N letters gives a group homomorphism of G into GL(N, K), we 
have 

3. COROLLARY. Assume the hypothesis of the above result. Then G acts as 
a non-trivial permutation group of N letters only if 

N ^ {wn~l - l)/(n,w - 1). 

Moreover if (n, w) ^ (3, w), when w is even, then N è wn~l — 1. 

Convention. If G is a permutation group, then Gx is the elementwise 
stabilizer of the set X. In particular, if Q is a quasifield with a subset K, 
then (Aut Q)K is the elementwise stabilizer of K in the full automorphism 
group of Q. 
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The next result is an easy consequence of [7, Section 6] and is in fact 
explicitly established in [10, result 2.17]. 

4. RESULT. Let Q be a quasifield with a subfield K = GF(q) in its kern. 
Suppose A\mKQ = r > 2. Then 

qT-1\\(AutQ)K\onlyif\Q\ = 16. 

The following corollary to the above result is also an immediate con­
sequence of [7, Proposition 6.8]. 

5. COROLLARY. If Q is a quasifield of order qr, then qT does not divide 
|Aut Q\. 

The following interesting result, due to Ostrom [17], will prove useful 
on a number of occasions. An indication of how this theorem may be 
proved is given in [13]. 

6. RESULT. Let wlco be an affine translation plane of order qr with GF(q) 
in its kern. Suppose S is an elementary abelian 2-group in the linear trans­
lation complement of w z°° such that at least one of the following conditions 
hold: 

(i) all involutions in S are mutually conjugate in the full linear com­
plement of T1CO and \S\ ^ 4; or 

(ii) all involutions in S are Baer collineations. 
Then, if q is odd, \S\ divides r. 

Definition. Let q be any prime power and r a positive integer greater 
than one. Then a prime number 6 is called a primitive divisor of qr — 1 if 

(i) B\qT - 1; and 
(ii) 6 \ qs — 1 whenever qs is an integer satisfying 1 < qs < qr. 
(Note that we do not assume 5 to be an integer.) 

The main fact about primitive divisors was proved by Zsigmondy [20]. 

7. RESULT. Let q, r be as in the above definition. Then qT — 1 has a 
primitive divisor unless one of the following hold: 

(i) q* = 64, 
(ii) q is a Mer senne prime and r = 2. 

1. General case. Throughout this work we adopt the following 

1. Conventions, (a) F i s the 2r dimension vector space V^iGFig)) and 
r is a spread of V that is left invariant by a subgroup G of TL{V). Also 
p denotes the characteristic of T. 

(b) G = PSL(nf w) where w is some prime power and w ^ 3 . 
(c) irlco is an affine translation plane whose lines are the F-cosets of T. 
(d) G leaves invariant a set A of q + 1 slopes of wlco and acts tran­

sitively on lœ\A. 
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In terms of the above conventions, our object is to prove that 
G = PSL(3, 2) and TT'- is LR-16 or JW-16. We begin with some ele­
mentary facts that are tacitly used on a number of occasions. 

2. REMARKS. 

n 
/ \ T I n(n— 1) /2 T T / i -i \ 

(a) q — q\w [[ (w — 1). 
i=2 

(b) G is in the linear translation complement of TT1CO i.e., G (£ GL(V). 
(c) If q is odd then 4 divides r. 

Proof, (a) Use the transitivity of G on /œ\A. 
(b) If this is false then G has a non-trivial homomorphic image in the 

cyclic group TL(V)/GL(V). This contradicts the simplicity of G. 
(c) Because of Ostrom's theorem (result 0.6), it is sufficient to show 

that G contains AA. If w is odd, then 

PSL(n, w) 2 PSL(3, w) D PSL(2, w) D A, 

[6, Hauptsatz 8.27, p. 213] and, if w is even, then 

PSL(n, w) 3 PSL(3, 2) ^ P5L(2, 7) 

[6, Satz 6.14(4)] and so we still have G D A\. The result follows. 

2. Case: w, q are relatively prime. In this section, we show that the 
following hypothesis leads to a contradiction. 

(*) Hypothesis. (w,q) = 1. 

The following relations will prove useful. 
1. REMARKS, (a) qT — q > \qr. 

(b) wn2~l > \qr. 
(c) In x/ (xf* — a) is a decreasing function of x for x ^ 3, provided that 

a ^ 0 and a ^ 1. 

Proofs, (a) \qr > q except when wlco is a plane of order 4 or 2. However, 
in these cases PSL(n, w), with n ^ 3, does not act. 

(b) This follows from part (a) and remark 1.2(a). 
(c) This is obtained by differentiation. 

The purpose of the next two lemmas is to show that (*) is false when 
w = 2. 

2. LEMMA. Suppose (*). Then w can be 2 only when G = PSL(3, 2). 

Proof. PSL(n, w) contains the full translation group of the affine 
Desarguesian space of dimension n — 1 over GF(w). So when w is 2, G 
contains an elementary abelian group of order 2W_1 all of whose involutions 
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are G-conjugate. Thus 2n~1 divides r by result 0.6. Now by remark 1(b) 
we further have 

and so 

(i) 2n~l In q < n2 In 2. 

As q is odd In q > 1 and (i) yields 2n~l < n2 (0.7). But by induction, 
this inequality does not hold if n ^ 6. On the other hand, (i) fails for 
n = 5 and so, if the lemma is false, then G = PSL(4, 2). 

Now Remarks 1.2(a) and 1.2(b) lead to 

qr - g|26(63)(7)(3) and 4|r. 

These conditions easily yield a contradiction, and so the lemma 
follows. 

We now exclude G = PSL(3, 2) by using an argument that also 
excludes PSL(3, 2*). 

3. LEMMA. Suppose (*). Then G cannot be PSL(3, w) when w is even. 

Proof. Suppose the lemma is false and w is even. Then (*) implies q is 
odd. Arguing as in the last lemma, we see that w2 divides r and so by 
Remark 1(b) we get \qw<l < w8. On taking logs and noting that q ^ 3, 
we find that 

(i) 1 < In q < (8 In w + In 2)/w2. 

But (i) is false for w = 4 and so by Remark 1(c), we get w = 2 (since 
w is assumed to be even). Thus (i) forces g to be 3 and the usual con­
ditions 

3 r - 3 | \PSL(2, 3)| and4|r 

easily lead to a contradiction. The result follows. 

The following inequality will be used in the next lemma. 

4. REMARK. 3*-1 > 2n2 for n ^ 5. 

Proof. Suppose the result is false. Then on taking logs, we find that 

(In 2 + 2 In n)/(n - 1) è In 3 for some n ^ 5. 

But by Remark 1(c), the left hand side of the above inequality 
decreases as n increases and so 

(In 2 + 2 In 5)/4 ^ 3. 

This is a contradiction and so the lemma is proved. 
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5. LEMMA. Suppose (*) holds and that G ̂  P5L(3, 3). Then G\à = 
identity. 

Proof. Suppose the lemma is false. Then result 0.1 implies q ^ w2 + w, 
and so by remark 1 (b) 

(i) \w2T < wn2~K 

Now by Lemma 3, G is not of the form PSL(S, 2k). Hence, Result 
0.2(b) may be used; this yields, because dim V = 2r, the following 
inequality 

(ii) r ^ {wn~l - l ) / 2 . 

Now because of (i) 2r < n2, and so (ii) gives 

(iii) wn~l - 1 < n2. 

But by Lemmas 2 and 3, w > 2 and so (iii) yields 3W_1 < 2n2. Now 
Remark 4 shows that n = 3 or 4. But n = 4 contradicts (iii) and so 
n = 3. Now, if we recall that w is odd, (iii) forces w = 3. The lemma 
follows. 

6. LEMMA. / / (*) holds, then G = P$L(3, 3) and q = 2. 

Proof. Suppose if possible that (*) but G ^ P5L(3, 3). Then by the 
last lemma, G fixes q + 1 components of the spread associated with irlœ 

and of course acts faithfully on them. Thus G acts faithfully on a vector 
space of dimension r and G ^ PSL(3, 2k) by Lemma 3. Thus result 
0.2(b) shows that r è wn~l — 1. Using this inequality together with 
\qr < wn2~l and taking logs, we get 

(i) \nq < ((n2 - 1) l n 2 ) / ( ^ " 1 - 1). 

Since w ^ 3, Remark 1(b) and (i) show that 

(ii) In q < ((n2 - 1) In 3 + In 2) / (3 n" 1 - 1). 

By differentiating the right hand side of (ii), we see that it is a 
decreasing function of n and so if n ^ 4 then (ii) yields the contradiction: 

In 2 < (15 In 3 + ln2)/26. 

Thus n can only be 3 and now (i) becomes 

(iii) In q < (8 In w + In 2)/{w2 - 1). 

But now Remark 1(c), and the fact that (iii) is false for w = 5, shows 
that w must be 3. Thus (i) now becomes 

In q < (8 In 3 + In 2)/8 = In 3(21/8) < In 4. 
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Thus, since (w, q) = 1, we must have q = 2. This completes the proof 
of the lemma. 

We now verify that w and q are both powers of the same prime p. 

7. PROPOSITION, W is a power of p. 

Proof. If the proposition is false then the lemma above shows that q is 
2 and G = PSL(3, 3). But since 32 + 3 + 1 > 2 + 1, Result 0.1 shows 
that G\ A = identity. So again considering the action of G on a component 
and using Result 0.2(b), we get that r ^ 3 3 - 1 — 1 = 8. Also since 
G\A = identity all the involutions in G are Baer collineations. Hence r 
is an even number = 8 . Now 1.2(a) shows that 22k~1 — 1 divides the 
odd part of \G\ ( = 33.13) for some k = 4. This quickly gives a con­
tradiction and the required result follows. 

3. Final case: p divides q and w. The following lemma guarantees 
that r is at least 4. 

1. LEMMA, r is an even integer and r ^ 4. Also if w is odd, then 4 divides r. 

Proof. The second sentence is an immediate consequence of Remark 
1.2(c). Thus we may assume q and w are both even. 

Suppose, if possible, that r is odd. Now Result 0.6 shows that the 
involutions in G cannot be Baer collineations and must be affine dations. 
But, by a theorem of Hering [4], the only non-solvable groups generated 
by dations, in a plane of even characteristic, are groups of form Sz(2k) 
or PSL(2, 2s). Thus we have a contradiction since G itself is generated 
by the set of all its involutions (recall that G is a simple group). Hence 
we conclude that r is even. 

Finally, to see that r > 2, we observe that r = 2 contradicts a theorem 
of Johnson and Ostrom [11, Theorem 3.27]. 

To avoid problems associated with primitive divisors, we begin by 
investigating the case qr~l = 64. 

2. LEMMA. Let ® = {P5L(3, 2), PSL(3, 4), P5X(4, 2)j . Then 
(a) qr-i = 64=>G £ ®; and 
(b) G e © =» G\A = identity. 

Proof, (a) Suppose qT~l = 64. Since r is even and at least 4, we can 
only have (g, r) = (4, 4). Thus |A| = 5 and G 3 P5L(3, 2) (since w is 
also even). Now Result 0.1 shows that G\A = identity and hence the 
Sylow ^-subgroups of G are planar groups. Thus by Corollary 0.5, we 
see that 

wn(n-l)/2 < qr = 2 ^ 

Hence (w, n) must correspond to the parameters of the groups in ®. 
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(b) Suppose, if possible, that G| A ^ identity. 
Case (i). G = PSL(4, 2). Now Result 0.1 shows q à 22 + 2 and so 

q ^ 8. Using the relation \qr < wn2~l now yields 23r < 216. So r < 6 and 
Lemma 1 forces r to be 4. Thus #4 < 216 and hence q ^ 8. We therefore 
have (q} r) = (8, 4), and this contradicts 

q'-i- 1 | |PSL(4 ,2) | . 

Case (ii). G = PSL(3, 4). Now Result 0.1 shows that q ^ 32. As we 
also have r ^ 4 the inequality | g r < wn<i~l is contradicted. 

Case (iii). G = PSL(3, 2). As in Case (ii), we have (g, r) è (8, 4) and 
again contradict \qT < wn2~l. 

This completes the proof of the lemma. 

3. LEMMA. At least one of the following hold: 
(i) g'-i ^ w»; 

(ii) G is PSL(3, 2) or P5L(4, 2), a ^ g'"1 = 64. 

Proof. If g7"-1 = 64, then the last lemma gives (ii) except when 
G = P5L(3, 4). But in the latter case, (i) is satisfied. 

Next suppose qT~l 9^ 64. Then by Remark 1.2(a) and Lemma 1 of 
this section, we get 

r - l 
2 I I W - 1) and r - 1 > 2. 

Now by Result 0.7, we get wn ^ qr~l since the primitive divisor of 
qT~l — 1 divides one of the terms of type (wi — 1). This completes the 
proof of the lemma. 

4. LEMMA G\A = identity. 

Proof. Suppose, if possible, that G\ A ^ identity. Then by Lemma 2(b) 
the exceptional situations of Lemma 3(ii) do not arise. Hence 

(i) qT~l ^ wn. 

Now consider first the case when 

[A] G 9^ P5L(3, w) when w is even. 

Now the final sentence of Corollary 0.3 shows that q + 1 ^ wn~l — 1. 
As r is at least 4 (Lemma 1), we now get, using (i), the following in­
equalities: 

wn ^ qr-i > q2 ;> < y * - l _ 2 ) 2 f 

and so 

1 > wn"2 - 4W"1 + kw~n. 
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Thus 3 > wn~2 and so (n, w) = (3, 2). This contradicts Lemma 2(b) 
and so case [A] cannot occur. 

It remains to consider the 'complement' of case A viz. 

[B] G = PSL(3, w) and w is even. 

Because of Lemma 2, we may also assume that w > 4. Thus we may 
again apply Corollary 0.3; this time, using the first sentence of the 
corollary, we get 

q + 1 ^ O 2 - l ) / ( 3 , w - 1) ^ (w2 - l ) / 3 . 

Now Lemma 3 shows that 

3 ^ r-1 ^ 3 ^ (w2 — 4:\ 3 (w — 2^*, .„ 

w è g è g è y—3—J = \ " 3 - 7 (w + 2) . 
This is certainly a contradiction if w > 4. The lemma follows. 

We now prove the main result of this article viz. Theorem A of the 
introduction. 

5. THEOREM. TTZ- is LR-16 or JW-16 and G = P5L(3, 2). 

Proof. Let P denote any Sylow ^-subgroup of G. Then by the previous 
lemma we see that F(P) is a subplane of wlco. Since P is in the linear 
complement of Tlœ, the plane F(P) contains a kern plane of order q (i.e., 
F(P) contains a subplane 71-̂ °° that has order q and is invariant under 
a group of (q — 1) kern homologies). 

Now coordinatize wl(X> by a quasifield <2 obtained by choosing co­
ordinate axes in wK. It follows that: 

[A] \P\ | |(Aut Q)K\ where GF(q) = K Q kern ((?). 

The next step is to show that |Q| = 16. When G = P5L(3, 2), Remark 
1.2(a) shows g r_1 — 1|21 and this quickly leads to qr = 16. In all other 
cases (including G = P5L(4, 2)), Lemma 3 shows that 

[B] qr~l ^ wn ^ w
n(n-1)/2 = |P|. 

By [A] and [B], we see that 

qT~l | (Aut Q)K where dim^Ç = r. 

Since also r > 2 (Lemma 1), Result 0.4 shows that \Q\ = 16. Thus w 
is also even and G 3 PSL(3, 2). But a result of [12] states that the only 
translation planes of order 16 which admit P5L(3, 2) in their complements 
are LR-16 and JW-16. Hence *•'« is LR-16 or JW-16. But as neither 
plane admits P5L(3, 4) in their complements [19], the proof of the 
theorem is complete. 
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4. Some additional remarks. The method of proof used to prove 
Theorem A extends easily to handle other linear groups. For example, if 
we replace condition (ii) of Theorem A with the condition 

(ii') G ~ SLn(w) with n ^ 3 and w a prime power 

the same conclusion holds. (Note that PSL(3, 2) = SL(S, 2).) Indeed, 
since in general SLn(w) has a slightly larger order than Ln{w) the counting 
arguments are easier. 

Condition (i) of Theorem A is a natural one to assume since it is 
satisfied by the group G = SL(3, 2) = P5L(3, 2) in both the Lorimer-
Rahilly and the Johnson-Walker planes. For both planes, the invariant 
q is 2 (that is, the kernel is GF{2)) and the group G fixes q + 1 = 3 
points on lœ and is transitive on the remaining 14 points. A reasonable 
question to ask is: If, instead of giving the action on lœ in terms of the 
invariant g, the action is given in terms of w, do other possibilities occur? 
The answer is: No. If condition (i) of Theorem A is replaced with 

(i') G leaves invariant a set A of w + 1 slopes and acts transitively 
on /œ\A, 

the same conclusion holds. Again the proof is somewhat simplified. 
Lemma 2.5 is immediate, even without the restriction that G ^ P5L(3, 3) 
and inequality (b) of 2.1 is replaced with the inequality wl > qT where 
I = hn(n+ 1). 

In fact, choosing any one of the conditions (i), (i') and choosing any 
one of conditions (ii), (ii') gives rise to a theorem with the same con­
clusion as Theorem A. What remains to be done is to show that condition 
(i) (or condition (i')) can be dropped. 
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