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1. Introduction
The generalised zeta-function {(s, @) is defined by

(a)= ¥ @,

where a>0 and Res>1. Clearly, {(s, 1) = {(s), where {(s) denotes the
Riemann zeta-function. In this paper we consider a general class of Dirichlet
series satisfying a functional equation similar to that of {(s). If ¢(s)is such a
series, we analogously define ¢(s, a). We shall derive a representation for
¢(s, a) which will be valid in the entire complex s-plane. From this representa-
tion we determine some simple properties of ¢(s, a).

Throughout the sequel we let s = o+if and z = x+iy with o, ¢, x and y
c+im

real. If ¢ is real, we denote the integral J by J . The summation sign X
()

c—ioo

@
appearing with no indices will always mean Y’ .
n=1

The following definition is essentially that of Chandrasekharan and
Narasimhan (1).

Definition 1. Let {4,} and {u,} be two sequences of positive numbers tending
to oo, and {a(n)} and {b(n)} two sequences of complex numbers not identically
zero. Consider the functions ¢ and i representable as Dirichlet series

&(s) = Za(mA,®, Y(s) = Zb(nu,*
with finite abscissae of absolute convergence o, and o, respectively. If r is
real, we say that ¢ and  satisfy the functional equation
I(s)¢(s) = T(r—s)Y(r—s)
if there exists in the s-plane a domain D which is the exterior of a bounded
closed set S such that in D a holomorphic function x(s) exists with these
properties:
@ x(s) =T()9(s), (6>0,),
2(s) = T(r—s)(r—s), (e<r—a3);

1 The main result of this paper appeared in the author’s Ph.D. dissertation written under
the direction of Professor J. R. Smart at the University of Wisconsin in 1966.
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(i) if ¢ and 5 are chosen so that ¢>max (0, 6,, 6¥), and S lies outside
R = {s: r—c<o<c, |1|>n} butinr—c<o <c, then, for some constant <1,

() = O(exp [ 151/CGe=n]), 1.n
uniformly in R as | s |—00.

If b(n) = ya(n) with y = +1, r>0, 4, = u, = 2zn/A with A>0, and
(s—r)¢(s) is entire, then (27/2)°p(s) is a Dirichlet series of signature (4, r, y)
according to the definition of Hecke (2). Thus, {(2s) is of signature (2, 4, 1).

Definition 2. If ¢ satisfies definition 1, we define a generalised Dirichlet
series ¢(s, a) by

P(s, @) = Za(n)(a+2,)"",
where a>0 and ¢>0,.

Note that {(s, a) does not satisfy definition 2.

2. Preliminary results
We collect here some lemmas to be employed in the sequel.

Lemma 1. We have
I(s) = O(|t [~ te~m11112),
uniformly for —oo<o6; £ 0 £ 0,<0,as |t]|—>o0.
Lemma 2. For x>0 and 0<c<ao,
2| T@Ts—2)x"dz = T(s)/(1 +x.
2ni (c)
This result is stated in (4), p. 192.

Lemma 3. Let f be holomorphic in a strip S given by a<a<b, | t|>n>0,
and continuous on the boundary. If for some constant 6<1,

f(s) = O(exp [¢* 1 =1/0=a]),

uniformly in S, f(a+it) = o(1) and f(b+it) = o(1) as | t |- 00, then f(c +it) = o(1)
uniformly in S as | t |—> 0.

This is a version of the Phragmén-Lindel6f theorem ((3), p. 109).
Lemma 4. Let K,(x) denote the usual modified Bessel function. Then,

K = - | (x/2) 2T (s—v)[(s)ds, ¢>max (0, Re v); @.1)
271 J

K (x)=0(x"%¢"%), as x—>w; 2.2)

Kv(x) = K—v(x); (23)

K,(x) = (n/2x)te™ . 24

Result (2.1) is given in (4), p. 197; (2.2), (2.3) and (2.4) are found in (5),
pp- 202, 79 and 80, respectively. We note from (2.1) that K,(x) is an entire
function of v.
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3. Main results
We now establish the representation theorem for ¢(s, a).

Theorem. Let ¢(s, a) denote a generalised Dirichlet series and let

R(s, @) = ;?j (s — 2)y(z)adz,
C

where C is a curve, or curves, chosen so that C encircles all of S and does not
contain s, if possible, for a given fixed value of s. Then,

T(s)a*d(s, a) = 2a"* 92 Eb(mus ™K, _(2Jap,)+R(s, @), (3.1

Sfor those values of s such that the series on the right-hand side converges uniformly
and which are not contained in C for a suitable choice of C. In particular, if
2\/a_y: 2 (1+¢)logn, €>0, for n = N, and the singularities of y(s) are isolated,
(3.1) is valid for all values of s, except these isolated singularities.

Proof. Let ¢ be given as in definition 1 and consider s as fixed with ¢>c.
Then,

—1——. T'(s—2)I'(2)¢(2)a’dz = Za(n) —1— J T(s—2)[(z)(4,/]a)"*dz
27i J o 27l J o

= T'(s)a*¢(s, a), (3.2)
upon an application of lemma 2. The change in order of summation and
integration is justified by absolute convergence, since by lemma 1,

[(s—20() = 0(] y [* 717D,
as | y |- oo0.

We now move the line of integration to r—c+it, — 00 <t < o0, by integrating
along the boundary of a rectangle with vertices ¢+ iT and r—c+i7T and then
letting 7—co0. By (1.1), lemma 1 and lemma 3, the integrals along the hori-
zontal sides tend to 0 as T—o0. Hence,

L Ts—2)p(z)atdz = I(s, @)+ R, a), (.3)
27 J o
where

I(s, a) = ZL J I'(s—2)x(z)a’dz.
(r—c)

i

Replacing z by r—z, using the functional equation, and interchanging the
order of summation and integration by absolute convergence, we find

I(s, @) = a"Sh(n) J T(z—{r—s)T()ap)"dz
2ni J
= 2a"*O2Ep(mul 2K, _ (2 ap,), (3.4)
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upon an application of (2.1), provided ¢>max (0, r—c). Combining (3.2),
(3.3) and (3.4), we have established (3.1). By analytic continuation (3.1) is
valid for those values of s such that (3.4) converges uniformly and which are
not contained in C. However, by (2.2)

I(s, @) = O(Z | b(m)| ple ="~ D/2e=2Vaum), 3.5
It is easy to see that the series of (3.5) converges uniformly if
2\/2/1—,, = ((+e)logn, e>0,forn = N.
In particular, we have
Corollary 1. Let f(s) denote a Dirichlet series of signature (A, r, y), and
let p denote the residue of f(s) at s = r. Then, for all s,

f(s, @) = a=f(O)+T (NI (s—r)a"*p[I(s)
2y (2nY AR —
+ ——— ] Za(n)| - K,_(4n/anfl).
el st
Proof. The result is immediate on noting that x(s) has at most simple poles
at s = 0 and s = r and on replacing a by 2zra/A in (3.1).
In the following corollaries we assume f(s) is a Dirichlet series of signature
(}" r’ 'Y)'
Corollary 2. If f(s) is entire, f(s, a) has simple zeros at s = 0, —1, =2, ....
Corollary 2 is clear, since, from the functional equation, f(0) = 0 if f is
entire.

Corollary 3. If f(s) is not entire and r is not an integer, then
fls,a)=a%0),s=0, -1, =2, ....
Corollary 4. Suppose f(s) is not entire. If r is not an integer, f(s, a) has
simple poles at s = r, r—1, r—2, .... If r is an integer, f(s, a) has simple poles
ats=1,2,...,r.

Corollary 5. f(s, a) is entire if and only if f(s) is entire.

4. Examples
Let f(s) = {(2s). Since {(0) = —% and p = 4, we have, by corollary 1
on replacing n by n?,

f(s, @) = —a~2+mT(s—Pat L)+ 2= z(%>(%_5)/21<%_s(2nn\/2).

I'(s)
If s = 1, we find by using (2.3) and (2.4) that B
—~2na
- 5 (e )
This result is, of course, known. Also f(—n, a) = —a"/2, where n is a non-

negative integer, and f{s, a) has polesat s = 4, —4, —3%, ....
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Next, consider f(s) = Zt(n)n"*, where t(n) denotes Ramanujan’s arithmetical
function. It is well known that f{s) is entire and of signature (1, 12, 1). By
corollary 1,

f(s, a) = % Zz(n)(g)‘lz")'zx,z_s<4nJEz).

J(s, a) is entire and has simple zeros at s = 0, —1, =2, ...
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