
WHITTAKER'S WORK ON THE INTEGRAL
REPRESENTATION OF HARMONIC FUNCTIONS *

by G. TEMPLE

1. Introduction

It is a singular honour to be invited to deliver a lecture commemorating
the work of Sir Edmund Whittaker, especially before the Edinburgh Mathe-
matical Society, whose development owes so much to his initiative and
co-operation. But when I reflect on the difficulties of the task I can only
exclaim in the words of St Jerome's preface to his translation of the New
Testament, " Pius labor, sed periculosa praesumptio ". (10)

Sir Edmund's scientific work extended over a period of nearly sixty years
and ranged over a vast field of both pure and applied mathematics, including
the theory of interpolation, automorphic functions, astronomy, potential
theory and the " special" functions of mathematical physics, analytical
dynamics, relativity and electromagnetic theory, and quantum theory. He
is also justly famous for his great scientific books and monographs, and also
numerous philosophical and historical papers, including a remarkable series
of twenty obituaries of distinguished physicists and mathematicians.

To attempt to summarise this great variety of work in a brief lecture
would be most unsatisfactory, since it would provide only a few hurried glances
at a large number of diverse topics. It seemed better therefore to select one
subject as an illustration and to expound the chosen topic with reference to
the influence of Sir Edmund's work.

The choice of a special subject was a matter of some difficulty, but I have
decided after some hesitation to speak on Sir Edmund's investigations on
harmonic functions and the " special " functions of mathematical physics
from the standpoint of their representation by definite integrals.

There can be no doubt as to the permanent value of these researches.
Whittaker's general solution of Laplace's equation has become an integral
part of potential theory, the application of this general solution has brought
a new unity into the theory of harmonic functions, and in particular has made
possible the systematic investigation of Mathieu functions and Lame functions.

Indeed the very mention of these names is an unexpected tribute to
Whittaker's influence, for we owe to him not only the name of " Mathieu
functions " but also the notation at present accepted for these indispensable
but intractable instruments of mathematical physics.

I propose then to speak about Whittaker's work on the integral representa-
tion of harmonic functions. This alone is a vast topic which really requires
the encyclopedic knowledge of the late Harry Bateman to do it full justice.
My treatment will necessarily be highly selective, but I shall endeavour to

* Text of a Whittaker Memorial Lecture delivered on Friday, 17th May 1957 to the
Edinburgh Mathematical Society.
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12 G. TEMPLE

display Whittaker's work and influence in proper perspective by some brief
accounts of the state of the subject both before and after the impact of
Whittaker's own researches.

2. Poisson's Integral
The solution of partial differential equations by means of definite integrals

was a favourite subject for French mathematicians in the early years of the
eighteenth century, and it is well known that Ampere wrote a long paper
on this topic. One of the most interesting results is Poisson's (11) solution
of the wave equation

in the form I ._ .

*)(x cos co + at) sin2*"1^ dco

where <f> is an arbitrary function and k a positive root of the equation
k(k-l)=m.

Poisson's analysis is so surprising and such an interesting anticipation of
Whittaker's solution of Laplace's equation that it deserves a brief summary.
To facilitate comparison with more recent work we shall transpose Poisson's
solution of the wave equation into the key appropriate to the potential
equation.

In Cartesian co-ordinates x, y, z a harmonic function F satisfies the equation

In cylindrical polar co-ordinates z, r, <f>, defined by the equations

y = r ain<f>,
this equation becomes

and, if V involves the azimuthal angle (f> only through a factor cos m<f>, sin m<f>,
or exp im<f>, we obtain the equation

It is often convenient to remove the term in V r by means of the substitution
V = r-iU 1

which gives the result V. (2.2)
UU ( i * ) * U \

which is directly comparable with Poisson's "wave equation in (2.1) on writing
z = iat, r — x.

Poisson's procedure is equivalent to taking as new variables r and a = r + iz.
If U(z,r)=F(z,<r),
we then find that

Frr + 2Fra + (J - m*)r-*F=0.
* Here and elsewhere the suffixes x, y, z, r, s, t, £, r), <j>, R denote partial derivatives.

https://doi.org/10.1017/S0013091500014346 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014346


WHITTAKER'S WORK ON HARMONIC FUNCTIONS 13

Poisson then examines under what conditions this equation will possess a
solution of the form

F=Zr»+«<f>n{o), (» = 0, 1, 2, ...) (2.3)

and he finds that

(i) p must satisfy the indicial equation,

p = ±m + %,
(ii) <j>n(a) must have the form

0B(a) = SB^»>(c7)/»!,
where <j>'n)(a) = dn<j>jd<jn,

(iii) and the coefficients Bn must satisfy the recurrence relation
•n)Bn+1=-2(P + n)Bn.

This equation Poisson solved in the form

f"
Bn = ( — l ) n (1—cosco)n(sino))2p-1acu,

J o
from which it appears that the series solution of (2.3) is nothing more than
the expansion in powers of r of the function

rp <f>{o — r(l — cos u>)} s i n ^ ^ o j dw
J o

= rp <f>(iz + r cos co) sin^^oi dw.
.' o

The original equation for V therefore possesses a solution of the form.

eim$rm f Aliz + r cos <o) sin2ma> dw (2.4)
Jo

The interest of this result, apart from the ingenuity of the analysis, is
that it furnishes a general integral representation of all harmonic functions
of the form V(z,r) exp im<f>, which can be expressed as a series of the type

rm exp im<f> Ern<f>n(r + iz) (n = 0, 1, 2, ...)

and which satisfy a boundary condition of the form

exp ( — inuf>)r-mV(z,r) -+f{z)=<j>(iz) sm2mwdw
J o

as r->0.

3. Darboux's Transformation

An elegant account of later developments of Poisson's integral by Appell
and by Darboux is given by the latter in the unexpected context of his Theoric
generate des surfaces (5). Darboux's investigations may be applied to yield
the following method for the generalisation of particular harmonic functions.
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14 G. TEMPLE

The elementary potential function

( r2+ z2)-l

yields at once a general harmonic integral

f(t)dt

where f(t) is an arbitrary function and a, b are constant limits independent of
r, z. This integral still remains harmonic if the path of integration is taken
as a closed curve in the complex <-plane, cut from t = z — ir to t = z + ir. And
the integral is still harmonic if the path of integration is taken along the cut
itself. The substitution t = z + ir cos a then gives the Poisson integral

f
J 0

f(z + ir cos a)da
o

for the case m = 0.
The general Poisson integral can be obtained by a similar argument starting

with the special potential function
(r2 _|_ 22)m-Jr-m

obtained by the inversion of r~m.
We can also integrate along the straight line from the branch point I — z + ir

to t = z + ico, thus obtaining, in the general case, a harmonic function of the
form

J 0
f(z + ir cosh a) sinh^a da

provided that the arbitrary function / is chosen so that the integral converges.
As a matter of some interest we note finally that, when the real part of

m lies between + J, a second general integral can be derived from Poisson's
formula (2.4) by changing the sign of m. When m = 0, and the two Poisson
integrals coincide, we can derive the confluent form

rm I (f>(z + ir cos a) sin2ma da
8m J0 J m = 0

<j>{z + ir cos a) log (r sin2a) da.J:o
4. Donkin's Integrals

In England the symbolical methods introduced by George Boole (3) were
applied by several mathematicians, to the potential equation. Of these
investigations those by Donkin (6) are especially interesting.

Donkin worked in the spherical polar co-ordinates R, 6, (f> defined by the
equations

z = R cos 6, r = R sin 9
and considered spherical harmonics of the form

R"Fn(6, <f>).
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WHITTAKER'S WORK ON HARMONIC FUNCTIONS 15

Writing the equation for the surface harmonic Fn in the form
{•nT_nv,n + n* + n(n+l) sin*6}Fn + 82Fnldcf>* = 0, (4.1)

where

-nrn = sin 9 — +n cos 9,
ad

he was able to establish a recurrence relation connecting surface harmonics
of orders n — 1 and n in the form

Fn = ^n-f n-1-

Thus the general solution of (4.1) was expressed in the form
Fn = -mn-mn_i ... -mx Fo, (4.2)

where Fo is the general surface harmonic of order zero. Since

8 \ 2 82F

™d-8l)F»+W=0>

Fo was readily expressed in the form
.Fo=/(e'%in|0).

Equation (4.2) can be modified to give the general surface harmonic of degree
n as

#n = (sin 0)-"jsin 8 ̂  sin dV FO (4.3)

Now, in accordance with Boole's symbolic methods, the equation (4-l)
for a surface harmonic Fn of order n will become the general potential equation
if n is replaced by the operator Bd/SR. A similar replacement in the expression
(4.3) for Fn should therefore yield the general form of a potential function.
On suitably interpreting the symbolic forms Donkin finally obtains as the
general potential function

f(p sin 6 --p. sin 9, e'*tan \0\ ,

where p is to be replaced by r/sin 9 after the partial differentiations with
respect to 6 have been performed.

5. Whittaker's Integral
In spite of the ingenuity displayed by Poisson and Donkin in the con-

struction of their general solutions of the potential equation, these solutions
are really of limited scope and application. These restrictions are basically
due to the fact that both Poisson and Donkin were primarily concerned, not
with the general potential equation in three independent variables,

vxx+vvv+vzz=o
but with the equations in two independent variables for potential functions
of the form

F = Pm(
or V = R"
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1G G. TEMPLE

Poisson's integral (2.4),

\ ir cos a) sin2na da,) = rm\ cf>(z + ir
Jo

is curiously resistant to all attempts to generalise it to three dimensions ; and
Donkin's integral (4.3),

Fn(61<l>) = sin-n6 I sin 9-^ sin 0J'7(e'*tan \0),

does not provide an explicit expression for a three dimensional potential.
These investigations are, I believe, good specimens of the results achieved

by nineteenth century mathematicians in the search for integral representations
of potential functions, and against this background Whittaker's integral
stands out with special simplicity and generality (15, 16).

Whittaker's integral can be approached by two different paths. In the
first place the elementary definite integral,

(z + ix cos a + iy sin a)-xda, (z>0), (5.1)
1 r2"

~'= — (z + i
277 J o

provides an expression for the potential of unit mass at the origin, and raises
the expectation that the potential of any reasonable mass distribution can
be expressed in the form

2^ I I ) p{i;,riX)d&T)dl I {(z-£) + *(«-£) coso + i(y-i)) sin a } " 1 ^

or

f
J

f(z + ix cos a+iy sin a, a)da.
o

On the other hand the (2n+1) terms in the Fourier series
tn " n

(z + ix cos a + iy sin a)n = E fm(x,y,z) exp ima,
vi— —n "

are each of them, like their generating function, solutions of the general
potential equation. Hence any solid spherical harmonic of degree n can be
expressed as a linear function of the (2n+1) linearly independent functions

1 f2"f%(x,y,z) = =- I (z + ix cos a + iy sin a)"exp( — ima)da.
Z7T J o

So much was realised by Dougall (7) in a remarkable but little known
paper published in 1889-90. The crucial step taken by Whittaker was to see
that any potential function which can be expanded in a series of solid spherical
harmonics can be expressed in the form

Z!Cminf™=\ F(z + ix cos a + iy sin a, a)da, (5.2)
J o

where J1 is a periodic function of the second argument with period 27r.

https://doi.org/10.1017/S0013091500014346 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014346


WHITTAKER'S WORK ON HARMONIC FUNCTIONS 17

This is Whittaker's general integral representation of any potential function
which is regular near the origin. It is manifest, however, that it is applicable
to a far wider range of harmonic functions than those which can be expressed
as power series in x, y, z.

6. Legendre and Bessel Functions
The discovery of Whittaker's integral brought a new unity into potential

theory, since all harmonics must be expressible in this form. In particular
the integral representation of Legendre and Bessel Functions follow as
immediate consequences of Whittaker's result.

We note, in the first place, that any harmonic which is of the form

V = Pm(z,r) expim<j>

must be represented by a specially simple type of Whittaker's integral. For, if
r-2ir

Pm(z,r) exp im<f)= I F{z + ir cos (a—(f>), a) da
J o

= f2" F{z + ir cos ]8, ^ + ]8} d)8
J o

then d2FI8</>2=-m2F,
and F =f(z + ir cos /J) exp im((f> + j8).

We thus regain an integral,

"f(z + ir cos fie^dfi, (G.I)
o

curiously reminiscent of Poisson's integral (2.4), but of a different type.

If Pm(z,r)eim<t> has the form of a spherical harmonic,

RnP™(cos 0)eim*, (n, m integral)
then the arbitrary function / must clearly be of the form

C(z + ir cos £)" = CRn(eo3 6 + i sin 6 cos /?)"

and we thus obtain an integral of Laplace's type for the associated Legendre
function PJf (cos 9) viz.

P™ (cos 6) = c( " (cos 6 + i sin 6 cos /3)Be
J

where C is a constant.
Similarly, if Pm(z,r) has the form of a cylindrical harmonic,

ekzJm(kr)einvp (m integral),

then the arbitrary function / must be of the form

C exp k(z + ir cos j8),

and we thus obtain an integral for the Bessel function Jm, viz.
r2n

Jm(kr) = G exp (ikr cos /? + imp)dfi.
Jo

B.M.S.—B
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18 G. TEMPLE

7. Mathieu Functions
The Whittaker integral for harmonic functions was not merely of utility

in unifying and simplifying a number of known results in the theory of spherical
and cylindrical harmonics, but it opened up entirely new fields of research in
the theory of Mathieu and Lame functions. Indeed the systematic and
fruitful investigation of periodic Mathieu functions really begins with
Whittaker's proof that such functions satisfy a homogeneous integral equation
with a symmetric nucleus.

This proof was first published by Whittaker in 1912 (7), but it had been
given to his advanced pupils in Cambridge in 1904, and is decribed in a paper
by H. Bateman in (1), as having been communicated to the author by Whittaker
" four years ago ". Meanwhile the theorem had been discovered independently
by B. Sieger in 1908 (12) and by K. Aichi in the same year.

Mathieu functions occur when the potential equation is expressed in terms
of 2 and the confocal co-ordinates £, TJ, where

x + iy = h cosh (£ + MJ),

as independent variables. The equation tlren becomes

V(( + F™ + A2(cosh2 £ - cos2 r,) Vzz = 0,

and it possesses solutions of the form

where the functions F and G satisfy the equations
F"(ij)-(A + k2 cosh2$)F = 0,

and G"(r)) + (A + k2cos*ri)G = 0 (7.1)

Mathieu functions are the odd or even solutions of (7.1), which are periodic
in TJ with period 2w. They are eigenfunctions of the equation

where J f ^ S W + f c 2 cos
Now the form of the Whittaker integral (5.2) suggests that the potential

function F(£)G(rj) exp { — ikzjh) should be expressible in the form

f(Z, a)da

where Z = z + ix cos a + iy sin a
= z + ih cosh £ cos 77 cos a + ih sinh £ sin 77 sin a,

and that the function f(Z, a) should have the form
/=exp ( — ikZlh). g(a).

If this expectation is justified then we can conclude, on writing £ = 0, that
the function G(-q) should be expressible in the form,

G(rj)= I""
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WHITTAKER'S WORK ON HARMONIC FUNCTIONS 19

This tentative conclusion can be verified by noting that, if G(rf} is now
regarded as being defined by this integral, then

= \ek<:o3iCO3aMa<f>(a)
J —n

- Uk s in a cos ^ ( a ) +<j>'(a))ek C03 ">cos " I " .

Hence if <j)(a) is an even periodic solution of Ma<f> + A<f) = 0, then G(rf) is an
even periodic solution of M^G + AG = 0. But from the nature of the Mathieu
equation, two periodic solutions cannot form a fundamental system, whence
<f>{r)) = XG(rj), where A is independent of 17.

It therefore follows that the even Mathieu functions satisfy the integral
equation,

ekcosr>cosaG(a)da (7.2)

There is a similar equation for the odd Mathieu functions.
The discovery of these integral equations for the Mathieu functions opened

up a new field of research and provided simple means for constructing the
functions.

8. Lame Functions

The theory of Lame functions is even more complex and difficult than the
theory of Mathieu functions, and in Whittaker's original papers (18, 19) on
the integral equation satisfied by Lame functions, the nucleus seems to have
been obtained by way of revelation rather than by reason. The key to this
investigation is, however, provided by a remarkable transformation obtained
by Copson thirteen years later (4) and further developed, after another fifteen
years, by Erdelyi (8).

Copson's transformation enables us to pass from Cartesian co-ordinates
x, y, z to elliptic co-ordinates s, t and the radial co-ordinate R = (z2 + y* + z2)i.
It is

xjR = sin 6 cos <f> = (ijk1) dn s dn t,
yjR = sin 6 sin <j> = (ikj¥) en s en t,
zjR = cos 0 =ksnssnt,

where k is the modulus of the elliptic functions and k' is the complementary
modulus (i — k2)K The corresponding transformation of the equation for a
potential function V is

VS3- F ( ( -F(sn2 s - s

If V is a solid harmonic of degree n, then

V = RnN{s, t)

and the equation for N can be written in the form given by Ince (8),
L,(N)=Lt(N)

where LAN) = N,. — n{ \
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20 G. TEMPLE

It is also clear that there will be potential functions of the form
V = RnA(s)M(t)

where the functions A and M satisfy Lame's equation

Lt(M)=AM,
A being a constant.

The form of Whittaker's integral equation for Mathieu functions (9.2) now
suggests an examination of integral equations of the form

(•4

)=A
J o

N(s,t)n(t)dt (8.2)

where 4K is the period of the elliptic functions introduced above, and the
nucleus N(s, t) is a surface harmonic of order n satisfying equation (8.1). A
simple argument, analogous to that employed for Mathieu functions, then
shows that this equation (8.2) is satisfied by Lame functions of period 4K.

A suitable form for the nucleus is the biaxial harmonic

i V ( M ) = P »
where /u = cos d cos 0o+sin 6 sin 6o cos (<£—<£„)

= k2 sns snt sn s0 sn t0

+ (i/k'fdn s dn t dn s0 dn t0

— (k/k1)2 en s en t en s0 en t0,
where 80, <f>0, s0, t0 are arbitrary parameters. The nucleus first discovered by
Whittaker is obtained by writing

o o
when

Pn(n)=Pn(ksnssnt).
As shown by Copson (4) other simple nuclei are

Pn(ikjk'. en a en t), (s0 = 0, to = K + iK')
Pn(ijk'. dnsdnt) , (so = 0,to = K).

We may also take the nucleus in the form (18)
N(s, t) = (z + ix cos -q + iy sin 7])njRn

(where r\ is arbitrary) and thus obtain an integral representation in the standard
form of Whittaker's general solution of the potential equation (5.2).

In fact Whittaker's original discovery of the integral representation of
Lame functions opened the way for numerous interesting investigations, many
of which he subsequently described in later editions of Modern Analysis
(Chapter XXIII), and gave a new vitality to research in this difficult and
obscure subject.

9. Integral Operators
In describing Whittaker's investigations on the integral representation of

Lame functions it was impossible to avoid frequent reference to the work of
his students and colleagues. In this section and the next I propose to refer
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WHITTAKER'S WORK ON HARMONIC FUNCTIONS 21

briefly to certain more recent developments in the theory of the integral
representation of potential functions, in order to illustrate the fruitfulness of
this method and the extent of Whittaker's direct or indirect influence.

Whittaker's fundamental formula,

V= I f(z + ix cos a + iy sin a)da (5.2)
Jo

written in the form

where
u=z+t,o + tr1a*,
o = \{y + ix), a* = \(y-ix)
Z = ie~ia,

forms the starting point of the " method of integral operators " as developed
by Stefan Bergman (2). This method can be used to develop the properties
of harmonic functions in three dimensions in terms of the properties of analytic
functions of two complex variables f(u, £). It can also be extended to provide
a representation of harmonic vectors

H = (P, Q, R)
in the form

i cos afda, Q = I i sin afda, R — I fda
o Jo Jo

where, as before, / is a function of Z = z + ix cos a + iy sin a and a. These
vectors satisfy the equations

divH = 0, and curlH = 0.

If we choose/(/x, £) to be the quotient of two polynomials in wand £,, we obtain
a class of functions which includes all algebraic harmonic functions. These
functions are denned on certain three dimensional analogues of Rieman surfaces,
and it is possible to obtain generalisations of the Rieman-Roch theorem and
of Abel's theorem.

10. Generalised Axially Symmetric Potential Theory
The potential equation in (p + 2) dimensions is

Zd*Vldxl = 0, (jfc=l, 2, ...,p + 2),

and the axially symmetric solutions, which depend only on the variables
x = x1, and g = (x\ + x\ + ...+x^)+2)

i, satisfy the equation

r y i 0 \ dO.l)
or <t>xX

Jr<f>+{l)t Q\
The general theory of this equation has been widely developed by Weinstein
and his colleagues (13,14) the restriction to integral values of p being removed.
The " generalised axially symmetric potentials " which satisfy this equation

E.M.S.—B2
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22 G. TEMPLE

have numerous applications and an abundant literature now flourishes on
this subject.

Among the many interesting developments is the theory of Tricomi's
equation

which is of fundamental importance in the theory of transonic flow. One of
the basic problems is the determination of a fundamental integral which is
denned in the entire plane of £ and r) and has a logarithmic singularity ai an
arbitrary point (0, b).

Weinstein's solution (13) depends upon the reduction of the Tricomi
equation by the transformation

which leads to the equation
/ » + / „ +(1/3 y)/, = 0,

for an axially symmetric potential in 2J dimensions. The fundamental solution
has the form

f=u{x, y)log{x2 + (y-a)2} + v(x, y),
where u and v are regular and analytic at the singular point. In space of 3
dimensions such a solution would correspond to the potential of a uniform
ring x = 0, y = a, and would reduce to (x2 + a2)~i on the axis. This suggests
that in space of 2\ dimensions the fundamental solution should reduce to
(x2 + a2)-vl2 where p = 2^ — 2. Poisson's integral (2.4) then furnishes the
solution in the form

f" — 1
/ = C {(x + iy cos a)2 + a2} T sin"

J o
»JT cos a

where the singular point is £ = 0, -q=b.

11. Unsolved. Questions
The fertility of Whittaker's potential integral (5.2) is by no means exhausted

by the copious developments and applications which have been made in recent
years, and a number of interesting problems still await solution. So far as
the regular potential functions are concerned Whittaker's theorem shows
that an integral representation is always possible in the form2"f(z + ix cos a + iy sin a, a)da

o
and this result undoubtedly serves to unify the theory of those special functions
(such as PJ" and Jm) which are regular. But, as Whittaker himself pointed
out, there are other potential functions (such as Qo), which are not regular,
and which can also be represented in the same form. An examination of the
representation of irregular functions by Whittaker's integral would lead to
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WHITTAKER'S WORK ON HARMONIC FUNCTIONS 23

interesting results, and should serve to unify the theory of the " second
solutions " (such as Q™ and Yn) of the potential equations.

Another problem which has not been clarified is the precise relation between
integrals of Whittaker's type

f
J o

f(z + ir cos a)eimada,
J n

of Poisson's type

rme""* g(z + ir cos a) sin2ma da,
J o

and of Heine's type

h(z + iz cosh P)eimlldp,f
J 0

each of which can represent an axially symmetric potential.
Finally it may be worth while to examine integrals of Poisson's type for

the case m < — 1 by employing Hadamard's theory of the finite part of divergent
integrals, and by correlating the results with the recursion formulae so effectively
employed by Weinstein (14).

12. Conclusion
I hope that I have now justified my selection of the subject of Whittaker's

investigations on the integral representation of potential functions on the
topic of this memorial lecture. For my part it has been a most rewarding
study and I have gained an even deeper appreciation of the peculiar genius
of Sir Edmund Whittaker ; and, in particular, of the simplicity, comprehensive-
ness and fertility which characterise these researches.

The starting point was the simple observation that all the solid spherical
harmonics of order n are given by the Fourier coefficients of the basic potential
function

(z + ix cos a + iy sin a)".

This apparently trivial result not only gave a new principle of order in the
theory of Legendre functions but also issued in a general form for the integral
representation of all regular potential functions. It gave a new impetus to
the study of Mathieu functions and initiated a new attack on the theory of
Lame functions. Even now the full consequences of Whittaker's work are
far from being fully explored, and we may confidently expect many new and
fruitful applications to enlighten and enliven the study of the special functions
of mathematical physics.
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