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Abstract

For a G/G/1 queueing system let X; be the number of customers present at time ¢ and Y;(Z;)
be the time elapsed since the last arrival of a customer (the last completion of a service) at
time ¢. Let 7; be the time until the number of customers in the system is reduced from j to
Jj—=1, given that Xo = j >/, Yy = y, Zg = z. For the joint distribution of 7, and Y;, and
the Laplace transforms of the 7; integral equations are derived. Under slight conditions these
integral equations have unique solutions which can be determined by standard methods. Our
results offer a method for calculating the busy period distribution which is completely different
from the usual fluctuation theoretic approach.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 K 25.

1. Introduction

For the G/G/1 queueing system the distribution of the duration of a busy
period has been derived by Finch (1961) and Kingman (1961). The transform
of the joint distribution of the number N of customers served during a busy
period, its duration 7 and the length of the subsequent idle period [ is given
in several textbooks (for example, Prabhu (1980)): for all z € (0,1), 6, > 0,
6, >0,
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(1.1)
E(ZNe—Ol‘r—eZl) = l—exP {—n2=:l ErTn //)‘

where 4 and B are the distribution functions of the interarrival times and
the service times, and A*” denotes n-fold convolution of 4. The derivation
of (1.1) is based on fluctuation theory applied to the underlying random walk
of the queueing system.

In this paper a different approach is developed. For ¢t > 0 let X, be the
number of customers in the system at time £, Y; be the time elapsed at time
t since the last arrival of a customer and Z, be the time elapsed between ¢
and the last completion of a service before ¢. Let the system start at time
0 with the condition Xg = j, Yo = y, Z¢ = z for some j e N and y,z > 0.
Clearly (X,, Y;, Z,) is a Markov process. For / < j let t; be the time passing
until the number of customers in the system is reduced from j to j — [. We
shall derive an integral equation for

(1.2) ¥y (o, E) := E(e™"" Iy, eryl Xo = J, Yo =y, Zo = 2)

e~ Brv+02v—u) g gon(y) dB*”(v)} ’

u<0

(a > 0, E a Borel subset of [0,0)) by some rather simple arguments based
on the Markov character of the process (X;, Y;, Z;). Under a slight condition
this integral equation is seen to determine (a, E) — ¥, ;(a, E) uniquely and,
moreover, turns out to be solvable by the method of successive approxima-
tions. This method provides a sequence ") tending to ¥, , at an exponential
rate of convergence uniformly with respect to (y, z). This will be useful for a
numerical determination of the joint distribution of 7, and Y;,. Note that 7,,
the time for decreasing the numbers of customers from j to j—1, is for j = 1
simply the ordinary busy period duration, while Y, is, for j = 1, the waiting
time of the last customer served in the busy period under consideration.
The process (X;, Y;, Z,) has also been studied by Keilson and Kooharian
(1960, 1962) who rely on rather involved Wiener-Hopf techniques. The fairly
straightforward approach given here is however sufficient to derive the con-
ditional joint distribution of (7,,Y;,) for an arbitrary initial condition on
(Xo, Yo, Zo). Further it will be seen in Section 3 that our method can be ap-
plied to determine the Laplace transforms ¢;(:|y, z) of the 7;, conditional on
Xo=12j, Yo=y, Zy = z. Define their joint generating function by

(13)  ®(x,uly,z) =Y o;uly,2)x/,  |x| <1, u,y,2>0.
j=1

We obtain a system of two Fredholm integral equations of the second

kind for the functions y — ®(x, u|y,0) and z — ®(x, 4|0, z) and an equation
which gives @ in terms of these two functions. Under weak conditions this
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system of integral equations has the corresponding Neumann series as its
unique solution.

In the concluding Section 4 we use our technique to calculate E(exp{—ut,}|
Xo = 1, Zy = z) for the bulk-arrival queue MX/G/1. The distribution of the
busy period duration (i.e. of 7; given that Xy = 1, Z; = 0) has already been
derived in Cohen (1980, Chapter III, 2.3) using a different method.

Throughout the paper we assume that the distribution functions of the
interarrival times and the service times possess densities a(x) and b(y).

2. The joint distribution of (7,Y;,) in a G/G/1 queueing system

Fory,z>0and j =1,2let Q). ; be the joint conditional distribution of
(7, Ye,) given that Xg = j, Yo =y, Zp = z. Let

(2.1) ¥, (o, E) = /Ooo e Qy .1(dt, E),

where ¢ > 0 and E is a Borel subset of [0,00). The duration of a busy
period initiated by one customer arriving in the system at time O then has
the Laplace transform a — ¥ o(a, [0, 0)). We shall now derive an integral
equation for ¥, ,.

THEOREM 1. Forall u,y,z > 0 and all a > 0 we have

(2.2)
¥, (e, [0,u]) = /0 e~ ((llii(é;;(tl))f(;(;)t)) ljg,00)( —y — 1) dt

(1= B(z +0)aly +0 ,
* oo Lo T BT Ty Yo ' Puvolen 0w

ProoOF. Let Xy = j, Yy = y, Zy = z. The first change of the queue size
occurs at the time min(S,, T;), where S, and T, are independent random
variables with distributions given by

(2.3) P(S,2v)= I—If—(j(%”—), v >0,
(2.4) P(T, > w)= 12 BE+W) s

1 — B(z)
(S)(T2) is the first positive arrival (departure) time.) If S, = v < T,, we
have X, = jfor0<t<vand X, =j+1,Y, =0, Z, = z+v. The time
remaining thereafter up to 7; has the conditional distribution of 7., given
that Xo=j+1,Y=0,Zy=z+w.
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If T, = w < §,, the analogous relations are X; = j for 0 < ¢t < w,
Xy=Jj-1,Yy=y+w, Z, =0, so that the remaining time up to t; has the
same distribution as t;_,, given that Xo=j -1, Yo =y +w, Z; =0.

Using these ideas for j = 1 it is seen that Q, . ; satisfies

(2.5)
(1-Ay+35)b(z+s)

O (0, [0,1) = /o<s<, A=A <BG)
y+S u
(1- B(Z +s))a(y +s)
///+v<t (1-B(2)(1 - 4A0)) Qo,z4+52(dv,dw) ds.

Next we shall use the followmg relation between Q) ;| and Q) ;>:

(2.6)  Qyua(Ex F)= / / 0y.2.1(dV', dw')Quy 0,1 (0", F)
v'+v'€E Jw' 20

for all Borel subsets E, F of [0,00). To see (2.6), note that in order to reduce
the queue size from 2 to 0, it must be first decreased to 1 which happens at
some time v’, say, and the time which is then elapsed since the last arrival
can be any w’ € [0,00). Thereafter the queue size has to be decreased from
1 to O after some time v”. Integrating with respect to (v’,w’) and v” yields
(2.6).

Inserting (2.6) into (2.5) we obtain

t -
@7) Qo x (0 = [ GEEVLIEAD 1y iy —5)as

S =

$20

xQo,z+5,1(AV’, dw') Q0,1 (dv", dw) ds.
Finally one has to take the Laplace transform of the measure
B — Qy.1(B x[0,u]),
where u is fixed, to complete the proof.

For fixed a > 0 the function (y, z, E) — ¥, ;(a, E) is uniquely determined
by equation (2.2) and the condition that ¥, ;(a, -) is a subprobability measure,
if

Cay+t) _ 1
2.8 G(a) :=su / — e Mdt < .
29 (@)=2 ), T-40) 2

For let # be the Banach space of all functions p(y, z, E) such that p(-, -, E):
[0,00)2 — R is measurable for each Borel subset E of [0,00), p(y,z,") is a
signed measure for each (y, z) € [0, 00)? and

(2.9) llpll := sup |p(y,z,-)| < oo
y,z20
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(lv| denotes the total variation of a signed measure v). Let 7 = {p €
Z||pll <€ 1} and define the operator U,: Z — % by

_ (1= B(z 4+ D)a(y+1)
210) (Vap)y, 2, E) = /zzo /w'>oe (A= B@)(1 - AD))
xp(0, z + t,dw’)p(w’,0, E) dt.

If p, p € %, we have

(2.11)
R —atl=B(z+)a(y +1)
IWop = Uabll < sUp | ¢ T=B@O - 40)

X {/ [1p(0, z + t,dw')p(w',0,dw) — p(0, z + t,dw’) p(w’, 0, dw)|

+10(0, z + t,dw') p(w', 0, dw) — H(0, z + 1, dw’) p(w, 0, dw)n} d

< sup 2lp - 4| / - 2V 2D 4
¥,z20 >0

- AQ)
=2G(a)llp - Al

Thus if G(a) < 1/2 and p, p are two solutions of (2.2) satisfying ||p|l, | 2]l < 1,
(2.2) and (2.11) entail that

(2.12) lp = Al = 1Uap — Uapll £ 2G(a)llp — Al
so that p = p.

Especially if
(2.13) G(a) < % for all a > ag

for some ap > 0, equation (2.2) uniquely determines the Laplace transform
of the measure Q, ; (-, E) for every fixed triple (y, z, E). Moreover, the above
considerations show that the method of successive approximations yields a
sequence of (¥™),>o which converges to ¥ in the total variation distance
with respect to E and uniformly with respect to y and z: we have
2G
(214) sup[¥§h(e, ) - ¥y.ele, )] < 1 2(?;)(] sup ¥4 (a, ) ~ ¥ (a1 )
) %4
We can take an arbitrary ‘l’ﬁf’z(a, E) belonging to % and then, for n > 1, have
to find ‘Pﬁ,',';(a, E) recursively by
(2.15)
© _(=—Aly+1))b(z+1)
¥\ (o, E :=/ e at 1 u
yi(eE) (1= A0)(1 - B(z)) 0=

oot (1 -B(z+0)ay +1t) yn R
+/>0/'>0 (1 = B(2))(1 - A(»)) ‘sz+t( dw )‘1’( Yo, E)dt.

~y—-1)dt
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Condition (2.13) is for example satisfied, if 4 has a bounded hazard rate
a(y)/(1 — A(y)). Forifa/(1 — 4) <K,

(2.16) (mnSA ngggﬁrwmgxﬁn

3. The Laplace transform of 7;

Next we consider
(3.1) 9(uly, z) := E(exp{—ut;}|Xo =, Yo = y, Zo = z),

where u,y,z > 0and / > j > 1. Using the argument already employed at the
beginning of the proof of Theorem 1, but now for arbitrary j > 1 and for

the Laplace transforms instead of the distributions themselves, we obtain
3.2)
© (1 (z+v))a(y+v)
(uly,z) = e o (u0,z+v dv
(y+w))b(z+w) .
dw, >2,
(1-4()(1 - B(2)) g

+/0 e "o, (uly +w, O)(

and

_ [ (L= AW + w))b(z +w)
(3.3) ¢1(u|y,2)—/0 € (1 - A(»)(1 - B(z))
(1-B(z+v))ay +v) .
(1-B(2))(1-4®))

To solve this system we introduce the generating function

dw

[ o]
+/ e " o,(ul0, z + v)
0

(3.4) O(x,uly, z) Zq),(uly, x/, x| < 1.

Summing (3.2) and (3.3) over j yields after some simple manipulations
(3.9)

*® —uw(l_ (y+w))b(z+w)
xoxuly, )= [ e SRR du
- B(z+w))a(y +w)
(1-B(2))(1 - A())
A(y+'w))b(z+w)d
(1—A(y)(1 - B(z2))
(1- B(z+w))a(y+w)dw

(I1-B(2))(1 - A4(»))

dw

+/ e"“"<b(x,u|0,z+w)(
0

+x2/ e~ D(x,uly + w, 0)(
0

oo
- x/ e "o1(u|0,z + w)
0
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Note that
(3.6) e1(uly, z) = ¥, : (1[0, 00)),

and ¥ has been determined in the previous section. We arrive at the following
result.

THEOREM 2. Let u > 0 and x € R, |x| < 1, be fixed. The functions
D(x,u|0,) and ®(x, u|,0) satisfy the following system of Fredholm integral
equations of the second kind:

(3.7) (1 - B(2))x®(x, 4]0, 2) = x> /0 " emu(1 — A(w))b(z + w) dw
+ /0 ” e~ (x, 4]0, z + w)(1 - B(z + w))a(w) dw
+x2 /0 ” e a(x, ulw, 0)(1 — A(w))b(z + w) dw
—x /ow e~ g, (4]0, z + w)(1 — B(z + w))a(w) dw

(3.8) (1 —A(y))x®(x,uly,0) = x* /0°° e (1 - Ay + w))b(w)dw
+ /0 " e~ (x, 4]0, w)(1 — B(w))a(y + w) dw
+x? /0°° e D(x,uly +w, 0)(1 = A(y +w))b(w) dw

- x/ooo e-“w¢>1-(12|0, w)(1 — B(w))a(y + w)dw.

For arbitrary y, z > 0 the function ®(x, u|y, z) is then connected with ®(x, u|0, -),
®D(x,u|-,0) and ¢,(u|0, z) by (3.5).

Equations (3.7) and (3.8) can be written in the form

(3.9) f=8g+K/,

where
(3.10)  f= (f,;) g= (§;) kr= (Eﬁ Igﬁ)
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and fi, f2, g1, £ are defined as follows:

(3.11)  fi(y) = (1 - B())®(x, u|0,y),
(3.12)  fa(y) = (1 - A)P(x,uly,0),

(3.13) @)= x/o<>° e (1 — A(w))b(y + w) dw
- /Ooo e o, (u|0,y + w)(1 — B(y + w))a(w)dw,
(3.19) &) = x/ooo e (1 — Ay + w))b(w) dw

- /0 ” =g, (u]0, w)(1 — Bw))a(y + w) dw.

The definition of the integral operators K;;, i, j = 1,2, is clear from (3.7) and
(3.8); for instance,

(3.15) (K1 h)(2) =x"/oo e~ h(z +v)a(v)dv.
0

For y > Olet @, and b, be the Laplace transform of the functions v — a(y+v)
and v — b(y+v). Then we have, for arbitrary bounded measurable functions
h:[0,00) =R,

(3.16)  |Kuh(z) = }x-‘ /0 ~ e~ h(z + v)a() dv| < x|~ do(t) hlleos

where [|h]|co := sup,>¢ |#(z)|, and similarly

< |xtb ()| 4lloos

(3.17)  |Ky2h(2)| = x/oo e " h(v)b(z +v)dv
0

(3.18)  |K2ih(2)| < |x|7a; ()|l oo,

(3.19)  |Knh(2)] < |xlbo()[|Allco-

If we define ||2| := ||41]lco + ||#2]lco fOr
h= () 10.00) = R,
2

(3.16)-(3.18) yield
(3.20) KA < x|~ ao(u)|| A |loo + |x] sup b (u)|lh2|oo

+ x|~ sup 8 ()1 llo + X100 () [ 2]l co-

Let us assume that

oo
(3.21) hm supa,(u) = lim sup/ e “a(z+v)dv=0
0

 z>0 U—00 2>0
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and
(3.22) lim sup b, (u) = 0.

U=—+00 z>0
Equations (3.21) and (3.22) are not very restrictive conditions; they are for
example satisfied, if @ and b are monotone on [T, 00) for some 7 > 0. If
(3.21) and (3.22) are valid, some standard arguments using (3.20) now show
that, for sufficiently large u, (3.9) possesses a unique continuous solution
which is given by the uniformly convergent Neumann series

(3.23) f=g+Kg+K*g+---.

Thus for large u the functions ®(x, #|0, -) and ®(x, |-, 0) are uniquely deter-
mined by (3.7) and (3.8), and the series (3.23) gives a way to approximate
them exponentially fast. For arbitrary ¢ € (0,1/2) this convergence is uni-
form with respect to x € (¢, 1 — &), if u > uy = up(e).

4. The bulk quene M*/G/1

For the queueing system M ¥ /G/1 the above technique can also be applied
to determine the conditional Laplace transform

(1)  @j(ulz) = Efxp{-ut}Xo=1Zo=2), wz20,12j>1,

of the first time instant 7; at which the queue size is decreased from / to / — j.
Let A(x) = 1 —e=**, x > 0, for some 1 > 0. At the time of the jth arrival
in (0, c0) a group of A; customers enters the system, where A;, A,,... are as-
sumed to be independent random variables having the common distribution
P(Ai=n)=p,, n=1,2,..., and the generating function p(s) := > 72, pas”.
For MX /G/1 obviously (X,, Z,) is a Markov process. It is not difficult to see
that

(4.2) 9;(u|z) = 1(u|z)p; (4|0) !

so that it suffices to compute ¢;(u|z). Now given that Xy = 1, Z; = z,
the following possibilities can be distinguished. If no new customers enter
before the next service is completed at time x, say (an event of probability
[b(z + x)/(1 — B(z))]Je=** dx), we have 7, = x. If j > 1 arrivals take place
before the next service completion time x and the number of new customers
entering the system in (0, x] is equal to n, we have 7, = x + #,, where %,
has the same distribution as 7,, given that Xy, = n, Zy = 0. This possibility
occurs with probability

Oy (&K Y bz+x)
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For ¢,(u|z) these considerations yield

(4.3)
[T _uxb(z+Xx)
¢1(ul2)—‘/0 e T_—B'me Ax dx

00 00 oo i J
([ (5 0) o5 o] aor

1 o
—(u+d)x
1B [/0 e b(z+x)dx

3 = —~(u+A)x A )j ,
+ ;./o e~ W+ b(Z+X)-(;—!p(¢1(u|0))l dx}

= 1_;3(2) /0 " b(z + x) exp{Axp(p,(u4|0)) — (u + A)x} dx.

Equations (4.3) show how to compute ¢,(u|z), if ¢,(u|0) is known. For
z =0, (4.3) can be written as
(4.4) @1(u|0) = f(u+ 4 — Ap(p1(u|0))),

where f is the Laplace transform of b(x).

Equation (4.4) is a generalization of the well-known Takics equation
(Feller (1971), pages 441-442 and 473) which comes out for p(x) = x. As
in the classic case the following lemma is easily proved.

LEMMA. Assume that 1/u = [;° xb(x)dx < 0o and v := Y72 np, < 0.
The equation
(4.5) p(u)=f(u+i—-2p(pu))), u>0,

possesses a unique solution ¢(u) which is the Laplace transform of a distribu-
tion which is proper if \v /u < 1 and defective otherwise.

As an example, let us consider the case when B(x) =1 —-e™**, x > 0, for
some u > 0. Equation (4.4) for ¢ = ¢,(:|0) takes the form

_ H _ u
(4.6) o(u) = u+Ai+u—ap(p(u)) u+}.+u+u+l+u

We note that ¢ can be expanded into ascending powers of (A + x + u)~! in
the form

(4.7) o) = alA+w/G+p+uw)]", u>0,

n=1

e(u)p(o(u)).

where g, > 0 for all n > 1. To derive (4.7), let X; be the time between the
(i — 1)th and the ith jump of the queue size and let Y; be the size of the ith
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jump. Then if j, js,...,Jn € {-1,1,2,3,...} satisfy j; + --- + jm > —1 for
m=1,...,n-1and j; +---+ j, = —1, it is easily seen that

n
(4.8) / emutxi+rxn gp = [ / e~Win g p
{Y|=j1 ,,,, Yn=jn} m=1 {szjm}

and
4. LY ] J——
“9) L. T
A
. —UXm = .f i > 1’
(4.10) /{Ym_jm)e dpP Ttutu 1t Jm 2

since X,, can be represented as the minimum of two exponential variables
Sy, and T, say, with means 1/4 and 1/u, respectively, and Y,, = 1 if and
only if S,, < T,,,. Obviously ¢(u) can be written as a series of terms of the
form (4.8). Inserting (4.9) and (4.10) into (4.8) shows (4.7).

Letv:=(A+u)/(A+u+u), p(v):= p(u) if v € (0,1] and ¢(0) := 0. From
(4.6) it follows that

I
u+a H+i

(4.11) g(v) = vp(v)p(9(v)).

Inserting (4.7) into (4.11) and comparing the coefficients at both sides gives
the following recursive relation for the g,:

Q=p/(u+d), =0,

(412) h+--+i . )
n+l /—t+lz ll’ ’ : § pi|+--.+in_lq;| ...q’lln’ n> 1,

where the sum is taken over all n-tuples (i,,...,i,) of nonnegative integers
for which E;; 1 jij = n. To check (4.9), it is convenient to use the formula

w3 %(Fo¢)(v) ZZ,',!.?!. - Flivt +zn)(¢(v))H( (v))

where the sum is extended over the same set of n-tuples as in (4.12) (see
Gradshteyn and Ryzhik (1980), page 19, formulae 0.430).

Equation (4.7) can be inverted term-by-term. Thus the density of 7; is
given by

(4.14) -WWZ "”, g™
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