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Abstract

We give a systematic treatment of caloric measure for arbitrary open sets. The caloric measure is defined
only on the essential boundary of the set. Our main result gives criteria for the resolutivity of essential
boundary functions, and their integral representation in terms of caloric measure. We also characterize
the caloric measure null sets in terms of the boundary singularities of nonnegative supertemperatures.
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1. Introduction

Caloric measure is sometimes called harmonic measure for the heat equation,
sometimes parabolic measure. It has been studied by many authors for particular
boundaries, for example in [2, 4—-14, 18-20]. However, to my knowledge it has never
been given a systematic treatment for arbitrary open sets. In this paper we give such a
treatment, guided by the treatment for Laplace’s equation given in [1]. As usual, the
different behaviour of the temporal variable and the different form of the maximum
principle cause problems not encountered in the classical case.

We follow [16] in our definition of the essential boundary, and hence of the Dirichlet
problem itself. This seems to be the most elementary and natural way to proceed.
Assuming only that there is a caloric measure on the boundary, Suzuki [15] has proved
that it must be supported by the essential boundary. In our treatment, the caloric
measure is defined only on the essential boundary from the outset.

As in [16], the method of solution of the Dirichlet problem is that of Perron—
Wiener—Brelot (PWB). In Section 3 we present a series of new and essential lemmas
regarding upper and lower solutions. Caloric measure is introduced in Section 4, which
is mainly concerned with the resolutivity of essential boundary functions, and their
integral representation in terms of caloric measures. This culminates in our main result

(© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

391

https://doi.org/10.1017/51446788712000389 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000389

392 N. A. Watson 2]

and its two corollaries, the latter of which gives equivalent conditions for resolutivity
in terms of caloric measure. Finally, in Section 5, we characterize the caloric measure
null sets in terms of the boundary singularities of nonnegative supertemperatures.

2. Preliminaries and the classification of boundary points

We use E to denote an arbitrary open subset of R"*! = {(x, 1) : x e R", t € R}. The x
variables may be referred to as the spatial variables, and the ¢ as the temporal variable.
All of our functions are extended-real valued.

DerviTion 2.1. For each (x, 1) € R"™! and ¢ > 0, we put
A(}C, L C) = B(.X', \/E)X ]t -G, t[a

where B(x, yc) denotes the open ball in R” with centre x and radius yc. We call
A(x, t; ¢) the heat cylinder with centre (x, t) and radius c. The set

9uA(x, 1; ¢) = (B(x, Vo) x {t = ¢}) U (8B(x, V) X [t — ¢, 1])
is called the normal boundary of A(x, t; c).

DermviTion 2.2. The mean value over normal boundary of the heat cylinder is defined,
for any function u such that the integral exists, by

—L(u; X, t; C) = f u dﬂ(x,t)»
O A(x,1;0)

where y.s is the caloric measure at (x, t) for A(x, t; ¢).

Since the caloric measure is invariant under translation and parabolic dilation, the
mean L(u; x, t; ¢) depends only on u, (x, t) and c.

Note that, by taking u =1 in [17, Theorem 4], we obtain £(1; x, t; ¢) =1 for all
(x,1) and c.

Given a point pg € E, we denote by A(po; E) the set of points p for which there is
a polygonal path in E that joins pg to p, along which the temporal variable is strictly
decreasing. By a polygonal path, we mean a path which is the union of finitely many
line segments.

We also denote by A*(po; E) the set of points p for which there is a polygonal path
in E joining py to p, along which the temporal variable is strictly increasing.

We define hypotemperatures in terms of the means £, in line with [17].

Derinition 2.3. Let w be an upper finite and upper semicontinuous function on E.
Suppose that, given any point p € E, the inequality w(p) < L(w; p; ¢) holds whenever
A(p; ¢) CE. Then w is called a hypotemperature on E. If, in addition, w(p) > —oco on
a dense subset of E, then w is called a subtemperature on E.

Dermvition 2.4. If —w is a hypotemperature on E, we call w a hypertemperature on E.
If —w is a subtemperature, we call w a supertemperature.
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Lemma 2.5. Ifw is a hypotemperature on E, and w(p) > —oo for some point p € E, then
w is a subtemperature on A(p; E).

Proor. Theorem 20 of [17] holds with (d3) omitted and ‘subtemperature’ replaced by
‘hypotemperature’ throughout. It therefore follows from [17, Lemma 9] that w is
locally integrable on A(p; E), and hence finite on a dense subset of A(p; E). O

We now classify the various types of boundary point of E, using the following
notations for the upper and lower half-balls. Given any point py = (xo, fo) € R"*! and
r > 0, we denote by H(py, r) the open lower half-ball

A(po; B(po, 1) ={(x, 1) : |x = xo* + (t = 10)* < 1?, 1 < fo)},
and by H*(po, r) the open upper half-ball
A*(po; B(po. 1) = {(x, 1) : |x = xol* + (t — 10)* < 7, 1 > 1o},

Throughout this paper, the boundary of E is taken relative to the one-point
compactification of R"!'. Thus OE contains the point at infinity if and only if E
is unbounded. Our classification is the same as that in [16], although some of the
terminology and notation are different.

DeriniTION 2.6. Let g € 0E. We call g a normal boundary point if either:
(a) g is the point at infinity; or
(b) g eR™! and forevery r >0, H(g, r)\E # 0.

Otherwise, we call g an abnormal boundary point.

If ¢ is an abnormal boundary point of E, there is some ry > 0 such that H(q, ry) C E,
and we define A(q; E) = A(g; E U B(q, r9)). The abnormal boundary points are of the
following two kinds, according to whether they can be approached from above by
points in E.

DerintTION 2.7. If there is some r; < rg such that H* (g, r;) N E =0, then ¢ is called a
singular boundary point. In this case, H(g, r1) = B(gq, r1) N E. On the other hand if, for
every r < rg, we have H*(gq, r) N E # 0, then q is called a semisingular boundary point.

The set of all normal boundary points of E is denoted by d,E, that of all abnormal
points by d,E, that of all singular points by d,E, and that of all semisingular points by
O0ssE. Thus OF = 0,E U 0,F and 0,E = O,E U O E.

DeriniTioN 2.8. The essential boundary 0,E is defined by
0.E = 0,E U 0,E = OE\OE.

LemMmaA 2.9. Let pg € E, and put A = A(pgy; E). Then 0,A CI.E and O, C O E. If
q € 0,ANO,E, there is an open half-ball H(q, r1) such that H(g, r;) N A = 0.
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Proor. The first two parts are given in [16, Lemma 1], and its corollary.
For the last part, since g € d,F, there is an open half-ball H(qg, ry) C E. If there was
a sequence {g} in H(g, ro) N A such that gy — g as k — oo, we would have

A(qi; H(g, r0)) € Alqi; E) € A(po; E) = A

for all k, which implies that

H(g, r0) =|_J Aqi; Hig, o)) € A,
k=1

contrary to the hypothesis that g € d,A. Hence there is no such sequence, and so there
is r1 < rg such that H(g, ri{) N A = 0. ]

3. Upper and lower PWB solutions

The next definition details what we mean by the Dirichlet problem for the heat
equation. It is the same as that in [16], but different from that in, for example, [3].

Derinition 3.1. Let f € C(0.E). We say that a temperature u on E is a classical
solution of the Dirichlet problem for f if both

( l)m(l )u(x, N =f(,s) forall(y,s)ed,E,
x,0)—=(,s
and

lim ) u(x,t) = f(y, s) forall (y, s) € dE.

(x,0)—>(,s+

Given this definition, our upper and lower classes for the PWB method are as given
in the following definition.

DeriniTion 3.2. Let f be a function on d.E. The upper class determined by f, denoted
by UE, consists of all lower bounded hypertemperatures on E that satisfy

liminf w(x, 1) > f(y, s) forall (y, s) € 9,E,
(x,0)—=(,5)
and
liminf w(x, ) > f(y, s) forall (y, s) € 04E.
(x.0)=(y.5+)
The lower class determined by f, denoted by ££, consists of all upper bounded
hypotemperatures on E that satisfy '

lim sup w(x, ) < f(v, s) forall (y, s) € 9,E,
(x0—=(y,5)

and
lim sup w(x,?) < f(y,s) forall(y,s)€dsE.

(x.0)=(y.5+)
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Dermvition 3.3. The function UE infilw:we lIE } is called the upper solution for f
on E, and LY = sup{w: w € ¢% } is called the lower solution for f on E.

For elementary results about upper and lower solutions, the reader is referred to [16,
Lemmas 24 and 26].

Let py € E, and put A = A(po; E). Then 0,A € d.E by Lemma 2.9. Therefore, if f
is a function on d,E, the classes 11? and 53? are defined. Our next lemma shows that
these classes are related in a convenient and natural way.

Lemma 3.4. Let f be a function on 0,E, let po € E, and put A = A(po; E). Then lllf\

is precisely the class of restrictions to A of the members of UE, and 53]’} is that of the

restrictions to A of the members of 2?. Hence U ;} is the restriction to A of UL, and
A E

Lf is that ofo.

Proor. The result for the lower classes and lower solutions is the dual of that for the

upper classes and upper solutions, so we give details only for the latter.
Given any hypertemperature w € A%, we define a function w on E by putting

w(p) ifpeA,

Ww(p) =4+ if p e E\A,
liminf w(g) if pedANE.
q-p.geh

We claim that w € 11? . Clearly w is lower semicontinuous and lower bounded on E.
It remains to show that, given any point p € E and any € > 0, we can find a positive
number ¢ < € such that the inequality w(p) = L(W; p; ¢) holds. Clearly this holds if
p € E\OA, so suppose that p e ENJA. Since d.A CI.E by Lemma 2.9, p € 9,A.
Therefore we can find ry > 0 such that H(p, 2ry) = B(p, 2ro) N A. 'We now choose
co > 0 such that the closed heat cylinder A(g; ¢) € A whenever g € H(p, ) and ¢ < co.
Then, for any ¢ < ¢,

w(p) = lim inf w(g) > lim inf L(w; g; ¢) = lim inf L(w; g; ¢) > L(W; p; ¢),
g p.geEN g p.gen g p.geEN
by Fatou’s lemma and the translation invariance of the caloric measures for heat

cylinders. Hence w is a hypertemperature on E.
We now take any point (y, s) € 0.E. If (y, s) ¢ OA, then

lim mf w(x, 1) = +o0 > f(y, ).

(x,0)—>(y,s)

If (y, 5) € 9,A then (y, s) € 0, F and

liminf w(x, f) = +00 > f(y, ).
(x,0)—=(,5+)

If (v, 5) € ;5\, then (y, s) € 05, F by Lemma 2.9, and

liminf w(x, 1) = hm 1nf w(x = fQ,s).
(x,0)—(y,5+)
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If (y, s) € 0,A, then

liminf w(x, ) = liminf w(x, 1) > f(y, s).
(x.0D—=(,5) (6,0 (,5)

Hence w € le’f , and so w is the restriction to A of a function in uf .
We now show that, given any hypertemperature v € UZ, its restriction to A belongs
to Hj}.. Obviously v is a lower bounded hypertemperature on A. Let g = (y, §) € d.A.

Then either g € d,,A C 0,E, or g € 0,A € 3.E, by Lemma 2.9. In the former case,

lim inf v(x, t) > lim inf v(x, t) > , 8).
(x,0)—=(y,s+),(x,H)EA ( ) (x,0)—=(y,s+),(x,H)EE ( ) f(y )

If g€ 0,A NO,E, then

lim inf t)> liminf 1> .
(x,t)—}(r)l:,lsir(lx,t)EA V()C, ) - (x,t)—%{)lj,ls%,r(lx,t)EE V()C, ) - f(y’ S)
Finally, if g € 0,A N dE, then there is 6 > 0 such that H(g, 6) C E, but for all r >0
we have H(q, r)\A # (. If there is a sequence {g;} of points in H(g, ) N A such that
qr — q as k — oo, then

A2 ] Atgi: Hg. 9) = Hg. 9),
k=1

a contradiction. There is therefore no such sequence, and hence there is a half-ball
H(q, n) contained in R™1\A. It follows that

lim inf v(x, t) > lim inf v(x, 1) > , 8).
(x,0)=(,5),(x,H)eA ( ) (x,0)=(,5+),(x,H)eE ( ) f(y )

Hence the restriction of v to A belongs to 11’}} ]

We now recall [17, Theorem 10]. Here, and subsequently, by a circular cylinder we
mean a set of the form B X ]a, b[, where B is a ball in R” and —co <a < b < +o0. The
result states that, if w is a subtemperature on E, and D is a circular cylinder such that
D C E, then the Poisson integral u on D\d,,D of the restriction of w to 8, D exists, and
the function mpw, defined on E by putting

S u on D\d,D,
PP \w on E\(D\&, D),

is a subtemperature which majorizes w on E, and is a temperature on D\d,D. This is
used in the following definition, which is taken from [17, p. 210].

DeriniTION 3.5. We call a nonempty family ¥ of supertemperatures on E a saturated
Sfamily if it satisfies the two conditions:

(@) ifv,we7F, then v AweF (where v A w denotes the pointwise minimum of v
and w); .
(b) ifwe ¥, and D is a circular cylinder such that D C E, then rpw € ¥
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The next lemma replaces [ 16, Lemma 23], whose proof I no longer find convincing.

Lemma 3.6. Let f be a function on 0.E. If there are points pg, qo € E such that g €
A(po; E), Uf(po) < +c0, and Uf(qo) > —co, then Uf is a temperature on A(qo; E).

Proor. We put A = A(po; E), and note that, by Lemma 3.4, we need to show that U }\
is a temperature on A(go; A) = A(qo; E).

Since Uf (po) < +co, we can find a hypertemperature wy € llf such that wy(pg) <
+0c0. By Lemma 2.5, wy is a supertemperature on A. By Lemma 3.4, the restriction of
wo to A belongs to U, and so we can write UA inf 7, where ¥ is the class of all
supertemperatures that belong to IIJ’}

We show that ¥ is a saturated family of supertemperatures on A. Letu, v € . Then

u A vis alower bounded supertemperature on A. Moreover, whenever (y, s) € d,A and
(x, 1) = (v, s) with (x, 1) € A,

lim inf(u A v)(x, t) = (lim inf u(x, 1)) A (lim inf v(x, 1)) > f(y, $);

and similarly whenever (y, s) € d;,A and (x, t) — (y, s+). Hence u AveF. We now
take any function w € 7, and any circular cylinder D such that D C A. Then the
function mpw, defined relative to A, is a supertemperature on A, and is lower bounded
by the same lower bound as w. Furthermore, since the compact set D C A and rpw = w
on A\D, the boundary behaviour of 7pw is the same as that of w. Therefore 7pw € 7,
and so ¥ is a saturated family of supertemperatures on A.

Because gy € A and U’ (gg) > —oo, it follows from [17, Theorem 11] that U}\ is a
temperature on A(qo; A) = A(qo; E), as required. O

CoroLLARY 3.7. Let f be a function on d,E. If there is a point py € E such that L;: (po)
and U £ #(po) are both finite, then LE and U, E are temperatures on A(py; E).

Proor. Since LE (po) > —oco, we can find a hypotemperature u € Q? such that u(pg) >
—oco0. By Lemrna 2.5, u is a subtemperature on A(pg; E), and in particular is finite
on a dense subset F of A(po; E). Therefore —co < u(q) SL]‘?(q) < Uj’f(q) for all

g€ F. Since UE(pg) < +o0, it follows from Lemma 3.6 that UJ‘,E is a temperature on

Uger A(g; E) = A(po; E).
Applying this result to — f, we obtain the result for Lf . O

Lemma 3.8. Let {f;} be an increasing sequence of functions on 0,E, let f = limj_,« f;,
and suppose that Ufn > —co on E for some m. If py is a point in E such that
Ufj(po) < +oo for all j, then

f—hm Ufj

j—)OO
on A(po; E).

Proor. The sequence {U)’f/} is increasing on E, and Ub; < U)’;: on E for all j. Therefore

limj ., UF <U¥ on E, and we may suppose that U} > —co on E for all j.
J J
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Suppose that pg € E and Uy,(po) < +oo for all j. For each j, Lemma 3.6 and our
supposition that U} > —co on E imply that U} is a temperature on A(p; E) for all
p € A(po; E), and thus on A(po; E) itself. We] put A = A(po; E), and note that by
Lemma 3.4, UE UA on A. We take any p; € A and any € > 0. For each j, we can

find a hypertemperature w; € 11 [ such that
wi(p1) = U}\/.(Pl) <27e.

Since each function Uj}_ is a temperature on A, lim;_, U? is a hypertemperature
J

Ji
on A. Moreover, since each functionw; — U }\ is a nonnegative hypertemperature on A,
J

the same is true of Z‘]’f’: w;=U j’}_), and hence of the function
7

v = lim Uf +Z(w1 Uf)

—00
J =1

For each k,
V> U£+(wk—U%)=wk,

so that v is lower bounded on A and
lim inf v(p) = fi(q)
p—q

for all g € 0,A, where the limits are taken in the appropriate sense according to whether
q € 0, or g € 0. Tt follows that (in the appropriate sense)

lim inf v(p) = f(q)
P—q

for all g € 9. A, so that v € le} and hence v> U }\ In particular,

UR(py) < v(pn) < lim U} (p1)+22 le=lim Up(p) +e
j=1

This holds for all € > 0, so that
Up(p) < lim UR(p1) < UR(py).
E Jj—o h

Since p; is an arbitrary point of A, the result is established. m|

DeriniTioN 3.9. We say that a function f on ,E is resolutzve for Eif LY = U} andis a

temperature on E. In this case, we define S E= =U; E to be the PWB solutzon for f
onkE.

Lemwma 3.10. Let f be a function on 0,E. If, for each point q € E, we can find a point
p € N (q; E) such that Lf(p) and U?(p) are equal and finite, then f is resolutive for E.
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Proor. Because Lj‘? (p) and U f (p) are both finite, Corollary 3.7 shows that L}E. and U f
are temperatures on the neighbourhood A(p; E) of the arbitrary point g € E, and hence
on the whole of E. Therefore the function v = Lf -U f is a nonpositive temperature on
E. Since v(p) =0, it follows from the strong maximum principle that v = 0 on A(p; E),
and hence v(¢) = 0. Thus v =0 on E, and so f is resolutive for E. O

4. The caloric measure on the essential boundary

Given any subset S of R™*! we denote by C(S) the class of all continuous, real
valued functions on S'.
The caloric measure arises in a familiar way.

TueoreM 4.1. Given any point p € E, there is a unique nonnegative Borel measure ,u1€
on 0.E such that the equality

St = fayEfa’u,E]

holds for every f € C(0,E). Moreover, ,uﬁ(@eE) =1

Proor. Any function f € C(d.E) has a PWB solution S? on E, by [16, Theorem 32].
If f, g € C(0.E) and a, B € R, then '

SE

_QE E _ E E
af+ﬁg_Saf+Sﬁg—an+,BS ,

so that the mapping f +— S ’; (p) is a linear functional on C(9,E). Furthermore, if f >0
and w € uf , then

lim sup w(x, t) > f(y, ) =0

(x.0)=(y.5)
for all (y, s) € 0,F, and

limsup w(x, 1) > f(y,s) >0

(0= (y,5+)
for all (y, 5) € ,,E, so that w > 0 on E by [16, Theorem 30]. Hence Uf >0onE, so
that the linear functional is nonnegative. It now follows from the Riesz representation
theorem that there is a unique nonnegative Borel measure ,uf on 0,E such that
S?(p) = fa E fd,ug for every f € C(0.E). In particular, if f(g)=1 for all g€, E,
then S =1 on E, so that 1 = S £(p) = fm dpt = pE(8.E). O
DerniTioN 4.2, Given any point p € E, the completion of the measure ,uf of
Theorem 4.1 is called the caloric measure relative to E and p. It will also be denoted

by ,ulf . A function on 9. E will be called uf -measurable if it is measurable with respect
to the completed measure.

Lemma 4.3. Let pg € E, and put A = A(po; E). Then for any point p € A, the caloric
measure ;15 is supported in 0,A, and ,u;,\ is the restriction to 0, of ug .
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Proor. Applying Theorem 4.1 on A,

Sh :f i
f(p) (’)eAf /’[p

for any point p € A and any function f € C(d.A). Since 9,A is a closed subset of
d.E, we can extend any such f to a function f € C(d,E). Then an application of

Theorem 4.1 on E gives
stp= [ Fa
! 8.E ’

By Lemma 3.4, Sf_,(p) = S?(p) for p € A, and hence

Sh =f Fdut.
f(P) 0Ef Hp

This equality is independent of the choice of f, so that > E@.E\d,A) =0 and

spor= [ faud.

e

The uniqueness of the caloric measure now gives the result. O
Lemma 4.4. Let f be a lower finite, lower semicontinuous function on 0,E. Then

L) = Uk = [ faut

forall p e E, and ifo < 400 on E then f is resolutive for E.

Proor. We take an increasing sequence {f;} of functions in C(d.E) that converges
pointwise to f on d.E. By [16, Theorem 32 |, each function f; is resolutive for E
so that, in particular, S ]’f! is finite valued on E for all j. Therefore, by Lemma 3.8,

Uf—th

J—o

on E. Furthermore, S < LE on E for all j, so it follows that U} E< LE on E. Since we

always have L} < U} £ on E, equahty holds. By Theorem 4.1, for all p€E,

E —77E — 1i E — 1i E _ E
Lf(p)—Uf(p)—JlggoSfj(p)—]lggfﬁEfzdup—faEfdup-

Finally, since U} >S% >-co on E, it follows from Lemma 3.6 that Uf is a
temperature on E 1f it 1s upper finite, so that f is resolutive for E in this case. ! O

Lemma 4.5. Let pg € E, and let f be a function on 0,E. Given any number A > Uf(po),
we can find a lower finite, lower semicontinuous function g on 0.E, such that f < g on
0.E and U 5 (po) < A. Given any number B < Lf (po), we can find an upper finite, upper
semicontinuous function h on d.E, such that h < f on 0.E and Lf (po) > B.
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Proor. Since U}E. (po) <A, we can find a function w € 11}5. such that w(py) <A. We
define a function g on d.E by putting

, §) = lim inf 1
g8, s) Jim inf w(x, 1)
for all (y, s) € 9, FE, and
= lim inf t
g8, s) im inf w(x, 1)
for all (y, s) € d,,E. Then g is lower bounded and lower semicontinuous on 9. E. Since

we Hf , we also have g > f on 0,E. Finally, we note that w € 115 , which implies that

Uz (po) < w(po) < A.
The second part follows by applying the first part to —f. O

THeEOREM 4.6. Let p € E, and let f be a function on 0 E.
(a If fa el dug exists, then

Uf(p)=L{(p) = fa Efdu,’f. 4.1)

(b) Conversely, if U ]15 (p)= L? (p) and is finite, then f is u}-integrable (and (4.1)
holds).
Proor. (a) We prove that (4.1) holds for increasingly general classes of functions.

If f is the characteristic function y4 of a relatively open subset A of 9. E, then (4.1)
follows from Lemma 4.4.

We denote by B the o-algebra of all Borel subsets of d.E, and by ¥ the class of all
sets A € B for which (4.1) holds when f = y4. We prove that ¥ = B. We know that 7
contains all the relatively open subsets of d,E, so we can prove that ¥ = B by showing
that  is a o-algebra. Clearly d.E € 7. Suppose that A € F, so that

1y (A) = f xadu, = UL (p)=LE (p).
E

e

We denote by A° the complement of A in d,E. Then, using Theorem 4.1,
(A =1 = (A) =1 = Uf, (p) = LT (p) + L (p) < L}, (p) < U (p)
<UE(p)+UE (p)=1-LE (p) = 1 — uE(A) = uE(A").
Therefore equality holds throughout, and hence

E _ 1/E _ E/peN E
LE () = UL, (=454 = [ .

e

Thus A€ F. We now let {F;} be an expanding sequence of sets in ¥, and put
F= U;’;l F; Then1= Lf > LfF > LfFM > LfFj > Lg =0 for all j. Since U)I(ZF; is finite
on E for all j, it therefore follows from Lemma 3.8 that

LY (p) 2 lim Ly, (p) = lim U e, (P) = Uy, (p) 2 Ly, (p).
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Hence

L (p)=UL (p)= lim Uy, (p) = lim Ho(Fj) =y (F) = fa Xr du,

e

so that F' € 7. It follows that 7 is a o-algebra, and hence ¥ = B.

Now we extend (4.1) to the characteristic functions of all ,ug -measurable sets. Let A
be a ,u,’f -measurable set. Then we can write A = F U Y for some Borel set F and some
subset Y of a Borel set Z with u}(Z) = 0. Then u5(A) = b (F), and

E E E E E E
Lo ()<L, (p)SU, (p) Uy ,(p)sUg (p)+ Uy (p).
Since Z, F € B,
E _ E _
Unwyif Xz dp, =0,
0.E

and (4.1) with f = yr. Hence

L. (p)=UL (p)=U.(p)= fa RS dpl = pb(F) = ub(A) = fa R du, -

e e

Thus (4.1) holds with f = y4.
Our next step is to extend (4.1) to all nonnegative, ,uf -measurable, simple functions

on d.E. Suppose that f can be written in the form f = Zle a;xa,, for some positive
numbers «y, ..., @ and ,ug-measurable sets Ay, ...,Ax. Then (4.1) holds for each
function y4,, and therefore

k k k k
Db (A) =" aill, (N <LE(P) SUF(P)< Y auUF, (p)< ) cuptf(Ay).
=1 i=1 i=1 i=1
Hence
k k
LEp)=US(p) =) awlA) =) e faExA[ duly = faE fdus,
i=1 i=1 e e

so that (4.1) holds for f.

We now consider the case where f is an arbitrary nonnegative, ,uf -measurable
function on d.E. We write f as the limit of an increasing sequence {g;} of nonnegative,
,ug -measurable, simple functions on d.E. Since (4.1) holds for each function g;,

Ufj(p)=f gjdﬂg_’f faus.
0.E 0.E

e

Moreover,
Li(p) 2 lim L (p)= lim U (D).

Each function Ufj is bounded, and hence Lemma 3.8 can be used to show that
lim;_, Ug_(p) = Uf(p) > L?(p). It follows that (4.1) holds in this case.
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Finally, we let f be an arbitrary ug -measurable function for which fa el d,u[]f exists.
Then (4.1) holds for the positive and negative parts of f, so that ’

f fduy = Ug(p) = Li-(p) = UZ(p) + UE,-(p) 2 U{(p),
and also
f fdu, = Li.(p) = Uf(p) = L7 (p) + LE - (p) < LE(p) < UF (p).

Now (4.1) follows in the general case.

(b) Since U% ( p) is finite, it follows from Lemma 4.5 that, given any positive integer
J> we can find a lower finite, lower semicontinuous function g; on d.E such that f < g;
on 0.F and

1
Ug (p) <Us(p) + 5

Furthermore, because Lf (p) is finite, Lemma 4.5 also shows that we can find an upper
finite, upper semicontinuous function #; on d.E such that #; < f on d.E and

1
Ly (p)> L{(p) - =

We put
g=inf g;, h=suph,.
J J
By Lemma 4.4,
Uk =inf U =inf [ g [ gdd,
J ! 7 Jo,E 8.E
and
LEp) = ~UE (p) = =infU%, (p) = —inf f (—hy) du
=supf hjduffsf hd/,lg.
Jj Jo.E 0.E
Hence

s [ hads [ g <Ufe)=Liper

sothat h=g uff -almost everywhere on d,E. Since g and h are Borel measurable, it
follows that there is a Borel set Z such that y,, EZy=0and h= f =g on (6.E)\Z. All
subsets of Z are y,, E_measurable, so that fis a u » E_measurable function and

s [ raug<vbe)=Liper

e

Thus f is y5-integrable. O
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CoroLLARY 4.7. Let f be a Borel measurable function on 0,E. If both U ]E and L? are
finite on E, then f is resolutive for E and ‘

SE =f dut
/(p) agEf Hp

forall peE.

Proor. We choose any point p € E. If f is Borel measurable, then f* is ,Lt§ -measurable,
so that Theorem 4.6(a) gives

Ufi(p) = Li.(p) = f [ dug.
8,E
Since U f (p) < +oo, there is a hypertemperature w € ujf such that w(p) < +o0, and since
w is lower bounded on E, there is a number a such that w+ a € 21?. Therefore
U‘fa (p) < +o0, and obviously U ﬁ (p) > —oco. Since p is an arbitrary point of E,

Lemma 3.6 now shows that U]‘:i is a temperature on E, so that f* is resolutive for
E, and

SE.(p) = f £ du. 0
f 0 E 4

e

This result holds if f is replaced by —f. Therefore f = f* — f~ is resolutive, and

SE(p)=SE (p)-SE =f +dE—f ‘dEzf dut.
f(P) f (p) f (p) (9gEf Hp aeEf Hp 6eEf Hp

CoroLLARY 4.8. Let f be a function on d.E. The following statements are equivalent:

(@) fis resolutive for E;

(b) given any point g € E, we can find a point p € N*(q; E) such that f is ul’f—
integrable;

© fis yllf -integrable for all p € E.

If these statements hold, then

Sf(p)=LEfdu§

forall p e E.

Proor. If statement (a) holds, then Theorem 4.6(b) shows that statement (c) holds also.
If (¢) holds, then obviously (b) holds too. Now suppose that (b) holds, and let g € E.
Then we can find a point p € A*(g; E) such that f is ,uI’f -integrable, so that

Li(p) = Uf(p) = ﬁ fduy
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by Theorem 4.6(a), and the integral is finite. It now follows from Lemma 3.10 that (a)
holds, and so the equivalence of the three statements is established.
Finally, if statement (a) holds, then

St = LeEfdﬂg

for all p € E, by Theorem 4.6. O

It follows from Corollary 4.8 that, if A is a subset of d,E which is ,uf -measurable
for all p € E, then its characteristic function y is resolutive and S £ (p) = ub(A) for
all p€ E. Therefore, if ub (A)=0 for some point p, € E, then u5(A) =0 for all
p € A(po; E), by the minimum principle.

5. Caloric measure null sets
Caloric measure null sets are the negligible subsets of the essential boundary.

DEermiTION 5.1. A subset Z of d,.E is called a caloric measure null set for E if ug Z)=0
forall pe E.

Any polar subset Z of d.E is a caloric measure null set for E. For, by [16,
Lemma 25] (which remains true if E is unbounded), U fz = U(‘)E =0on E, so that yz is
resolutive. Therefore Theorem 4.6(b) shows that y is ,ug -integrable and

0=UL (p)= fa xz du;, = pi(Z)
forall pe E.

If Z is any caloric measure null set for E, then Theorem 4.6(a) shows that yz is
resolutive, with S (p) = 0 forall p € E.

We now give a criterion for a set to be a caloric measure null set in terms of the
boundary singularities of supertemperatures.

THEOREM 5.2. Let Z be a subset of 0,E. Then Z is a caloric measure null set for E if
and only if the following condition is satisfied.

For each point py € E, there is a nonnegative supertemperature u on A(py; E) such
that

Iim wu(x,t) = +oo 5.1
(m (x, 1) (5.1

for all points (y, s) € Z N d,A(po; E), and

Iim  u(x,t) = +oo 52
(x,))>(y,5+) ( ) ( )

for all points (y, s) € Z N O3 A(po; E).
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Proor. We fix a point py € E, and put A = A(pg; E). If there is a function u on A as
described in the statement, then for every € > 0 we have eu € lI)’(\Z. Therefore U )’(\Z < eu,

and if we make € — 0 we obtain U)‘(\Z =0 on the dense set of points of A where u
is finite. It now follows from Lemma 3.6 that U)’(\Z is a temperature on A, so that

U)’(\Z(p) =0 for all pe A. By Lemma 3.4, U)/(‘Z is the restriction to A of Ufz, and
so it follows that Ufz =0 on A(po; E) for every py € E, and thus on E itself. Now

Theorem 4.6 shows that

TRVAE fa xzdu, =U! (p)=0

e

for all p € E, so that Z is a caloric measure null set.

Now we suppose, conversely, that Z is a caloric measure null set for E. If pg € E,
then ST (po) = 0 so that, for each j € N, we can find u; € UZ  such that u;(pg) <27
We put u = 372, u; on E, and note that u(po) < 1. Then u is a hypertemperature on
E, and a supertemperature on A = A(po; E) by Lemma 2.5. If (y, s) € Z N J,A, then

either (y, ) € d,E or (y, s) € d5xF, by Lemma 2.9. In the former case,

liminf u(x,0> ) liminf ui(x, 1) = +oo,
(x,H)—=(,5),(x,1)eA ) (x,0)—=,8),(x,1)eE
=

so that (5.1) holds. In the latter case, we put g = (y, s) and note that there is an

open half-ball H(g, ;) such that H(g,r;) N A =0, by Lemma 2.9. Therefore, if
(x,1) = (v, s) with (x, 1) € A, then (x, 1) — (y, s+). Hence

liminf w2 liminf ui(x, 1) = +oo,
(x,0)—=(y,8),(x,1)eA pr (x,))—>(y,s+),(x,)EE
=

so that (5.1) again holds. Finally, if (y, s) € ZNdsA, then (y, s) € ZNJgE by
Lemma 2.9, and (5.2) follows by a similar estimation. O

References

[1] D.H. Armitage and S. J. Gardiner, Classical Potential Theory (Springer, London, 2001).

[2] T. Bousch and Y. Heurteaux, ‘Caloric measure on domains bounded by Weierstrass-type graphs’,
Ann. Acad. Sci. Fenn. Math. 25 (2000), 501-522.

[3]1 1. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der
mathematischen Wissenschaften, 262 (Springer, New York, 1984).

[4] E.Fabes and S. Salsa, ‘Estimates of caloric measure and the initial-Dirichlet problem for the heat
equation in Lipschitz cylinders’, Trans. Amer. Math. Soc. 279 (1983), 635-650.

[5] E. B. Fabes, N. Garofalo and S. Salsa, ‘Comparison theorems for temperatures in noncylindrical
domains’, Atti Accad. Naz. Lincei. Rend. CI. Sci. Fis. Mat. Natur. 77 (1984), 1-12.

[6] Y. Heurteaux, ‘Mesure harmonique et I’equation de la chaleur’, Ark. Mat. 34 (1996), 119-139.

[71 S.Hofmann, J. L. Lewis and K. Nystrom, ‘Caloric measure in parabolic flat domains’, Duke Math.
J. 122 (2004), 281-346.

[8] R. Kaufman and J.-M. Wu, ‘Singularity of parabolic measures’, Compositio Math. 40 (1980),
243-250.

https://doi.org/10.1017/51446788712000389 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000389

[17]

(9]
(10]
(11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]
(19]

[20]

Caloric measure for arbitrary open sets 407

R. Kaufman and J.-M. Wu, ‘Parabolic potential theory’, J. Differential Equations 43 (1982),
204-234.

R. Kaufman and J.-M. Wu, ‘Parabolic measure on domains of class Lip%’, Compositio Math. 66
(1988), 201-207.

R. Kaufman and J.-M. Wu, ‘Dirichlet problem of heat equation for C> domains’, J. Differential
Equations 80 (1989), 14-31.

J. T. Kemper, ‘Temperatures in several variables: Kernel functions, representations, and parabolic
boundary values’, Trans. Amer. Math. Soc. 167 (1972), 243-262.

J. L. Lewis and J. Silver, ‘Parabolic measure and the Dirichlet problem for the heat equation in
two dimensions’, Indiana Univ. Math. J. 37 (1988), 801-839.

K. Nystrom, “The Dirichlet problem for second order parabolic operators’, Indiana Univ. Math. J.
46 (1997), 183-245.

N. Suzuki, ‘On the essential boundary and supports of harmonic measures for the heat equation’,
Proc. Japan Acad. Ser: A Math. Sci. 56 (1980), 381-385.

N. A. Watson, ‘Green functions, potentials, and the Dirichlet problem for the heat equation’, Proc.
London Math. Soc. 33 (1976), 251-298.

N. A. Watson, ‘A unifying definition of a subtemperature’, New Zealand J. Math. 38 (2008),
197-223.

J.-M. G. Wu, ‘On parabolic measures and subparabolic functions’, Trans. Amer. Math. Soc. 251
(1979), 171-185; 259 (1980), 636 (erratum).

J.-M. Wu, ‘On heat capacity and parabolic measure’, Math. Proc. Cambridge Phil. Soc. 102
(1987), 163-172.

J.-M. Wu, ‘An example on null sets of parabolic measures’, Proc. Amer. Math. Soc. 107 (1989),
949-961.

NEIL A. WATSON, Department of Mathematics and Statistics,
University of Canterbury, Private Bag, Christchurch, New Zealand
e-mail: n.watson@math.canterbury.ac.nz

https://doi.org/10.1017/51446788712000389 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000389

