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FIRST C O U N T A B L E SPACES T H A T H A V E SPECIAL 
PSEUDO-BASES 

BY 

H. E. WHITE, JR. 

1. Introduction. Two types of pseudo-bases, or-disjoint and «--discrète, are 
utilized in this note. In the next section, we show that a first countable 
Hausdorff space has a or-disjoint pseudo-base if and only if it has a dense 
metrizable subspace. This result implies that many first countable spaces have 
dense metrizable subspaces. In section 3, we show that if X is a Hausdorff 
space that either is quasi-developable or has a base of countable order, then X 
has a dense metrizable subspace if and only if it has a dense metrizable G6 

subspace. We give an example to show that the conclusion of this theorem is 
false for semi-metrizable spaces. Finally, in the last section, we investigate 
when a quasi-developable (resp. semi-metrizable) space can be embedded as a 
dense subspace of a quasi-developable (resp. semi-metrizable) Baire space. 

The author wishes to thank the referee for: noting that 2.6 implies that every 
screenable, semi-metrizable Haudsdorff space has a dense metrizable subspace; 
bringing several papers in this area to the author's attention; making several 
suggestions which improved the presentation of the results. 

2. Dense metrizable subspaces. In the past few years, sev­
eral topologists have shown that certain first countable spaces have dense 
metrizable subspaces [1, 4, 5, 10, 11, 13, 14, 15, 18]. We mention only the 
following results. 

2.1 [Younglove, 1959] Every complete Moore space has a dense metrizable 
Gs subspace. 

2.2 [Fitzpatrick, 1965] Every completable Moore space has a dense metriza­
ble G8 subspace. 

2.3 [Fitzpatrick, 1967] Every normal, collectionwise Haudsdorff Moore 
space has a dense metrizable G8 subspace. 

2.4 [Proctor, 1968] Every locally connected, locally peripherally separable 
Moore space has a dense metrizable Gs subspace. 

2.5 [Reed, 1972] Every normal, collectionwise Hausdorff semi-metrizable 
space has a dense metrizable subspace. 

In this section, we give a simple criterion for determining when a Hausdorff 
first countable space has a dense metrizable subspace. We use this to show, 
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among other things, that 2.4 and 2.5 can be generalized somewhat (see 2.11 
and 2.13). First, however, we must discuss some preliminaries. 

The set of positive integers will be denoted by N; the set of real numbers will 
be denoted by R. A sequence (A n ) n e N will usually be denoted by (An); the set 
U{A n :neN} (resp. D{An : n e N}) will be denoted by UnAn(resp. f]nAn). As 
usual, U A n = (J {B:BeAn}. If 9 is a collection of subsets of a set X and 
A<=X, the collection {Ff\A:Fe9} will be denoted by f ( 1 A . And &* will 
denote 9 -{</>}. 

Suppose (X, ÏÏ) is a topological space. If A c X, we denote the closure of A, 
the interior of A, and the boundary of A by cl A, int A, and b dry A, 
respectively. A pseudo-base for 3" is a subset 9> of 2T* such that every element 
of ?F* contains an element of 9>. A pseudo-base 9> is called cr-disjoint if it is the 
union of a sequence (2Pn) of disjoint collections. A subset A of X is called 
discrete (resp. very discrete) if there is a subcollection (resp. disjoint subcollec­
tion) {Ux:xe A} of 2T such that UXDA= {x} for all x in A. A subset K of X is 
called cr-discrete if 1C is the union of a sequence (Kn) of discrete sets. 

In this note, all hypothesized spaces except those in the remark after 
corollary 2.7, theorem 2.12, and the remarks after theorem 3.1 are assumed to 
be Hausdorff and to satisfy the first axiom of countability. 

2.6 THEOREM. The space (X, £T) has a dense metrizable subspace if and only 
if ST has a a-disjoint pseudo-base. 

Proof. Let S : X x N - ^ J be a function such that for each x in X, (S(x, n)) is 
a non-increasing local base for 2T at x. 

Suppose that D is a dense metrizable subset of X. Then there is a sequence 
(Kn) of discrete subsets of D such that \JnKn is dense in D. For each n in N 
there is a function en:Kn->N such that {S(x, sn(x)):xe Kn} is a disjoint 
collection. Then 

{Six, j) :neN,xe Kn, j > sn(x)} 

is a «--disjoint pseudo-base for 9". 
Now suppose (9*n) is a sequence of disjoint subcollections of 2T* such that 

* = U „ ? „ i s a pseudo-base for 3". We may, and do, assume that for each n in 
N, U0>n is dense in X and 0>n+1 refines &n. 

Define, by induction, a sequence {°Un, Dn, gn) where for each n in N, Dn is 
a subset of X, en is a function from Dn into N, and °lLn ={S(x, en(x)):xeDn} 
are such that, for each n in N: °Un is a disjoint collection; \J°Un is 
dense in X; %n+1 refines %n; en(x)>n for all x in D n ; Dn<=Dn + 1; 
(*) {S(x, en+l(x)) : x G D n + 1 ~ D J refines pn + 1 . 

Let D = U A r Then (D, J H D ) is metrizable, because U f t H D ] is a base 
for 3T\D and each <%n n D is discrete in D. 
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We now show that c lD = X. If Pe0>n, then there is x in Dn such that 
P fl S(x, en(x)) ï <t>. If xfé P then, because H {cl S(x, e,-(x)) : j' > n} = {*}, there is 
m in N such that m > n and 

W=?f l [S (x , 8m(*))~cl S(x, em+1(x))]# </>. 

It follows from (*) that there is y in Dm+1 such that S(y, em+1(y))^ W. Hence 
yePC\Dm+1; therefore D is dense in X. • 

2.7 COROLLARY. If X has a dense metrizable subspace, then every dense 

subspace of X has a dense metrizable subspace. 

REMARK. Corollary 2.7 is false if X is not required to be first countable. If X 
denotes the Cech-Stone compactification [6, p. 86] of the space Q of rational 
numbers, then X ~ Q is a dense subspace of X that does not contain a dense 
metrizable subspace even though it has a countable pseudo-base [16, p. 457]. 

2.8 COROLLARY. If X is separable, then it has a dense metrizable subspace. 

The space (X, $) is called collectionwise Hausdorff (resp. o--collectionwise 
Hausdorfï) if every closed discrete subset of X is very discrete (resp. the union 
of a countable collection of very discrete subsets). And (X, ÏÏ) is called perfect 
if every element of ÏÏ is an F^ set. 

2.9 PROPOSITION. (1) If Xis screenable [13, p. 164], then X is a-collectionwise 
Hausdorff. 

(2) X is hereditarily a-collectionwise Hausdorff if and only if every discrete 
subset of X is the union of a countable collection of very discrete subsets. 

(3) / / X is perfect and a-collectionwise Hausdorff, then X is hereditarily 
<J-collectionwise Hausdorff. 

2.10 COROLLARY. / / (X, ST) is hereditarily cr-collectionwise Hausdorff, then the 
following three statements are equivalent. (1) X has a dense metrizable subspace. 
(2) X has a desnse cr-discrete subset. (3) There is a sequence (Kn) of metri­
zable subspaces such that [jnKn is dense in X. 

2.11 COROLLARY. Suppose (X, ST) is hereditarily a-collectionwise Hausdorff. 
If any of the following statements is true, then X has a dense metrizable 
subspace. (a) X is semi-metrizable [8, p. 315]. (b) X is quasi-developable [14, p. 
679]. (c) X has a base of countable order [14, p. 679]. 

Proof. This follows from 2.10 because if any one of the three statements holds, 
then X has a dense o--discrete subset [13, theorem 1.10; 14, theorems 5, 
6]. • 

We include a simple proof of theorem 1.10 of [13]. 

2.12 THEOREM. If (X, ST) is a semi-metrizable Tx space, then X has a dense, 
a-discrete developable subspace. 
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NOTATION. In this note, whenever d is a semi-metric on a set X which is 
compatible with a semi-metrizable topology 2T on X, then for x in X and n in 
N, Sd (x, n) denotes int{yeX:d(x, y)<n~1}. 

Proof of 2.12. Suppose d is a semi-metric compatible with ST. Define, by 
induction, a sequence (Dn) of subsets such that Dn is maximal with respect to 
the following properties: if n> 1, then D n _ x c :D n ; if x, y e D n and x ^ y, then 
d(x, y)> n_ 1 . Let D = UnAi"> clearly, D is a dense or-discrete subset of X. For 
each n in N, let 2)n be the union of {Sd(x,n):xeDn} and {Sd(x.m):meN, 
m>n, xe Dm ~ Dn}. Then (2)n fl D) is a development for (D, J f l D ) , because 
if n e N and x e Dn, then the only element of 2)n that contains x is Sd(x, n). • 

2.13 COROLLARY. Suppose X has a dense subset of the first category and ?f has 
a pseudo-base St of connected sets. If either of the following statements is true, 
then X has a dense metrizable subspace. (a) ST has a pseudo-base SP each 
element of which has separable boundary, (b) X is hereditarily a-collectionwise 
Hausdorff and ST has a pseudo-base & such that the boundary of each element of 
SP contains a dense metrizable subset. 

REMARK. If X has a dense (j-discrete subset, then X~cl{x :{x}e ^}has a 

dense subset of the first category. 

Proof of 2.13 Suppose (b) holds (The proof when (a) holds is similar). There 
is a sequence (^n) of disjoint subcollections of 2P such that: for each n in N, 
U ^n is dense in X; if, for each n in N, Cn e <£„, then in t [n n QJ = <t>> F ° r e a c n C 
in ^ = Un^n> let M(C) be a metrizable subspace of b dry C which is dense in dry 
C. Because St is a pseudo-base for ST, M=\J{M(C): Ce <€} is dense in X. It is 
now easy to show that X has a dense cr-discrete subset; hence the desired 
conclusion follows from 2.10. • 

3. Dense metrizable Gs subspaces. We start with the positive results. 

3.1 THEOREM. Suppose (X, ST) is of the first category. 
3.2 If X has a dense metrizable subspace, then X has a dense metrizable G8 

subspace. 

Proof. We shall use the construction and notation used in the proof of 2.6. If 
X has a dense metrizable subspace, then 2T has a or-disjoint pseudo-base 
2P = (J n3Pn. Because X is of the first category, the (3>

n can be chosen so as to 
satisfy the conditions they did in the proof of 2.6 and such that HntU ^ n ] = <£• 
Then D = flntU ^ J ; thus D is a G8 set. • 

REMARKS. (1) Statement 3.1 is true if X is an arbitrary, not necessarily first 
countable, regular Hausdorff space. 

(2) A regular Hausdorff, not necessarily first countable, Baire space [9, p. 
157] (X, ÏÏ) has a dense metrizable G8 subspace if and only if 2T has a 
pseudo-base 2P that is "of countable order" in the following sense: if x e CïnPn 
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where for each n in N, P n + 1 <= Pne0> and Pn+1 ¥• Pn, then {Pn:neN} is a local 
base for 2T at x. 

3.3 COROLLARY. If X has a dense metrizable G8 subspace, then every dense 
subspace of X contains a dense metrizable Gô subspace. 

3.4 COROLLARY. Suppose C is a class of first countable Hausdorff spaces such 
that if (X, ff)eC andUe ST, then (17, 3T\ U)eC. Then 3.2 holds for all X in 
C if and only if it holds for all elements of C that are Baire spaces. 

3.5 COROLLARY. If either (a) X has a base of countable order or (b) X is 
quasi-developable, then 3.2 holds. 

Proof. This follows from 3.4, because if X is a Baire space that satisfies 
either (a) or (b), then X has a dense metrizable Gô subspace [14, theorem 9; 1, 
3.3.2, lemma 1]. • 

3.6 THEOREM. Suppose (X, 3~) is a regular semi-metrizable space which has a 
dense subset M that is a metrizable Baire space. Then X has a dense metrizable 
G8 subspace. 

Proof. Using a metric on M, define a sequence {&n) of disjoint subcollec­
tions of 9"* such that: for each n in N, (J 0>n is dense in X and $Pn+1 refines 9>n\ 
if (Pn) is such that Pn e @n for all n and [Ç\nPn~\CiMï <t>, then there is x in M 
such that {Pn:neN} is a local base for 2T at x. Let M0 = n J U ^ J n M , 
^ = U „ ^ a n d suppose d is a semi-metric compatible with 2T. For each n in 
N, let 

£n={Pe&:P^c\{xePnM0:P^Sd(x, n)}}. 

Because 
M0= \Jk{xeM0; There is P in 9>k such that P<^Sd(x, n)}, ân is a pseudo-

base for 2T. 
Now define a sequence 0#n) such that for each n in N: <#n is a disjoint 

subcollection of &n;U <€n is dense in X; « n + 1 refines <gn. Then D = f lntU * J 
is metrizable, because if x e D , then { C G | J A : X G C} is a local base for 2T at 
x. • 

We now give an example which shows that 3.2 does not hold for all 
semi-metrizable spaces. 

3.7 EXAMPLE. A separable, completely regular, Hausdorff, semi-metrizable 
Baire space such that every dense metrizable subspace is of the first category. 

Let % denote the Euclidean topology on R. For each n in N, let 

A„ = {(0,0)} U {(x, y) e R x R : n2\y| < n\x\ < 1} 
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and let 26 = {p + An:PeR2, neN}, where " + " denotes vector addition in 
K2 = JR x JR. Then 2ft is a base for a completely regular Hausdorff topology °U 
on K2. It follows from 4.7 that (JR2, °U) is semi-metrizable. Because %2, the 
Euclidean topology on JR2, is a pseudo-base for % (R2, °tt) is a Baire space. It 
contains a dense metrizable subspace because it is separable. (More generally, 
every semi-metrizable Baire space contains a dense metrizable subspace [16, 
1.10 (2)]). 

Now suppose Y is a dense subset of (R2, °U) such that (Y, °ll C\ Y) is a 
metrizable Baire space. Let d denote a metric for ( Y, °U D Y). For each n in N, 
let Yn={Ve%2:d(Vn Y ) < n - 1 } ; then each T n is a pseudo-base for <U. Let 
D = Y H n n [ U yn]\ then D is a dense subset of Y and % H D - g 2 H D. This is 
a contradiction, because whenever peD, (p + An)flDé %2Ç\D. • 

REMARKS. (1) The space (K2, °U) is essentially the one discussed in [7, 
example 2.2]. 

(2) The fact that (JR2, °ll) does not have a dense metrizable Gs subspace was 
discovered independently by three people: D. K. Burke; E. K. van Douwen; 
the author. In [2], it is shown that every metrizable subspace of (R2, °U) is 
countable. It is then shown that (R2, °U) is not a cr-space [13, p. 161]. 

(3) It can be shown (using [9, (2.1)]) that any dense Gô subspace of (JR2, °U) 
contains an uncountable closed discrete set; therefore such a subspace is 
neither normal nor collectionwise Hausdorff. 

(4) If (X, ZT) is a-favorable (see § 4 for définition) and either has a base of 
countable order or is quasi-developable, then X has a dense G8 subspace that 
is metrically topologically complete [17, 3(11)]. It is easily checked that (R2, 
°U) is a-favorable, because %2 is a pseudo-base for %; hence an a-favorable 
semi-metrizable space need not have even a dense metrizable G8 subspace. 

4. Baire space extensions, A topological space (X, ST) is called quasi-regular 
[9, p. 164] if every element of £T* contains the closure of an element of 2T*. In 
this section, any hypothesized space is assumed to be quasi-regular, Hausdorff, 
and first countable. A space (Y, °U) is called a Baire space extension of (X, 3~) 
if Y is a Baire space and (X, ST) is a dense subspace of ( Y, °U). 

In [12, theorem 9], G. M. Reed proved the following result. 

4.1 THEOREM. A developable [13, p. 161] space (X, ST) has a developable 
Baire space extension if and only if ST has a a-discrete pseudo-base. 

Having a cr-discrete pseudo-base is a stronger condition than having a 
cr-disjoint pseudo-base; in [13, p. 162] there is an example of a hereditarily 
paracompact quasi-developable space that has a dense, open, discrete sub-
space, but which does not have a cr-discrete pseudo-base. However, if (X, ST) is 
a perfect space which either is normal or is a Baire space, then 3~ has a 
cr-disjoint pseudo-base if and only if it has a cr-discrete pseudo-base. Therefore 
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a Moore space [13, p. 161] that has a cr-disjoint pseudo-base but does not have 
a cr-discrete pseudo-base can be neither normal nor a Baire space. In [11, p. 
234], G. M. Reed gave an example of such a space. Here is another such 
example. 

4.2 Let Q = {qn:neN} denote the set of all rational numbers in (0, 1), 
endowed with the usual topology, and let {Un :n e N} denote a pseudo-base for 
Q. Let (Kn) be a sequence of open and closed subsets of Q such that, for each 
n in N: if l < / < n , then UjCiK^cf)', 

(*)Knn{q1,...,qn}=4>. 
Using the maximal principle, we obtain a collection 9 such that: if Fe9, 

then F c R and |F| = X0; if F, F'e9 and FïF', then F f l F is finite; 
(* *) if A c £ and |A| =X0, then there is F in 9 such that |Ffï A\ = K0. 
Then there is a one-one mapping <p of JR onto ^ . For each r in .R, let <pr denote 
a one-one mapping of N onto <p(r). 

Let X = R x [ Q U { 0 } ] . For n in N and p = (x, y) in X, let 

Vn(p) = { x } x [ ( y - n - 1 , y + n - 1 ) n O ] if y > 0 , 

Vn(p) = {p}UU{{(px(/)}xK / :/^n} if y = 0. 

If â§={Vn(p): p e X , n e N } , then 38 is a base for a completely regular, 
Hausdorff (0-dimensional) topology ST on X such that (R x Q, 9H(Rx Q)) is 
a dense, open, metrizable subspace. If 3)n = {Vn(p):peX} for each n in N, 
then, because (*) holds, (®n) is a development for X. 

We shall show that ST does not have a o--discrete pseudo-base by verifying 
that (1) every pseudo-base for ST is uncountable and (2) every discrete 
subcollection of 2T is countable. Statement (1) is true because {{r}x Q:reR} is 
a disjoint subcollection of ÏÏ. 

Proof of (2). Because {{r} x Un : r e R, n e N} is a pseudo-base for 5", it suffices 
to show that if neN and c€ = {{r}x Un:reA} is discrete, then A is finite. To 
prove this latter statement, suppose A is infinite. By (* *), there is F in 9 such 
that |Fr>A| = K0. 
Then <p~\F)ecl[LT<g]~ U{cl C : C e ^ } ; hence % is not discrete. • 

REMARK. A simple modification of the construction used in 4.2 can be used 
to prove the following statement. If X is a Moore space of the first category 
which has a a -discrete pseudo-base and a is a cardinal number greater than 
the cellular number of X, then there is a Moore space Y which has a dense 
open subset homeomorphic with the sum of m copies of X, but which does not 
have a cr-discrete pseudo-base. (If X is completely regular, then so is Y). 

We shall now describe a simple method of constructing Baire space 
extensions; then we shall use this method to prove the following statements. 

4.3 THEOREM. A quasi-developable space (X, 9) has a quasi -developable 
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Baire space extension if and only if ST has a cr-disjoint pseudo-base. 

4.4 THEOREM. A semi-metrizable space (X, ST) has a semi-metrizable 
Baire space extension if and only if ST has a à-discrète pseudo-base. 

We recall that a space (Y, °U) is called a-favorable [3, p. 116] if there is a 
function <p :%*->%* such that:<p(l/)c: JJ for all U in <tt*; if A is a sequence 
such that for all n in N, A(rc)e%* and A(n + l)c<p(A(n)), then f l n ^ n ) * ^ . 
An a-favourable space is necessarily a Baire space. 

Suppose (X, ÏÏ) is a topological space and 9 is a subset of 5"* such that: 0* is 
a pseudo-base for U ^ > 
(***)$>= IJn^n where for each n in N, {cLP:Pe0>n} is a disjoint collection 
which, if n>\, refines ^ n _ i . 

Let L denote the set of all sequences 0 such that: for all n in N, 0(n + l)<= 
0(n)e9n; n „ « W = ^ . For 1/ in ST, let 

[ / + = [ / U { 0 G L : There is n such that 0 (n)c 1/}; 
for Se contained ST, let 9>+ = {U+: Ue <f\. Because ( [ / H V ) + = [ / + n V + for all 
U, V in ST, ST+ is a base for a topology °U on Y = XU L. We shall denote (Y, 
<tt) by [(X, J ) ; P ] . 

4.5 PROPOSITION (1) (X, £T) is a dense subspace of the quasi-regular, 

Hausdorff first countable space (Y, °U). 

(2) ^ + is a a-disjoint pseudo-base for W+, where W= U 9. 
(3) 7/ 9 is a-discrete in X, then 3P+ is a-discrete in Y. 
(4) The space ( W+, % Pi W+) is a-favorable. 

4.6 COROLLARY. 7/ (X, ST) has a a-disjoint pseudo-base (resp. base), 
then it has a Baire space extension which has a a-disjoint pseudo-base (resp. 
base). 

Proof of 4.5. The proofs of (1), (2), and (3) are easy, and are omitted. To 
show that W+ is a-favorable, because of (2), it suffices to show that: if A is a 
sequence such that for each n in N, A(n + l ) c A(n)e 0>+, then f\nX.(n)^(j>. 
This last statement is obviously true. • 

Proof of 4.3. The necessity of the condition follows from 2.6 and [1, 3.3.2, 
lemma 1]. 

Suppose, conversely, that ÏÏ has a pseudo-base 9 that satisfies (***). Then 
[(X, ST); 9] is quasi-developable, because if (Sdn) is a quasi-development for X 
and, for each n in N, (€2n = Q)^ and c€2n-i

 = ^n, then (<ën) is a quasi-
development for Y. • 

The following result will be useful in proving 4.4. 

4.7 PROPOSITION. [7, theorem 3.2] A space (X, ÏÏ) is semi-metrizable if 
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and only if there is a function S:XxN^> ÏÏ such that (a) for each x in X, (S(x, 
n)) is a non-increasing local base for 3~at x; (b) if (xn) is a sequence in X and 
xe f)nS(xn, n), then (xn) converges to x. 

Proof of 4.4. The necessity of the condition follows from 2.6 and [16, 
1.10(2)]. 

Now suppose ST has a cr-discrete pseudo-base. By the Banch category 
theorem, there are Xu X2 in 3~ such that Xx is of the first category, X2 is a 
Baire space, and cl (Xj U X2) = X We assume X1 ^ <j>. Then there is a pseudo-
base 0> for Xx such that: (***) holds; <3> is o--discrete in X; Ç\n\_\]^n~\ = <f>. 
Using the argument in the proofs of [13, lemmata 1.3, 1.4], we define 
S'.XxN^ST so that S satisfies (a) and (b) of 4.7 and the following condition 
holds. For each n in N, let c€n={S(x,n):xeX}. If neN, Pe9>n+U Qe&n, 
P<=Q, then there is / in N such that 

St(P, %)= U{Ue %: UHPÏ <j>}c Q. 

Let (Y, °U) = [(X, ST); 9\ Then X\ is a-favorable and X^ = X2; hence Y is 
a Baire space. Define S+:YxN-^°U by letting 

S+(y,n) = [S(y,n)T if y e X , 
S+(y,n) = [y(n)]+ if y e L . 

We shall show that S+ satisfies 4.7(b). Suppose (yn) is a sequence in Y such 
that y e f l S+(yn, n). It suffices to consider the following two cases. 

CASE 1. Suppose {y„:ne!V}cX and y € L. If n e N, choose / so St(y(n + 1), 
<g.)cy(n). Then S(ym, m)<=y(n) whenever m > / ; hence y = lim yn. 

CASE 2. Suppose {yn:neN}c=L. Then y e L , because 

xn[n„s+(yn,n)] = nnynWcnn[u^J = .̂ 
So y(n) = yn(n) for all n; hence (yn) converges to y. • 

REMARK. If d is a semi-metric compatible with J", we say a function 
/:X—»JR is d-uniformly continuous if for every positive number e, there is a 
positive number 6 such that | / ( x ) - / (y ) |<e whenever d(x, y ) ^ S . In the proof 
of 4.4, if we choose 0> so that, for each n in N and P in 9W there is an x in X 
such that P c Sd(x, n), then every d-uniformly continuous real valued function 
defined on X can be extended to a continuous real valued function defined on 

y. 
Finally, we note that a slight variant of the proof of 4.4 can be used to prove 

the following statement. 

4.8 PROPOSITION If (X, ST) has a base of countable order and a cr-discrete 
pseudo-base, then there is a Baire space extension of X which has the same two 
properties. 
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