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1. Introduction
The generalised zeta-function C(s, a) is defined by

tts,a)= f) (a+n)-',
n = 0

where a>0 and Res>l . Clearly, £(s, 1) = £(s), where CO) denotes the
Riemann zeta-function. In this paper we consider a general class of Dirichlet
series satisfying a functional equation similar to that of £(s). If <j>(s) is such a
series, we analogously define <f>(s, a). We shall derive a representation for
4>(s, a) which will be valid in the entire complex s-plane. From this representa-
tion we determine some simple properties of <j)(s, a).

Throughout the sequel we let s = a + it and z = x+iy with a, t, x and y

real. If c is real, we denote the integral by I . The summation sign 2
Jc-ix J(c)

00

appearing with no indices will always mean £ .
n = 1

The following definition is essentially that of Chandrasekharan and
Narasimhan (1).

Definition 1. Let {!„} and {nn} be two sequences of positive numbers tending
to oo, and {a(ri)} and {b(n)} two sequences of complex numbers not identically
zero. Consider the functions (j> and \j/ representable as Dirichlet series

with finite abscissae of absolute convergence aa and a*, respectively. If r is
real, we say that </> and \j/ satisfy the functional equation

if there exists in the s-plane a domain D which is the exterior of a bounded
closed set S such that in D a holomorphic function x(s) exists with these
properties:

(i) z(s) = T(s)<Ks),

t The main result of this paper appeared in the author's Ph.D. dissertation written under
the direction of Professor J. R. Smart at the University of Wisconsin in 1966.
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(ii) if c and n are chosen so that c > max (0, aa, a*), and S lies outside
R = {s: r—c<o<c, \ t \>tj} but in r—c<a<c, then, for some constant

= O(exp [e8" ' s l/<2c-'>]), (1.1)

uniformly in R as | s |-+oo.
If £(«) = ya(n) with y = ± 1 , r>0, Xn = nn = 2nn/X with A>0, and

(s—r)(j)(s) is entire, then (2n/X)s4>(s) is a Dirichlet series of signature (X, r, 7)
according to the definition of Hecke (2). Thus, ((2s) is of signature (2, \, 1).

Definition 2. If 0 satisfies definition 1, we define a generalised Dirichlet
series 4>(s, a) by

</>(*, a) = Za(«)(fl + ;.„)-*,
where a>0 and a>aa.

Note that C(-v, a) does not satisfy definition 2.

2. Preliminary results

We collect here some lemmas to be employed in the sequel.

Lemma 1. We have
r(s) = o(|(|ff-*c-ji|'i/2),

uniformly Jor —OO<<T1 ^ a ^ a2< 00, as \t |—xx>.

Lemma 2. For ;c>0 arad 0<c<<r,

if :
This result is stated in (4), p. 192.

Lemma 3. Let j be holomorphic in a strip S given by a<a<b, \t\>r\>0,
and continuous on the boundary. If for some constant 6<l,

uniformly in S,f(a+it) = o(l) andf(b + ii) = o(l) as \ t |->oo, thenf(cr + it) = o(l)
uniformly in S as | t \ -»00.

This is a version of the Phragmen-Lindelof theorem ((3), p. 109).

Lemma 4. Let Kv(x) denote the usual modified Bessel function. Then,

2Kv(x) = —A (xl2y-2T(s~v)T(s)ds, o m a x (0, Re v); (2.1)1 f
27"Jw

Xv(x) = 0(x~*<T*), as x^oo; (2.2)

Xv(x) = K_v(x); (2.3)

^ ( x ) = (n/2*)*e-* (2.4)

Result (2.1) is given in (4), p. 197; (2.2), (2.3) and (2.4) are found in (5),
pp. 202, 79 and 80, respectively. We note from (2.1) that K,(x) is an entire
function of v.
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3. Main results
We now establish the representation theorem for <j>(s, a).

Theorem. Let 4>{s, a) denote a generalised Dirichlet series and let

where C is a curve, or curves, chosen so that C encircles all of S and does not
contain s, if possible, for a given fixed value of s. Then,

r(s)a>(s, a) = 2a<'+s»2i:b(n)tf-r)l2Kr-s(2yJ~a^)+R(s, a), (3.1)

for those values of s such that the series on the right-hand side converges uniformly
and which are not contained in C for a suitable choice of C. In particular, if
2yja/xn ^ (1 + e) log n, e > 0, for n ^ N, and the singularities of x(s) are isolated,
(3.1) is valid for all values of s, except these isolated singularities.

Proof. Let c be given as in definition 1 and consider s as fixed with o>c.
Then,

27ElJ(c)

= T{s)as<t>(s, a), (3.2)

upon an application of lemma 2. The change in order of summation and
integration is justified by absolute convergence, since by lemma 1,

\
as | y |->oo.

We now move the line of integration to r—c + it, — oo < t < oo, by integrating
along the boundary of a rectangle with vertices c± iT and r—c±iT and then
letting J->oo. By (1.1), lemma 1 and lemma 3, the integrals along the hori-
zontal sides tend to 0 as T->co. Hence,

a), (3.3)

where

I(s,a)=^-[ r(s-z)X(z)a*dz.

Replacing z by r—z, using the functional equation, and interchanging the
order of summation and integration by absolute convergence, we find

7(s, a) = allb(n) - L f F ( z - {r-s})T{z){atin)^dz2™J
(3.4)
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upon an application of (2.1), provided c>max(0, r—c). Combining (3.2),
(3.3) and (3.4), we have established (3.1). By analytic continuation (3.1) is
valid for those values of s such that (3.4) converges uniformly and which are
not contained in C. However, by (2.2)

I(s, a) = O(E | b(ri)\ p,^~r~i)l2e~2-/'"'n). (3.5)

It is easy to see that the series of (3.5) converges uniformly if

2yjap.n ^ (1 + s) log n, e > 0, for n ^ N.

In particular, we have

Corollary 1. Let f(s) denote a Dirichlet series of signature (A, r, y), and
let p denote the residue off(s) at s = r. Then, for all s,

/(s, a) = a-s/(O)+r(r)r(s-rK-sp/r(s)

2y /27iV fa\ir~s)'2 —
r(s)w anW

Proof. The result is immediate on noting that %(s) has at most simple poles
at s = 0 and s = r and on replacing a by 2na/X in (3.1).

In the following corollaries we assume f(s) is a Dirichlet series of signature
(A, r, y).

Corollary 2. Iff(_s) is entire, f(s, a) has simple zeros at s = 0, — 1, —2,....
Corollary 2 is clear, since, from the functional equation, /(0) = 0 if / is

entire.

Corollary 3. Iff(s) is not entire and r is not an integer, then

Corollary 4. Suppose f(s) is not entire. If r is not an integer, f(s, a) has
simple poles at s = r, r—\, r—2, .... If r is an integer, f(s, a) has simple poles
at s = \,2, ..., r.

Corollary 5. f{s, a) is entire if and only iff{s) is entire.

4. Examples
Let /(s) = C(2s). Since C(0) = —\ and p = \, we have, by corollary 1

on replacing n by n2,
a

f(s, a) = _fl

If s = 1, we find by using (2.3) and (2.4) that

n +a 2a a*

This result is, of course, known. Also/(—n, a) = —a" 12, where n is a non-
negative integer, and/(s, a) has poles at s = \, —J, —\
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Next, consider/(s) = I.x(n)n~s, where t(n) denotes Ramanujan's arithmetical
function. It is well known that/(j) is entire and of signature (1, 12, 1). By
corollary 1,

2(2nY /a\ ( 1 2~s ) / 2 ,—
/(s, a) = t&L ST(«) a- K12_s(4njan).

T(s) \n)
f(s, a) is entire and has simple zeros at s = 0, — 1, —2, ....
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