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WEAK FORMAL SCHEMES
DAVID MEREDITH

0. Introduction

Throughout this paper, (R, m) denotes a (noetherian) local ring R with
maximal ideal m.

In [5], Monsky and Washnitzer define weakly complete R-algebras with
respect to m. In brief, an R-algebra At is weakly complete if

(1) At is m-adically separated (i.e. le” Al =0);
2 If feRX, - --,X,]", (where « denotes the m-adic completion), i.e.
if fis a power series with coefficients in R:

f= > ..., X e e e Xin

0<iy, vee,in

satisfying the special restriction that, for some constant ¢ and all n-tuples ox
positive integers (iy,...,ix), clordm (a;,,....;n) +11=1é1 4+ « + « + i,, then for each
n-tuple (i, « - +,%,) of elements of At the power series f(x,, « - -, %,) converges
to an element of Af.

The weak completion of an R-algebra A is the smallest weakly complete
subalgebra At of A containing the image of A. A weakly complete algebra
At is called wcefg (weakly complete finitely generated) if there exists a finite
collection of elements of A' such that each element of At may be expressed
as a power of series in these distinguished elements. The weak completion
of a finitely generated R-algebra is a wcfg algebra.

In this paper we define in the obvious way the notion of a weak formal
prescheme: namely a local ringed space (27, ¢7%°) is a weak formal pres-
cheme if it is locally isomorphic to affine weak formal schemes; and an
affine weak formal scheme is a local ringed space (27, ¢79) such that-for
some wcfg R-algebra At-the underlying topological space 2 is spec (Af/mAt),
and the sheaf 75> is given on the basis of principal open subsets {277:
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2 DAVID MEREDITH

feAtimAt} of 22 as follows: I'(Z°7, 79°) = (At;)t, the weak completion of

At; for any preimage f of f in Af. Then we prove four main theorems:

(A) The presheaf 7o associated to a wcfg algebra At on the topolo-
gical space spec (At/mAt) (as described immediately above) is in fact a sheaf;
(B) If Ris a complete discrete valuation ring and if (%, @) is the

affine wf scheme associated to a wefg algebra Af, then the category of finitely
generated At-modules is equivalent to the category of coherent sheaves of
& z7-modules.

(C) If (27, &%) is an (ordinary) scheme of R-algebras proper over
spec R with weak completion the wf prescheme (2!, Z21), and if F is a
coherent sheaf of &7 o--modules with weak completion the coherent sheaf of

Oz t-modules F?, then the natural map
H(&Z, F) > H(Z1, F1)
is bijective, all i =0.

(D) If R is a complete discrete valuation ring and (2, &%) is an
(ordinary) scheme of R-algebras projective over spec R with weak completion
the wf prescheme (27, 77 %-1), then the functor ‘“‘weak completion” is an

equivalence from the category of coherent ¢75--modules to the category of

coherent 7 o-t-modules.

Theorem A and C originally appeared in my thesis at Brandeis Univer-
sity, 1969. I am particularly indebted to Paul Monsky who directed this
dissertation. I am also grateful to Saul Lubkin who suggested extending
Theorem C above from projective R-schemes to proper R-schemes. (Undou-
btedly Theorem D also admits such an extension). QOur theorem (2.14) is
proven in Lubkin’s paper [7] by a somewhat different proof.

1. Weak Completions of Modules

Suppose A is a finitely generated R-algebra and M is a finite A-module.
Let A™ denote the m-adic completion of A4, and let M* = A"®,M. If At is
the weak completion of A with respect to u, then At and A have the same

m-adic completion.

Derintrion 1. The weak completion of M, denoted M1, is M®, At.
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ProrosiTion 2. (At, mAY) is a Zariski ring.
Proof. (5, Theorem 1.6)

ProrosiTiON 3. At is a flat A-module.

At A
Proof. It suffices to show first that AT A and second that

for any ideal acA4, a ®, At is mA-separated (1, III. 5. Th. 1). In fact, the
t .
inclusion _nt{l_A-—*Tn% is bijective (5, Th. 1.4), which proves the first part.

is flat over

For the second part, note that since A is noetherian, a®, A" is a finite
At-module. Thus, by Proposition 2,

Nm'Ala ®4 Af) = Nm'Af(a ®4 A1) = 0.

COROLLARY 4. Suppose A in a noetherian R-algebra whose weak completion At is
also noetherian. Then At is a flat A-module.

Proof. Exactly the same as for Proposition 3, noting that (Af, mAt) is a
Zariski ring whenever At is noetherian. (It is an easy consequence of the
definition of weak completion that, for any R-algebra A4, if aemAt then
1+ a is invertible in At.)

2. Affine Weak Formal Schemes

Throughout this section, Ais a wcfg R-algebra, M is a finite A-module,

and A denotes m‘ilq . We will construct an affine weak formal scheme on

spec A with global sections canonically isomorphic to A.

DeriniTiON 1. If f€A, then A, denotes the weak completion of 4.
Note that if £ is the image of f in A, then A, = A7

LemMa 2. For any feA, Ay is a flat A-module.

Proof. Ay is a flat A-module. Moreover, since A is noetherian [10], 4, is
noetherian. Also, A, = A} is noetherian, since A} is a wcfg algebra with
weak generators % and the weak generators of A. Therefore A4, is a flat

Ag-module (1.4), and so A is a flat A-module.

Lemma 3. Let f, g A such that spec A;D spec Az. Then the natural map Az
— Az lifts to a unique A-homomorphism Ay — Ag.
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Proof. Select ac A such that af = ¢" mod mA. Let ¢" =af + p. The unique
A-homomorphism A; — A,; extends uniquely to a map Ay —> Aesne The
element 1 — & is invertible in Az, 80 (@f)™! = (af + ,u)“1<1 — © >—1

af + p ) ) af +p
is an element of Agsin. By symmetry, Agy is canonically isomorphic to

Awagrm = Agm. Clearly, Ayn is canonically isomorphic to A, which con-
cludes this proof.

Endow 22 = spec A with the Zariski topology. M induces a functor
I'(-, M) on the principal open subsets of 2 as follows: if U= 277 pull F
back to feA, and let I'U, M) = M®4 Aip. If U= 2270V = 2%; Lemma
3 shows that there is a canonical A-homomorphism I'(U, M) - I'(V, M).

DEFINITION 4. M is the presheaf on principal open subsets of 2° with sec-
tions I'(+, M) and restriction maps the A-homomorphisms described above.

ProrosiTION 5. If UC 27 is a principal open set, then M~— I'(U, M) is an exact
Junctor of finite A-modules.

Proof. Ay is a flat A-module (Lemma 2).

The remainder of this section is devoted to proving that the presheaf
M is a sheaf with trivial cohomology. It will be convenient to assume that
A is the weak completion of a polynomial ring R[X;, - - -, X,], with R regular.
In order to deduce the general case from this special one, choose a complete
regular local ring (S, n) together with a surjection z: S—R. As above, let
A be any wcfg R-algebra, and let B be the weak completion of S[Xj, - - -, X,],
with n chosen so that we may extend z to a surjection z: B—>A4: IfY =
Spec %, then XCVY is closed. Viewing M as a finite B-module, M induces
a presheaf M on Y. Supp McX; in fact the presheaf /M on X when M is a
B-module is canonically isomorphic to M when M is considered an A-module
via an isomorphism derived from the given homomorphism z: B— A. Thus
we may assume that A =B = R[X,, -+ -, X, ]!, with R a complete local ring.

The proof that A7 is a sheaf with trivial cohomology requires two steps.
An intricate calculation shows that A is such a sheaf; induction on hd, M
extends this result to 7 The proof that A is a sheaf used the Cech coho-
mology.

LemMA 6. Suppose X is a noetherian space and F is a presheaf on X. Then the
zero’th Cech cohomology functor on open subsets U of X:
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U — HYU, F)

is the sheaf associated to F.
(cf: [2] for a definition of Cech cohomology.)

Proof. Let UcX be open. The finite open covers of U are cofinal in the
collection of all open covers of U. Consequently, if G is the sheaf associated
to F, then I'U, G) = H(U, F).

We return now to consider the particular case of the presheaf A. A is
defined only on the basis B of principal open subsets in the topology of 2°.
However, B is closed under intersection, and consequently if 7/ = {U,,...,
CcB, then C(%/, A) is defined. Further, since B is a basis for the topology
of 2 if Uc 2 is open, then finite open covers of U by elements of B are
cofinal in the set of all finite open covers of U. Thus we may define the
Cech cohomology of 2 using only open covers consisting of principal open
subsets of 2.

The next lemma is, technically, the most important of this section.

Lemma 7. Let UsB and let 7/ = {U,, - - -, U,} be an open cover of U by elements
of B. Then:

(1) the natural map: I'(U, A) — H'(%/, A) is bijective;

(20 H 7/, A) =0 for all i>0.
Therefore HU, A) = U, A), and H'(U, A) = 0 for i > 0.

The proof of Lemma 7 will follow. Lemma 7 easily implies

THEOREM 8. A is a sheaf. For every principal open subset Uc 27 and i >0,
H'(U, A) = 0.

Proof. Lemmas 6 and 7 together imply that A is a sheaf. Lemma 7, com-
bined with Cartan’s criteria [2, II, 5.9.2], shows that H(U, A) = ﬁi(U, A) =0
for i > 0.

Three lemmas will precede our proof of Lemma 7. These lemmas con-
cern the ring B = A, where feA~mA. We may assume, without loss of
generality, that feR[X, - - -, X,]

LeEMMA 9. (1) B is a domain.

(2) If g€ B~mB, then m'B,,;NB = m'B.
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B _/ A . . . y
Proof. (1) wE = (W Sisa domain, and B is R-flat. Consequently B

is a domain [5, Lemma 6.1].

wm — B Ba o
(2) The natural homomorphism B 7 mB, S injective, because
Blgl __( B > _ . .. B
B,y  \m'B/; and § is not a zero divisor of B

LemMmA 10.  Suppose sy, + -, snEB, and suppose P,eR[T,, +--,T,1; i=0,1,
- 15 a sequence of polynomials satisfying:

(1) P(s)em’B

(2) dgP,<c(i +1) for some constant c.

Then _iPz(S) converges wn B.
Remark. In (3.1) we extend this lemma to any wcfg algebra under the
additional hypothesis that R is a discrete valuation ring.

Progf. Choose a constant d and polynomials Q;,.cm¥Ty, - -+, Ths] such
that:

< 1
@ 5= DX+ X, 5)
(4) dgQ:.=<d(a+1).

By (3) and (4), there exist polynomials W, ,emqTy, - « +, Ty such that:

s 1
(5) Pi(s) = agowi.a(Xl’ MR X’n) T)
6) dg-W,.<da+cd(i+1)
i i1 i
By (1), 2 Wed(X, —}—)em"B. Define W= W, + 3 Wi...
=0 =0 =0

W, satisfies the following two properties analogous to (1) and (2):

8) dg-W,<D( +1) for D = 2cd;

) Wi(x, %)emiB.

M8

2

P,(s) converges if and only if % Wi(X, %) converges. We will prove the
i=0
ter. Recall that feR[X;, .-, X,]. Let dgf=E. LetUe&eRX,: --,

I

o+ O

a
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—_ 13 L 1 . __1_'_. = . _l_
X,, Y1 be defined by U, = >0 W (X, ; Yoo, U(x, f.) WZ(X, 7 )
and dg-U,< F(i +1) for some constant F. Furthermore, since m‘BNR[X,,
e, Xl =mRIX, -, X, UiemRIX,, - - ¢, X, Y, and so Z}OUi converges

in R[X, Y]'. The homomorphism R[X, Y1 — B sending X, — X, and Y—>~]1(—

©0 0 1 (o] 1 .
also sends E%)U' ——>i§)W1<X, T> Consequently i;})W,(X, 7;) converges in
B.

Lemma 11. Let go, -+ +, gnEB generate the unit ideal of —mﬁg—. Then the g,

generate the unit ideal of B. Further, there exist elements v,, + « +, rn€B and poly-
nomials P, ,eR[Ty, + + +, Ton] such that

1) dgP..<3ma

(2) ig()Pi'n(g, r)g: = 1
SJorosi<m, a=1

Proof. Select fie?Bl; so that %ii‘i =1, and lift #, back to 7, in B. 20
i=0 1=

m
rig, =1+ p, pemB. Letr,= Q0+ )7, rg =1
=0

For the second part, note that <§‘,rigi)(m“)a = Ylani'a(g, r)g5, with poly-
S =

1

nomials P; satisfying the lemma.

Proof of Lemma 7. Let »=0and let B = I'(U, A), and select f;€B, 0=<i < m,
such that U, =U,. Let Bi,...., = By,...;,»» The [f;] generate the unit

ideal of mli% , so there exist elements ;€ B and polynomials P;,, as in lemma

10. Let 7;,,= P, f, ). Then %ri,af‘; =11in B. Let
iS50

C'=C"(U, A) = @ ruo,n-..-nu, A

R . 10
0<ig<oee<i, <m

= @ Bi(p'": lr.

0<ig<eee <y <m

It is convenient to define C~'(U, A) = C-' = B, and let §: C' = C° be the
sum of the restriction homomorphisms B —+B;, 0<i<m. We must prove
that the following in a long exact sequence:

0>C1—>C'— -+ >C" >0,
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C-1—(C° is injective if the restriction homomorphism B — B; is injective.
B is a domain (Lemma 9) and B, is flat over B (1.3), so B— B; is one-to-
one.

Suppose cC”, =0, is a cocycle. ¢ has components o;,,...;, € "(U;N - - -
nu,, A) = B,,,....., and each component may be expressed as a power series.
In particular, there exist b, « - -, b,€B and polynomials P‘? such that

—_ < (%) PP 1 “« o —1
(l) Oigrenarir = 0.2=0P a <bb ’ bL; fio ’ ’ fir )
(2) dgP'?<c(a+1) for some constant ¢

(3) the coefficients of P'? are in m".

We shall construct a cochain ¢ so that 6z = ¢
C . A .
For each k=1, 2, .-+ the reduced complex T C (‘/2/, m"A) is
exact (3, III. 1.2.4). Using the exactness of this reduced complex, we will

inductively construct a sequence of cochains

T = 3 Ths i, ipqy B =0,1, ¢ ¢«
0<Lig< o<y <M
(o]
such that the sum kZ}o 7, converges in C'"! to a coboundary of ¢. The
are chosen to satisfy the following our conditions (where ¢ is the constant
of the above paragraph):

s—1
(1) akz 7, =¢ modm¥-I1C"
=0

(2) To; io:"'yir-IEBiﬂy"'-ir—l’ and for k=1, Thk; 50'...,ir_lEmzk—lB,'o,...,i,_l
() Tk iy i, i a polynomial of degree< 24 mc (2%) in the elements
1 1
b»"'yby y * 00y ,7’,"',7'1,“-—,"',————}
R R 7o Fan
(4)  fi¥'zy iy .i,, is a polynomial of degree < c¢2¢*! + 24mc2* in the
1 i 1
elements [b,-, g iy =yt Sty ——y b e, ———]
v Fute o Fe Fo
Lemma 10, together with (2) and (3) guarantee that kZ 7, converges to a
=0
cochain ze€C""'. (1) shows that ¢« bounds ¢. (4) is required to continue the

inductive construction.
Define elements o ;,....;, €Bj,,....i,, $=0 by the formulae:

r 5t 1 1
—_— @)
O igei, = 5 PO(byy ooy by o= ooy ——
o= fio fir
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Then o5, ¢y = 0y mod m?>**, and dg-os; iy < ¢2°*l.  Define the cochain z,€C""!
by

m
~ . - - 2¢ > 3 >
05 29,0021 T goﬁ.chi 00; ig,+i,1,%

Suppose now that for some integer s >0 we have constructed the cochains
,€C™ ! for 0<k <s. We construct =, as follows: Let

s—1
Ts; i, by o Osiig, iy o‘<kzéfk>io,“‘,i1'

Then (s, iy, ...i,)ociy<m<i,<mEM*™ICT is a cocycle modulo m®*'C". Moreover,
dg«Ts: ipei, < 24mc2°".  Define

m
Tss doreryipy = Z-L (rie l)ffzs ITS; LTINS
By [3, III. 1.2.4), =, satisfies (1). Because

c2st1 ¥-1R. .
5 sy gy, i€ Big, i, NM¥TIB L

(by (4) and the power series expression of ¢) and

B ﬂmzs-lB,‘o‘..ir = IT'[zx"lB,'o...i,_l

(Lemma 9), (2) is satisfied.

Moreover, dgts; iy ...i, < dgTs; iy i, + AG* Ti 001 + €254

< 24m 257 + 3mct 4 ¢2°F < 24mc2s

Therefore =, satisfies condition (3).
Finally, if 0<<a <7, both of the elements

s—1
s+1 +1 . .
§2 Us; ig e i, and 23‘ <k207k>10 iy

are elements of B;, ... ;, ... ;, of degree << ¢2°*1424mc25~'. Therefore f$2"'7s; ;, ...;, €
Biyipiy, and dg- fE2 s igi, < €24 + 24mc2*™t, Thus f82"'th; ig,i, € B
wi,y for any a, and dg- £ Tk igi, g << €25 + 24mc2°7! + 3mc2°t + 2%+

< ¢2°*t 4 24mc2°

1o ia

Therefore condition (4) is satisfied.
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The calculation previously threatened has proven that A is a sheaf with
trivial cohomology. We shall next extend this result to the presheaf M
induced on Spec A by the finite A-module M.

ProposITION 12.  If M is a finite, flat A-module, then M is a sheaf and H'(U, M)
=0 for i >0 and U any principal open subset of 7.

Proof. Let U= {U, - - -, U,} be a covering of U by principal open subsets.
Lemma 7 shows that the simplicial resolution

1) 0—~I(U, A) —>C(z, A)—Clz, A)— - -
is exact. Tensoring (1) with M over A give the simplicial resolution of A by
2 0->I(U, M)—>C7/, M)—~>C\Z%, M)~ - - -

Because M is flat over A, (2) is exact. Consequently (as in the proof of
Theorem 8) M is a sheaf and H(U, M) =0 for i > 0.

ProrosiTioN 13. 4 is a regular ring.
Proof. (5, Lemma 6. 1)

THEOREM 14. Suppose M is a finite A-module. Then M is a sheaf. For every
principal open subset Uc 27 and i >0, H'(U, M) = 0.

Proof. Because A is regular, hd M < . By Proposition 14, the theorem is
true for M if hd,M=0. We shall assume that hd,M>0 and proceed by
induction. Suppose the theorem holds for all modules N such that 2d,N <
hd M. Construct an exact sequence of A-modules

0--K—>F—->M-—0

with F finite and free. By (2.5) this sequence induces an exact sequence of
presheaves:

0—K—F—>NM-—o.

Because hd, K = hd,M— 1, the induction hypothesis implies that K is a sheaf
with trivial cohomology. Let _# denote the sheaf associated to M. Then
we have an exact sequence of sheaves:

0>K—->F—_gz —0.
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Since H'(U, K) = H(U, F) =0 for i >0 and U a principal open subset of X,
A =Mand H(U, M) =0, all i >0.

DEeriNtTION 15, An affine wf scheme over R is a ringed space isomorphic to
(Spec A, A) for some wcfg R-algebra A.

In the next section we study coherent sheaves over an affine wf scheme.
By Theorem 14, if M is a finite A-module, M is a sheaf of finite type over
A.  Using the exactness of the functor M— M and the fact that A is
Noetherian we find that M is coherent. In particular A is coherent over
itself; consequently the coherent A sheaves are just those sheaves which are
locally of finite presentation (i.e. locally look like A for some finitely gene-
rated A-module M.)

3. Coherent Sheaves

In the previous section, we proved that a wcfg algebra A and finite A-
module M give rise to an affine wf scheme and a coherent module with
trivial cohomology on that scheme. In this section we will prove that
every coherent sheaf over an affine wf scheme is generated by its global
sections, provided that the ground ring is a complete discrete valuation ring. Through-
out this section, (R, z) will denote a complete discrete valuation ring.

LemMmA 1. Suppose A is a wcfg algebra and M is a finite A-module. Suppose
Surther that 2y, <« -, x,€A and py, + -+, p,€M. Let P,,; i=1,+++,¢; j=0,
1,2+, be a collection of polynomials in n variables satisfying the following
conditions:

(1) dgP,;<c(j+1) for some constant c;

t
(2) glpi.j(x)ﬂieﬂ'jM Sor all j.

M«.

Then %0 P;,;(x)p; converges in M.
j=

i=1

In particular, settling t =1, M = A, and p, =1, then %Pj(x) converges in A.
J=0

Lemma 2. Let B be a noetherian ring, ICB an ideal, feB~1I, and M a finite
B-module.  There exists a constant N such that if me MNI*M,, then f¥?me I’ M.

Proofs. The proof of Lemma 1 will be found at the end of this section.
To prove Lemma 2, let FeG,(B) be the leading form of f. The sequence
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of submodules of G;(M):
0:Fc(0: FH)c - - -

has a maximal element, say (0: F¥). Thusif melI?M and f'meI?*'M, then
fAme I+ M.

Suppose meMnI’M,;. There is an integer j such that fimeI’M.
The above argument shows that f¥YmeIM; likewise f**mel°M for a< p.
In particular, f"¥meI”M.

TueOREM 3. Suppose A is a wclg algebra over the complete discrete valuation
ring (R, z), and Suppose F is a coherent sheaf of A-modules on the affine wf scheme
(Spec AlzA, A). Then there exists a finitely generated A-module M such that F=
M; moreover, we may take M = I'(Spec Alz A, F).

Proof. Let £ = Spec A/zrA. First we show that, to prove Theorem 3, it
suffices to show that the natural homomorphism I'(2 F)—I'(%Z F|zF) is
surjective. Suppose this map is surjective. Since F/zF is a coherent sheaf
of A/rA-modules on 27 there exist elements fj, - - -, f,€I'(2° F/zF) which
generate (% F/zF). - Then f,, - - -, f, generate the coherent sheaf of modules
F|zF over the ordinary affine scheme (27 ﬁ/\nﬁ). Lift each element f; back
to an element f;€I'(2’ F). The stalk of the sheaf A at any point « of 27
A, is a Zariski ring, and the stalk F, of F is a finitely generated A,-module
(because F is locally the sheaf associated to a finitely presented A-module.)
Moreover, fi, « -+, f; generate the (%)z-module (FlzF),, and %)x =A,
|zA, and (F/zF), = Fy/xF,. Therefore fi, +--, f; generate F, as an A,-
module. Thus there exists a surjective homomorphism of coherent sheaves
of A-modules from the free module 4°to F, @ : A*~>F. Repeating the above
argument for the coherent A-module (ker @), we see there exists an integer
t and a homomorphism of coherent sheaves g: A° — A° such that F= (coker
f. The homomorphism g arise from a homomorphism §, : A* —+ A* of free
A-modules. Since the function “~” is exact, (2.5), F = (coker B)~.

Next we prove that the natural homomorphism (2 F)— (% F|zF)
is surjective.

Select a covering of 2° by principal open sets U; = X,,; i =0, - + -, m,
such that F|U, = I'(U;, F)~. Let A, = Ais3, and A;,; = A7 Let U,,; = U,
NU;. Set F,=I(U, F) and F,,; = I'U;,;, F). Choose an integer N such
that for each pair (4, j), if 2eF;Nz°F,,;, then f{¥xez"F,.
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For each i =0, - - -, m, choose generators g, ., - - +, p;,, for F; over A,.
For each ordered pair (i, j), choose elements

.
niic€A;,;j; «, =1, -, r; such that pg;,= Eln;;{g,ui,a
o

and define matrices N,,; = (&), Note that if (f)=(fy, -+, fr) is a
vector over A;,;, and if (g) = (g1, + + -, g-) = N;,,(f), then in F, ; we have

(4 r

glfa.uj.a = glga.ui.a'
. . . . s

For notational convenience, if (f) is a vector over A4,,;, then (fu,) = 21 Salli e

Thus, in F;,;, (frr,) = (Ni,; £)ea).  Also, (Ni,;Nj o f)ets) = (Ni,i Sf) ).
There exist elements «;, « - -, z,€ A such that nl} may be expressed as
a power series

neh = 2nlhag;
q=0
with each nij,e74,,; expressable as a polynomial of degree< c(q+ 1) in the
1 1

. Sl fi ) .
Also, (as in (2.11)), there exist elements 7, 4, 0= i < m, and polynomials

m
P, ; of degree<3mj, 0<i=<m, j=1, such that 3P, ;(f, )\fi=1. As be-

1=0

(
elements tx,, <o, g, (for some constant c).

fore, we denote P, ;(f, ») by 7, ;.

Now we have sufficient machinery to permit us to lift a section r€I'(Z
F/zF). Over each U, lift « to a section of F,; call this section (g°?z;), where
(9% = (g% - -+, g¥%) is a vector over A;. Replacing ¢ by a larger constant
if necessary, choose the lifting so that for all i, a; figte A Let figl¢
= hl.

Note that

(N, ;9% — g* ) )enF, .

For each i =0, + -, m, we will construct a sequence of vectors (¢g*%); s =1,
2, - -+, such that >3 (g*?x,) converges in F; to a global section which reduces
=0

modulo z to =. More precisely, we will construct (g*%) = (g{'%, - - -, g3'!) over
A, such that:

Rl h=1 ,
1) Ny (Be) = B Nmer®F,;
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2 (g%im)en'Fy;
(3) ¢&* is a polynomial of degree <k2° in the elements
{Xp; ¥y fT’ 1/fu fggg,a}
l<f<mn
0<r=m
lo<r
all 1< a<r, where k = 25mc + 2N.

@) fMglied l<a<r

Condition (4) is necessary for the inductive construction of the vectors (g).
Conditions (2) and (3), together with Lemma 1 guarantee that go(g‘-i,ui)
converges in F;. Condition (1) proves that these vectors represent a global
section of F. Since é)(gs-i,ui) = (g"*p;) mod zF;, this section is a lifting of 7.

The vectors (¢g*%) satisfy (1), (2), (3) and (4). Suppose we have construct-

ed (g% for i =0,--+,m and s=0,--+, h—1. We will construct (g*:?).
Define

2rt1—1
niit = Z}o nLhq
q=

nifteA;,; and dgenbit < 2", Let N;,j,n = (nh#"). Nijn=N;,; mod

x2*!,  Define a vector over A,,;:
i h—1 h—1 )
"7 = Ny, yal 2 (0" — 3 (g").

By our inductive assumption (1), (w®/*p;)ex*'F;,,;.  Moreover, by (3),
(wii™a), the o’ th coordinate of (w':7:*), is a polynomial in the elements
{Xs, 1y Sro 1S5 1 fj, f7937}
1<B<mn
osr<m
<oy

of degree =<k2"'+ c¢2"* and, by (4 and (5), f*"" 2 wiited, and
(fuif ¥ white A
Define vectors y™%7 over A; as follows, 04, j<<m:

i j R
yhtd = rj,cz""2+N2"f;2 whin,
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Our preceeding arguments show

(a) y*“IpeF Nz F

(b)  dgyk® <3m(c2"*2 + N2*) + 28+ - ¢2h+1 4 foh-t

(c) fiyrricA
where yi%/ is the o'th component of the vector y*-*/., Finally we define
the desired vector (g*:%) as follows:

(™) = 33y,

Thus

(") (¢"'w)ex”'F,

(b')  dg-get < N2" 4 3m(c2"*? + N2") + c2"+2 + f2"=1 4 c2"*1 < K2"

(c) fi2greA

where gi'? is the a’ th component of the vector (9"). Thus we have verified
condition (2) by (a’), (3) by (b’), and (4) by (¢’).
To verify (1), we will prove that:

1

) ) r—1 h=1 "
(N, 9™ — g™ D) = (Zg"" = Niy2g")e)  mod z? 'F, ;.

Let C = 3m(c2"*? 4+ N2).
We arrive at this equation via:

((]vi.jgh'j - gh'iﬂli) = ([Ni,j(lgof’z.cfgwj‘L‘h) - lgof’z,o ?wi'l'h]ﬂi)
m h—1 h—1 )
= (D710 f NN, 1 3 (07 = Noyy 2 (g™)

h=1 h=1
— NuZ(@W)+ 2 00k)  moda*F,

m h-1 ) h-1 )
= (27002 0" — Nowy Do)
B—1 h=1
= ((s=0(g“) - Ni.jsgo(gs']))ﬂi) mod z*"*1F, ;.

QED for Theorem 3.
It remains only to prove Lemma 1. The following notation will be
necessary for the remainder of this section. We may assume that Ais a
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wcfg algebra with weak generators {«y, - - -, «,}, and that M is a finite
A-module spanned by {¢;:--, ¢,}. Let B=R[X, -+, X,It, and view A4
as a homomorphic image of B via the surjection X; — x,.

Let F= B’, and define K via the exact sequence:

0->K—F—>M—0,

where F— M is defined by (0-:-1,+ - +0) > ¢,
Define L(a, b)cF as follows: f=(fy, -+-, f,)€L(a b) if and only if
fi= g‘,ofi,q with fi,,€x40X,, + + -, X,] and dg- f;.,<a + bq for each i, 1=i=<r.
Thus the sets L(a, b) have the following properties:

(1) if a=a, b’ =b, then L(a, b')DL(a, b)
(ii) helL(a, b) & a*he L(a+nd, b)
all n=0

(iii) If heL(a, b), and if zeB is a finite polynomial of degree =, then
cheL(a+ n, b)

LemMma 4. Suppose M is R-flat. There exists a constant C satisfying the following
condition for all i: if fe(x'F+ K)NL(c, d) and d is sufficiently large, then there
exists gen'FN L(c+iC, d) with f = gmod K.

Proof. Since M is R-flat, we have an exact sequence over —%
T

0->K—>F—> M-—o.

Let ky, -+ -, k, be a good basis for K, in the sense of (14). (This means the
following: If we define dg-f=maxdg-f; for f=(f, .-, f)EF, there
exists a constant / such that every k€K may be expressed as a sum
k= iéldi];i’ with diE;}%[Xl, +++, X Jand dg-a,<dg-k +1).

Lift each k; to an element k,=(k;,i, * - +,k;,.)€K. The set {k;} spans K
over B by Nakayama’s Lemma. Suppose, for every i, k;eL(a,b). In par-
ticular, then dg-k;< a for each i. For the constant C required in the
Lemma, we shall take C=a+1; and we shall prove that d is sufficiently
large when d=b.

To prove that this constant C satisfies the lemma, we use induction i.
The lemma is trivial for i =0. Suppose fe(z’F+ K)NL(c, d. Suppose
further that d=b. Then fe (z*'F+ K)NL(c, d), and by induction there is
an element rex*'FNL(c + (i —1)C, d) such that # = fmod K. Thus hez'F
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+ K, and h = z*"1p’ for some i’ in F. In fact, W'eLc+ (i —1)C+ (i —1)

d, d). Reducing modulo zF, i’eK. Write &' = _Xr‘,lfiﬁi, with ?ie% and

dg 7, <l+c+Ci —1)+d(i —1). Lift 7; to -;€B with dg-z; = dg-7;, and
t

set ¢ =h' — .El'riki. Note that ¢’ezFNL(I+c¢+C(i —1)+d(i—1)+a, d),

t
because Z‘.l‘rikiEL(l +c+Cli—1)+di—1)+a b) and b=<<d. Define g=
ni~1g’,  This finishes our induction, for g = »"lg’ = z*"'4’ (mod K) = k(mod K)
= f(mod K), and gex*FNL({ +¢c-+Cli —1)+a, d) = z*FNL(c+ iC, d).

ProposiTION 5. Suppose M is R-flat, and suppose g; = (g;.1, + * *, g;.-)EF; j =
0,1, +--,; ts a sequence of vectors such that:

(1) g;ex’F+K;
(2) g;€L(c(j—1), d) for some integers c, d independent of j.

If m; is the image of g, in M, then 3 m; converges in M.
i=o0

Proof. Choose C as in Lemma 4, and assume that 4 is so large that Lemma
4 applies. This assumption is innocuous, as L(e, d)=L(e, d +1). Replace
each g; by some element z;€z/FNL(c + j(c + C), d) such that #; = g; (mod

K.) The image of k; in M is m;, and Xk, converges to an element of
j=o

L(c, C+c+d). Consequenly, jé‘_,m ; converges in M.
1=0

Now we can prove Lemma 1. In the case that M is R-flat, Lemma 1
is a special case of Proposition 5. That is, for each j=0, the polynomials
(P, (), +»+, P, ;(x) from Lemma 1 form a vector g, in F which is an ele-
ment of L(c, ¢). Moreover, by the hypothese of Lemma 1, the image of
g; in M is iZt',lPi,,(m)yiEan, so g,ex’F+ K. By proposition 5, then

o f

S 1Pi_j(ov),m,-) converges in M.

J=0i=

If M is not flat over R, let T be the R-torsion submodule of M viewed
as an A-module. Define N by the exact sequence:

0->T->M->N-—>0

o t
N is R-flat, and so the image of X} (X} f.,;#) converges in N. Since A is

J=0 =1
noetherian and 7T is finite type over A, there is a constant e such that

7T =0, Thus z*MNT =0, and so the map z°M— N inherited from the
projection M— N is injective. Moreover, the image z°M is closed in N, and
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the topology of neM agrees with the one inherited from the topology of N.
Consequently E (E Sfi;2:) converges in z°M, and so Z ( Z‘,fl jM:) converges
in M.

4. Weak Formal Preschemes

Affine formal schemes can be patched together in much the same
manner as affine algebraic schemes. The most interesting such construction
is an analogue of projective space, which we will study in the next section.
This introductory section contains elementary definitions and the construction
of the weak completion of a finite type prescheme. The operation of weak
completion will provide us with our best examples of weak formal pre-
schemes.

DeriniTiON 1. A weak formal (wf) prescheme (over R) is a ringed space
(& %) such that every point of 2 has a neighborhood isomorphic to
an affine wf scheme (2.17). Open sets of 2” which are isomorphic to affine
wf schemes are called affine wf open sets.

Oz _ = . . R
The sheaf M O is a scheme of finite type over - whose un-

derlying space is also 2°. Often, for emphasis, we shall refer to 2 as 2
when we want to consider 2 as the space underlying Z.2-. Affine open
sets of 2 will be called simply affine open sets. Although affine wf open

sets of 27 are affine open sets of 27, it is not known is affine open sets
are always affine wf open sets.

Suppose that (2°, ¢2) is an R-prescheme of finite type and F is a
coherent Z.2-module. 2 and F can be weakly completed to a wf
prescheme and a coherent sheaf of modules over this wf prescheme. The
operation of weak completion will be defined as an extension of the opera-
tion of weak completion for R-algebras and their modules.

To begin, let 2°t = {ve.2° : F.27. % mT2:.}. Define a presheaf &1L~
on affine open sets of 2 as follows: if UcVc 2” are affine open sets, let
U, @) =r{U, %), the weak completion; and let the morphism
IV, @)= I'(U, %) be the unique continuous extension of the restriction
map I'(V, %)~ T'U, O%).

Lemma 5. Suppose 27 is affine. Then 7)o is a sheaf on the principal open subsets
of 22 which is concentrated on 2°t. Further, &' induces an affine wf scheme,
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also denoted %, on Z°1.

Proof. If A is a finitely generated R-algebra and feA, then (A, = A,
Consequensly L~ can be identified with the extension by zero of
(&1, (22, O2)t~) to 2°. This proves the Lemma.

Lemma 5 shows that ¢7L- induces a sheaf, also denoted &', con-
centrated on 2°t, and that (2’1, ﬂl?ﬁ) is a wf prescheme whose affine wf
open sets include the intersections of 2”1 with affine open sets of 2°. We
shall say that the wf prescheme (271, ﬁj@&), together with its canonical
morphism (271, &’;@&)a (&, =), is the weak completion of (2, 7.2).

The weak completion, F't, of F is defined analogously. If UcVc 2
are open affine sets, let I'U, F') = I'U, F) ® rw, o U, Tl%); and let the
morphism I'(V, Ft)— ['(U, F) be the unique continuous extension of the
restriction map I(V, F)— I'(U, F). The action of 72> on Ft extends con-

tinuously to make F' into an ¢'p-module.

Lemma 6.  Suppose 27 is affine. Then Ft induces a sheaf concentrated on

&t which is a coherent 7%--module.

Proof. Let A be a finitely generated R-algera, M a finite A-module, and
f€A. Then M, ®4,(A;)t = Mt ®4+ Aty Consequently, Ft can be iden-
tified with the extension by zero of the sheaf (2°t, I'(%°, F)~). This
establishes the lemma.

Thus, for any coherent module F over an R-prescheme of finite type
&, =), F' is a coherent lp--module. (271, F1), together with its
canonical morphism (271, F')— (27, F), is the weak completion of F.

ProrosiTiON 7. The functor (weak completion) of coherent 7 .27-modules is exact.

Proof. Let F— G — H be an exact sequence of coherent ¢7.2°-modules. For
ze X, select an open affine neighborhood UcX of x; then

ru, F)y-»ru, G)—»r, H)
is exact. Because I'(U, ﬁ’kf) is a flat I'(U, Z.2°)-module (1.3),
r, rt)y—»ru, Gt)-» ru, Ht)

is exact. Thus Ft— Gt — Ht is exact.
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Remark. Henceforth, we shall use Ft to denote the weak completion of F
on #t and i,Ft to denote F' extended by zero to 2°. Since 27t is
closed in 27, there is a natural map H{(.2°, F)— H{(Z7, ixFt)— H (Z1, FY).
The second homomorphism of this sequence is bijective.

5. The Comparison Theorem

Throughout this section, (2%, ¢2) will be Proj R[X,, - + -, X,], and F
will be a coherent z--module. (271, @?'5>) and F' are then the weak
completions of (2, 72) and F respectively (cf. §4). We will prove that
the natural map F— F' induces a cohomology isomorphism HY (2, F)—
Hi(Z1, F1).

The first two theorems of this section are special cases of this cohomology

isomorphism.
Tueorem 1. HY( Ft, Ft) =0 for i > m.

Proof. Affine wf open sets in 2°t are cohomologically trivial (2.14). Con-
sequently, the cohomology of F* may be computed using the singular cochains
of an open affine covering 7/t of 27!, provided that the intersection of any
finite collection of elements of Z/t is affine wf (2, I1.5.4.1). In particular,
we may take Z/t to be the open sets 27,0 2°". This open covering con-
tains m + 1 elements, so HY Z°t, Ft) =0 for { > m.

Our second special case deals with certain invertible 72°-modules. We
need some notation. (2, @) has a homogeneous coordinate ring
A=RX, +++, X Let U;= 2%, and let 7 ={U,, -+ -, U,}. Define
Uigyooi, = U ;N + - NU;. Then we make the identification:

X, : i
F(Ulo ..... iy ﬁ’%) = R[ 0 Xm X, X, ]'

Xy X, X, X,

Let Ul i =Usy s N 2t and 7/t = (UL ULL

We are going to analyze the invertible modules #7(n), n€Z, given on
the affine open subsets U; by the cyclic sub-I'(U;, ¢72°)-module of R[X,, - - -,
Xy X34 000, X3

0=<1i<m.

The natural map ¢7(n) > ix7(n)t induces a differential homomorphism of the
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simplicial complexes
C(Z, o) —>C(Zt, Tn)).
Which in turn induces a homomorphism
o H (7, o)~ H(Z/T, &n)).

In addition, the following diagram commutes:

' ®
H(zy, on) — H (", &7(n)7)
1 1
H(&Z, o) — H(Zt, 7))

where the vertical arrows are the usual natural transformations from simplicial
cohomology to sheaf cohomology, and the bottom arrow is the homomorphism
induced by weak completion.

LeEMMA 2. ¢ is bijective.

The proof of Lemma 2 will be given at the end of this section.

TuroreM 3.  The homomorphism H (27, & n) — (H (Z°1, & n)") induced by
weak completion is bijective.

Proof. Leray’s Theorem (2, II.5.4.1) and (2.14) prove that the natural trans-
formations from H'(%/, &7(n)) (resp. H(Z/t, Zn)") to H(X, (n)) (resp.
H 71, &(n)) are bijective. Thus Lemma 2, together with the diagram (A)
establish the desired result.

Now we are ready to prove our main theorem.

THEOREM 4 (THE COMPARISON THEOREM). 1The natural map H' (2, F)—> H’
(Z°1, FY) induced by weak completion is an isomorphism.

Proof. Construct an exact sequence of sheaves
0->H->G—->F—-0

such that G is a finite direct sum of sheaves (n.), n.€Z (3, I11.2.7.9).
From this exact sequence, derive a commutative diagram with exact rows:
-— HY(2°, H) — H'(2Z°, G) —H(Z, F) — -
i l g: l Si l
.o — Hi{( 2t HY) —> H{( 21, Gt) —> H{( F?!, F1)—>+ « -
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For i > m, f;is bijective (Theorem 1 and 3, IIL. 2.2.2.). Suppose f; is
bijective for all coherent modules F and all i > 7. Theorem 3 proves that
g is bijective for all i; then the diagram shows that f, is surjective for any
F. In particular, &, is surjecitve, and so f, is bijective. By descending
induction, the theorem is proven.

Remark. The proof of Theorem 4 is copied from (8, pp. 21).

COROLLARY 5. (271, F1) as above. Then:

(1) HY(Z, FY) is a fimte R-module, all i.
(2) H{(Zt, F1)=0 for i > m.

Proof. The second assertion is just Theorem 1. The first statement follows
from Theorem 4 and 3, III.3.2.3.

We conclude this section with a proof of Lemma 2. As in the proof
of (2.8), it is convenient to augument the simplicial complexes C(%/, & (n))
and C(Zt, n)) by a term C A%, &) =CY %!, &n)) =the n-th
homogeneous component of A. Recall that for r=0, C'(%, & (n)) and
C' (7, 7 (n)) are defined as follows

C(z, o) = @ X501, O2°)

0<ig < <i, <m

CH TN = @ XU, Ol

0<ip< <, <m

where X7 I'(Ui,....,, @) is a cyclic submodule of the I'(U;,,...,;,, .2°)-module
R[Xo, + + +, Xn, X3! X51), and X} D(Z/41.....0, O) is a cyclic submodule
of the I'(Ul....,, &'p)-module R|X,, « « -, X,, X5!...,X5']. The components
of C"(z/!, & (n)") inherit their topology from the topology on I'(Us,,....s,, ﬁ’fgf).
In either the algebraic or the weakly complete case, the boundary map

§:C'—C°is the sum of the inclusion maps of C-! into each component of

Ce.

LEmMmA 6. Let S = Rk , B = ——‘kiﬁ and F = A
m m*A

r,0€C (%, F) is a coboundary such that:

Suppose for some integer

(1) eesm™C (%, F);
(2) for all (i, - - -, i,) and some fixed s, (X; - - * X1, (014,000, X7, EB.

(Note that for each (¢, - - -, ¢,), there exists an integer s such that (2) holds,
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because a(i>X;;‘eF(U(i), *ﬁ%) We are assuming that s is sufficiently large
to work for every component of ¢.) Then there is an element -eC"~{(%/, F)
such that é¢ = = and:

@) cemC Yz, F);
(4) for all (i, » -+, i, (Xigs » - X, V(zigrnni,  X7,) € B.

=1

Proof. The lemma is clearly true for »< 0. The following proof works for
r>0. Copying Grothendieck (3, ITI.2.1), we define a double complex K'(X")
as follows: Kr*(X') is the direct sum of certain free S-modules
K™ (X )i,..00i
KX to be the n 4 ¢(r + 1)-homogeneous component of B. The maps
Pt KTH(XY) — Km#(X ) given by Pi(s,,....;, = (Xip* * * Xi)4,.....c, Permit us
to define K+1((X)) =1i_r)n K4(X*). The homomorphisms ¢, : K"*(X*)~>C"(%/, F)

indexed by all sets 0<<io<--- <i,<m. Namely, take

r

given by ¢.(),,....;, = induces an isomorphism K+((X)) - C" (%,

(Xiye Xh)‘
F) for r =0 (3, II1.2.1.3).

The double complex K'(X') has a second map, ¢ :K""(X’)— K"*3(X"),
given by 6(9)i,,....i,.s =:§)( 1) XE 9850, 00000...0 4,.,+ The homomorphism § gives
K'(X*) the structure of a differential complex with the following two pro-

perties:
6) ¢ :K'(X")—>C'(Z/, F) is an injection of differential complexes;
(6) the induced maps ¢, : H(X')—> H'(Z/, F) are also injective.
3, II1.1.1.6, I11.2.1.9)

Suppose now that ¢€C’(%/, F), r>0, is as given in the statement of
the lemma. Then ¢;'(¢) is defined, and —by (5) and (6) above— g;!(¢)=d7 for
some 7eK"(X*). Moreover, 7 is a coboundary modulo m", because 67 =0
modm® and H"(X')=0 for r<<m (3, III.1.1.4). Let v =dpomodm”*. The
element ¢ = ¢,(v — dp) satisfies the requirements of the lemma.

(n)t
(m?)
The map p s injective.

LemMa 7. The natural projections ¢7(n)t —
ﬁ’(n )

induce a homomorphism o : H’

@', o > tim B (2",

Proof. Let o=C (z/t, &(n)t) be a cocycle which is a coboundary modulo
mw’® for all s>0. We must prove that ¢ is a coboundary. Each component
;, of ¢ can be expressed as a power series:

Tigaeres
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(o]
Tigrenari, — 2040 ..... ir)X?o,

where of,,....,em’T'(Us,...,i,, =) has degree <c(j+1) in the elements
(B, K Ko X
Xl ’ ’ XZ ’ XZ ’ ’ er

0

} for some constant ¢. Thus:
1

(Xio...Xi,)C(j“)lfﬁ

......

To complete the proof of Lemma 7, we shall construct a sequence of
cochains z,CY %/, &7(n)), k=0, 1, - - -, such that:

1) mewm* C N7, T(n);

(2) (Xi b 'Xi,_,)°<k+l) (Tlc;io ..... i

of z,;

. XeA for each component ty;q,.. .1,

@) o— éghem“lc’(?ﬂ, an)t).

Conditions (1) and (2), together with (2.10), imply that gork converges in
CY /1, ¢ (n)t); condition (3) and the fact that C"(Z/t, ¢7(n)!) is m-separated
imply that éo” bounds ¢.

We shall construct the 7z, inductively. Suppose we have already cons-
structed z, for A =0, -+, k—1. First we construct a cochain g, by defining

its components;
. k-1
Lrs gty = (20000, ) Xy — 20 Thyige.. iy
0 h=0

¢y is a coboundary modulo m**, g, =0 mod m*C", and (X; -+ - X;)"**D
(B 54,....1,X%,)€A.  Lemma 6 proves that there exists a cochain 7, such that
7, 1s congruent to pg; modulo m**'C"(Z/, «7(n)) which satisfies (1) and (2)
above, and (3) follows easily.

o

and 71— ") commute

o
()
with the natural injection &72°— &'>>. Consequently we have the com-

Proof of Lemma 2. The projections 7.2 —

mutative triangle of cohomology groups:

¢
H(2, Ow)—> H'Z/", 7))
o\

/e
ﬁ’(n>)

()

i 72
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Since R is complete, ¢ is bijective (3, ITL. 2. 1. 12). We have established in
Lemma 7 that p is injective; consequently ¢ is bijective.

Remark. 'The comparison theorem may be extended to the case of sheaves
over a proper R-scheme. In fact, more generally, we have:

TurEOREM A. Suppose 27 and 2 are finite type preschemes over R, and
[ Z —>Z is a proper morphism (over R). Let F be a coherent sheaf on 2°.
This data may be weakly completed to a morphism ft: 21— 2t and a coherent
O'o-module Ft. For all n, R"f«(F) is a coherent sheaf on 227, and we have the
natural map on Z/'1:

@ 1 (R"f#(F))t — R™ f1x(F1).
For all n, ¢ is bijective.

In order to prove Theorem A, we first present a special case.

TueorREM B.  Suppose Ais a finitely generated R-algebra and .27 is an R-prescheme
projective over spec A. Let F be a coherent sheaf on 2°. Then the natural map

HY (7, F)®4A"—> H(Z°, FY)
is bijective for all i.
Proof. We may assume that A= R[T,:-., T,] and that 2° = Proj ALX,,
co+, Xul=P"(A). By the proof of Theorem 4, we may assume that
F = @72°(n), which we write as 7, (n). Suppose the theorem is true when-

ever m =0 or n=0. 2 =P"(A)>DP"(A) for some imbedding, and this
imbedding leads to an exact sequence of sheaves on X:

Oﬁﬂm(” - 1) _)ﬂm(n) "_’ﬁm—l(n) — 0.

Thus we have a commutative diagram

o> HU(Z, On(n—1) @4 At > HU(ZZ, Tn(n)) @4 A

c o> H( 2, Onln— 1) - HY( 27, Tn(n)t)
= H(Z?, 1)@ AT >+«

= H{Z, Guaa)l) =+ -

Suppose the theorem is true whenever m =0 or n =0; that is, all the
vertical arrows are bijections whenever m =0 or » =0. Then the diagram,
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a two way induction on #n, and an ascending induction on - prove that
the vertical arrows are bijections for all m, », i, which in turn proves
Theorem B.

That the theorem holds whenever m =0 is obvious. To prove the
theorem for arbitrary m and » =0, we imitate the proof of Lemma 2.
Let B = AlX, - -+, X], and let Bio...in=A|:—}%%,' . %’% §_<: o x]
=I'Us,,...., O2). As before, let CU7, Oz =02, CO2) =A
Let C-{z/t, Ol%) = CN %, O2°) @4 At = Al. Consider the cochain com-

plex 0> CYz/t, Plo) =« + + > C™(Z/1, ') > 0. Suppose we have shown

that the cohomology modules for this complex are separatde in the m-adic
topology. Then HY(Z/1, ﬁ%)cHi(?/T, Z2°) =0 for all i =—1, where “~”
indicates the formal completion of 72> at m. Thus, H{(%!, &'2) =0 for
all i = —1, and consequently (as in Theorem 3), H°(21, &’L@/) = At = HY(27,
O2)®4 Aty and H(Z, O'p) =0=HY(Z, O2) R At, i >0.

In order to prove that the cohomology modules HY(Z/t, &’ig?) are

m-separated, we need

Lemma C. Define D = Ajm? for some p>0. Let X = P™(D)= Proj D[X,, -+ -,
X1 and let 27 be the usual covering of Z°. Suppose 6C™(Z/, 7.2°) is a coboun-
dary satisfying the following conditions:

1) eem'C(Z, =)

(2) (Xip+ + » Xi)0040...5,€D[ X0, * + +, Xul for all g+« +i,.

() dgre<d, where dgro ts defined to be the maximum of the degrees of the
elements a;,...., considered as polynomials in Ty, « - -, Ty over the ring Rm?[Xo/X;,,
s, XXy Xiff Xy, 000, Xiof X0 Then there is a cochain t<CT Y, O.2°)
satisfying

(4) &t =o0;

6) cemgC %, O2):

6) (Xip+ - Xi,)v€DX,, «+ +, Xul;

(7) dgrr<d.

Proof. A close examination of the proof of Lemma 6 shows that, if Kr+(X?)
are taken to be free modules over D, then the 7-degree of the cochain
bounding the given coboundary ¢ which is constructed there may be con-
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trolled as required. Thus (7). Statements (4), (5) and (6) are proven in
Lemma 6.

To prove that H'(Z/', &%) is m-separated, suppose c=C"(Z/1, ﬂl%) is
a cocycle which is a coboundary modulo m?, all p >0. We will conctruct
a coboundary for ¢ by choosing cochains 7,eC™(Z/1, ﬁf/%a),q =0,1,2,« + -+
satisfying

8 4( Ztoz'q) = ¢ mod m¢+!;
g=

9)  c,emiCri gt l);

10) (Xi,- -« - X, )@y, 4, €B for some constant c;

)
(11) dgrr,=<d(g+ 1) for some constant d.

First, write

Giy...1, =u§00'{50...i,, where ¢5,....,€m*B ..., dgrof<d(a+1) and (X; - - -
X, ) eB for all a. Using Lemma C, the proof proceeds exactly as
the proof of Lemma 7, only noting that the extension of Lemma 6 and
Lemma C permits us to construct z, satisfying (11) as well as (8), (9), and
(10). f‘,rq=r is the desired cochain bounding ¢; (9), (10), and (11) prove
that the osum converges, and (8) shows that it bounds o.

Theorem A is a direct consequence of Theorem B and Chow’s Lemma.
(The basic argument going from Theorem B to Theorem A was shown to
me be S. Lubkin.) Since Theorm A is local on Y, we may assume that
Y = Spec A, where A is a finitely generated R-algebra. In this case, it
suffices to prove that if F is a coherent sheaf of ¢72-modules, then the
natural homomorphism:

1) H?(2°, F) @, At —> H/(2°t, F)1,

is bijective, all p > 0.

& is a noetherian scheme proper over Spec A. Let K be the category
of coherent #727-modules on 27, and let K’ be the subcategory of coherent
&2 -modules satisfying (1). It is easy to see that K’ is an exact subcategory
of K, and that if F is an object of K’ and if F’ is a direct summand of F,
then F’ is an object of K’. (cf. (3, IIL.3.1) for the definition of exact sub-
category. Our proof that Theorem B implies Theorem A follows (3, I11.3.2).)
Thus, by Grothendieck’s ‘“lemme de Devissage” (3, III.3.1.3), to prove
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Theorem A it suffices to show that, if xe.2” is the generic point of an
irreducible component of 27, there exists a coherent sheaf F of ¢7.2--modules
satisfying Theorem A such that F, = 0.

Replacing 27 by a closed subscheme of 2° which contains the point z,
we may assume that &° is integral and irreducible. By Chow’s Lemma,
choose a scheme Z and a morphism g:z— 2 such that g is surjective and
projective, and fog:z—SpecA is also projective. By (3:1III.3.2.1), for
n sufficiently large, the coherent sheaf of &7z -modules, F = g«(72(n)), does
not vanish at the point z; and the higher derived images of 7(n) vanish
on & :i.e., RPgu(7%(n)) =0, all p>0.

Since At is a flat A-modules, we have a spectral sequence:
E}" = HYZ2, Rge(T2(n)) @4 At = H™(Z, Tz(n)) R4 AT

(The Leray spectral sequence for the morphism g tensored with A! over A).
Since Rg(%(n)) = 0 for g > 0, this spectral sequence degenerates to natural
isomorphisms:

#) H (22, F)®4 At = HY(Z, 7,(n)) Q4 AT all p>o0.

Since the morphism g is projective, Theorem B implies that the derived
images of the sheaf #7,(n)' via the morphism g':Zt— 27t of wf schemes
may be described as follows:

(3 RPq1(T2(n)1) = [RPgu(T2(m)]t  all p>0.

Thus R%*(72(n)t) =0 if ¢>0, and the Leray spectral sequence for gt : Zt
-2t

Ef = HY(XT, R'g"W(T2(n)")) = H™(Z', T2(n)")
degenerates into natural isomorphisms
) HY (277, 9'W(T=(m)") = HP(Z7, &z(n)7). all p>0.
Combining (2), (3) and (4), we have that the natural homomorphism
) H™(22, F) Q@4 At — HY (271, F1)

is bijective all p > 0. This establishes (1) for the particular sheaf F and thus
proves (1) in general.
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6. The Existence Theorem

Throughout this section (R, z) is a complete discrete valuation ring.

Our purpose is this section is to prove that every coherent module on
(P#)?T is the weak completion of a unique coherent module on P;. We
shall begin with a lemma about cochain complexes over P}, where k is a
field. Let A=FkX,, + -, X,] be the homogeneous coordinate ring for P%,
and let #/ ={U,, + -+, U,} be the usual covering of P;. Suppose F is a
coherent 7»% module. Fix generators ¢ = {¢\”, - « -, 9"} for each I'(Uy,,....,, F)
over I'Uw, py). If s€C’(Z/, F), we define dg,s<d if and only if for each
(ig, » =+, i,) there exist coeflicients ¢ I'(Uw, 7»), a =1, - - -, t, such that
the (i)’th component s, s® =é}1a£f’gof,“ and (X, - - X,)% <A for all (i) and

all .
LemMmA 1. Retaining the above notation, suppose there exist (7 pn-modules Fy, 0<1i=<r,
and a long exact sequence:

Fr>F, > o> F,—>F—0,

where v<n and each F;= _cEilﬂ(ni,,-) with n;,; =0 and 7n) = Teni(n).
j=

Then there exists an integer N such that for all cocycles s€C" (7, F), s = ds’

with dg-,s’ <dg+,s + N.

SuBLEMMA 1. Suppose F'CF, and ¢ = (¢, + « +, ¢\P') are generators of I'(Uw, FY).
There exists a constant N’ such that for all seC’(7/, F)cC'(Z/, F), dg-,s<
dg-,s + N'. in particular, if the lemma holds for one set of generators of F it holds
Sor all sets of generators of F.

Proof. Forall (ig, » -, i,),a=1,+++,u,=1,---, ¢ choose ¢ :Bz:a”i'%“"ﬂ“'
Then choose N’ sufficiently large so that

(Xo+ » - X))V vile A
N’ satisfies the sublemma.
Proof of the lemma. The lemma holds for F = 7 (n’) for any »' =0 and all
r<n by (5.6). In fact, by that lemma, we may choose N=0 for the

‘natural’ basis of ¢7(n’). Consequently, we may choose a free basis T =
(TP, .., TPY of Uy, Fo) satisfying the lemma for » <#xn. By the sub-
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lemma, it suffices to prove the lemma when ¢ is the image of T in
C(w, F).
We will prove the lemma by induction on ». If » =0, let seC*(%/, F).
We may pull a back to SeC* %/, F) such that dg.,s =dg-rS. By
(5.6) and our choice of T, S =38S’ with dg-,S' =dg-rS. If s’ is the image
of S’ in C* (7, F), then 8s’ =s and dg-,s'<dg-,S’. Thus dg-,s’'<dg-,s,
and we may take N =0.

Suppose the lemma holds for » —1 <% —1. Let
0—>G—F, '—+ F—0
be exact. G satisfies the conditions of the lemma for » — 1.

SUBLEMMA 2. There exists a constant Ny and a set of generators’ ¢ = {¢P} for
the sheaf G such that if seC'(z/, G)cC (%, F), Then

dg-,s=dgrS+ N

Progof. Fix an r-tuple (ig, + «+, i,) =(i), 0<ip< «++ <i,<n. We will ex-
hibit a finite set of generators {¢¥} l<a<t¢ for the I'Z/w, ﬁpﬁ)-module
I'(Uw, G) such that, if seI'(Uw, G)cI'Uw, Fo);

13 %
s=2add = ﬁZ‘b,ngi’ ; and if
a=1 =1

(Xip® » + Xi)%0pA, 1=B=<u, then (X;,--+-X;)"*"a,€A 1<a<t. Let B=
I'Uw, Opy)s M=TI'Uaw, G), and F=TI(Uw, F)) M is a B-submodule of the
free B-module F. Choose a polynomial ring C = k[Y,, .-, Y] over k and
a surjection C— B of k-algebras such that for acB : (X, - -+ X; )%e A4, if and

only if ¢ may be pulled back to a polynomial a’eC of degree da’ <d. (For
example, one could take C to be the polynomial ring generated over k by
the symbols y;,.....;,, Where (jo, » + +, jq) is a d-tuple of integers such that
0=jo<-++=<j,<mn Thenmapuy;, .-, onto(X;-+ X; )X -X;)'€B.)

Let F’ be a free C-module on the symbols {79, ..., T¥}. The sur-
jection C— B induces a surjection F’ — F such that, if s€F, then s may be
pulled back to an element s’ = é‘,lbﬁT‘p“EF' such that dgr s€max (0bs), where
9b, is the degree of the polynomial b,eC.

Let M’ be the preimage of M in F’. By the Lemma in (14) there exists
a set of generators ¢’ = (¢, + » +,¢?) for the C-module M’ and an integer N,
such that, if seM'cF’:
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t “
S’ = Nlalgl = Y biTY
a=1 R=1
Then we may choose the elements a/eC to satisfy the relationship

a

max (dal) < mﬁax (0b5) + N,.

Let {¢%, -+ -, ¢’} be the image of ¢’ in M. The set of generators
{¢P},<as; for M and the integer N; satisfy the requirements of Sublemma 2:
if se McF, then

u
s= 20, T
BA:‘-:lﬁ 8

where for some integer d, (X;, + + X;)*bs= A. Thus s pulls back to an element
of F':

where 90} <<d, 1<p=<u.
Thus, as an element of M’, s’ may be written:

s’ =

M~

adl
1

Il

3

where da; <d 4+ N,. If we set a, = the image of ¢/ in B then—in M—
t .
s = 2a.9P
a=1

and (X;,» -+ X; ) V2q,€A, 1<a=<{. QED for the Sublemma

By Sublemma 1 and Sublemma 2, we may assume that we have chosen N,
sufficiently large to satisfy the relationships: if s€C'(Z/, G)cC'(%/, Fy), then

dgys<dgrs+ N,
dgrs=dg,s + N:
Let N, be the constant which, by our induction assumption, the Lemma
assigns to the sheaf G.
If seC™"(7/, F) is a cocycle, pull s back to a cochain S€C""(Z%, F,)
such that dg,S = dg,s. Note that 6SeC» (77, G)cC* " (Z4 F,) is a cocycle.

By the induction hypothesis then, 3S = 3S’, with S’eC*"(%/, G) and dg, S’
=dg,3S) -+ N.. Thus dg,S <dgs(6S) + N, <dgr(6S) + N+ No<<dgr S+ N,
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+ Ny <dg,s + N, + No. Therefore dgr S’ < dg,S" + N: < dg, s+ N; + 2N..
Consequently dg-(S —S’)<dg,s + N; + 2N.. Also S— S’ is a cocycle of
C* (%, F,). Consequently, there exists S”eC*» "%/, Fy) such that 65" =
S—S and dg-rS"<dg-(S—S')<dg-,s + N, + 2N,.
Set s” to be the image of S”in C*(Z/, F). Then s =4ds” and dg-,s"
<dg-rs"<dg-,s+ N, + 2N;. Let N= N, + 2N.. QED.

LemMa 2. If F is coherent on Prt = 22 and torsion free over R, and if F = ﬂ—i:
satisfies Lemma 1 for v = n — 1, then H(Z7, F) = 0.

Proof. Choose sets of generators ¢f, ¢i/ for I'(U;,, F) and I'(U,,;, F) over
I'Uy, &2°) and I'U;,;, 7.2°). IfseC’(z/, F), r =0 or 1, and s® = J1aPeP,
we shall say that dg-,s<d if and only if (X;- - - X,)%Pc A for alla(i) and
all a. An element s€C’(Z/, F) has finite degree if and only if each of
the coeflicients & is an element of R[X,, » -+, Xa X34, -+, X531 If
s;€C’(z/, F) i =0,1,++ is a sequence of elements, and if dg-,s; <c(i + 1)

for some constant ¢, then >Iz's® converges in C" (3.1).
1=0

We must establish two constants to be used in the proof. Let N, be
an integer such that if seC' (7, F) is a cocycle, then s = és’ with dg-,s’ = dg,s
+ N; (Lemma 1). Let N, be a constant such that if 561:0(?/, ?%)’ then
s = ns’ with dg-,s’ <dg-,s + N..

(To show that the constant N, exists, we use (3.4). Fix a pair (o, 1),
0<io<i,<n)

Let B=R[§—:, - ;,Lo ;,(1

such that B is a quotient of C and an element a€ B satisfies (X; X;)%cA if

] and let C be a polynomial ring over R

and only if @ pulls back to a polynomial a'eC with degree 8’ <d. (cf.
Sublemma 2 above). Let M= (U, F). Misa Bt = I'U,,.;,, & )-module
which is flat as on R-module.

We have already chosen a set of generators {pioi1}, .o, for M. Let H
be a free module over Ct with basis the symbols {7,},<.s;, and construct a
surjection of Ct modules H— M by sending T, to ¢‘o1.

Since Uj,,;, is a affine, the natural map

00?1

M— F(Uio,il» F/WZF)

is surjective (2.14 and 3.3). Suppose s&rI'(U;,,:, F/a?F) is such that dg,s = d.
Then
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(1) s pulls back to an element s’ of M such that dg,s” = d.
2 s'ezM

Therefore as an element of the Ct module M, s” may be expressed as
a linear combination

where a;eC?. In fact @] is a polynomial in C of degree da?<d, 1<a<t.
Using the notation of (3.4), s” pulls back to an element s””eFNL(d, 0).
However since s”ezM, by (3.4) there exists s””, a preimage of s”, which is
contained in #FNL(d + C, D) for some constants C and D which depend
only on M. Thus there exists an element w’F such that

1mrr

(3) ww’ = s"" mod =F

(4) w may be expressed as a linear combination

w’ b’T

nl_\ﬂ»

where elements b.eCt are polynomials of C of degree 6b;<d+ D+ C,
l<a<t. (w is, so to speak, the first term of s”” divided by =z).

If w is the image of w’ in M, then w may be expressed as a linear
combination over Bt:

t
w = Z bagp(alo’l‘)
a=1

where b, is the image of b, in Bf.
Thus b, is actually an element of B, and dgw<d + C+ D. Setting s’
equal to the image of w in I'(U;,,;,, F/z*F), see that

B5) ws’'=s

6) dg,s’<d+D+C.

Let M%) =D+ C, and let N, = max {N,"o*P}. N, is the required constant.)
i9,11)

Suppose s€C!(7Z/, F) is a cocycle. We may express s as an infinite sum:
s = Xx's;
t=0

with dg,s;<c(i +1) for some constant ¢. To prove the lemma, we will
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construct a coboundary for s.
Suppose we have constructed cochains ?;, i =0, and u;, i =0, satisfying
the following three conditions:

1) 5(’l§niti) = smod =" for all 4;

(2) dg’,,,ti éC(i + 1) for C= 2(N1 + Nz).

3 s— 5?‘;:::% = z"u, mod z**1, with dg-,u, <C'(h +1) for C' = N, + N,
and all 2=0.

Condition (3) is necessary for the inductive construction of the #;. Conditions
(1) and (2) guarantee that ﬁ}oti converges to a cochain with coboundary s.

Assume N; is so largg that ¢<N,. Set u#,=s,. Suppose we have
constructed #; for i <k and u; for i <h. The proof will be finished once
we show how to construct ¢, and #.;.

Because z"u, is a cocycle module z**' and F is torsion free, u, is a
cocycle modulo z. Thus there exists {,€C%(%/, F) bounding #, modulo =
such that dg-t,<dg-: u,+ Ny<C'(h+1)+ Ny<C(h+1). Thus ¢, satisfies
(2). ¢, also saitsfies (1), for

h .
ﬁhuh - nhﬁ(th) =85 atz ﬂ'lti =0 mod mwtl,
=0

To construct #s;, note that u, — ét,€xC (%, F). Take ur.,€C(Z%, F)
Such that TUps1 = Eth mod w2 and dg-,,uh“ = dg-¢(uh - Bth) + Nz éC’(h + 1) -+
N+ N, =C'(h + 2).

CoROLLARY 3. If F is coherent on P3t = 2° and torsion free over R, and if F
= F[aF satisfies Lemma 1 for r = n — 1, then the natural homomorphism:

ey (&, F)—> (%, F)

is surjective.

Proof. The endomorphism “multiplication by z” from F to itself is
injective since F' is torsion free over R. Thus we have an exact sequence
of coherent sheaves on 2”:

0— F F— FlzF—0.

By Lemma 2, H!(2”, F) =0, so the natural homomorphism (1) is surjective.

https://doi.org/10.1017/50027763000014641 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014641

WEAK FORMAL SCHEMES 35

If F is coherent sheaf of 72”-moule, 2°=Pjt, then we define the
“twistings” of F, F(m), as follows. If » is an integer and F = 2, then
F(m) = @pi(m)t. Ingeneral, F(m) = F @z 2 @2°(m). F(m) is a coherent
sheaf of Z7%°-module, and the functor F~— F(m) is an exact functor from
the category of coherent ¢72°-modules to itsell. If, for some integer ¢, z'F
=0, then of course F may be viewed as a coherent sheaf of modules over
the (ordinary projective) scheme P"(R/z'R) = 2°,. In this case the sheaves
F(m) are canonically isomorphism to the sheaves F®z72,&2°(m); ie. in
this special case our definition of F(m) corresponds to the usual definition
of the “‘twisted sheaves” F(m). Also if F = Gt for some coherent sheaf G
on P} = 22, then F(m) = G(m)t.

ProrposiTiON 4. Suppose F is a coherent sheaf of ¢7.27-modules, where 2°=P3t.
Then for all sufficient by lagre integers in

1 H{(&Z, F(m)) =0
(2)  The sheaf F is generated by its global sections: for each point x< 22, the

image of I'(Z°, F(m)) in the stalk F(m), is a set of generators for the (7.2°,,-module
F(m),.

Proof. 1If F is torsion free over F, then F(m) is torsion free over R for all

integers m. Moreover, for all sufficiently large integers m, the sheaves

nI;“(({nn/z)T = (F/zF)(m) satisfy Lemma 1 for » = n — 1. Thus, by Lemma 2 and

Corollary 3, H(%?, F(m)) =0 and the natural map I'(Z°, F(m))—»l“(%,

F(m) \ - . . . y
<F(m) ) is surjective for all sufficiently large integers m. But for m suf:

ficiently large, F(m)/zF(m) is generated by its global sections [3, III.2.2.2].
Therefore, by Nakayama’s lemma and (1.2), F(m) is generated by its global
sections.

If F is not torsion free, let T be the torsion submodule of F:i.e. T is
the sheaf associated to the presheaf U-~-— (R-torsion elements of I'(U, F)) for
each open subset U of 2°. T is a coherent sheaf of ¢72-modules, and for
some integer N z¥T = 0.

(Proof. The problem is local, so we may assume that 2° is affine; i.e. we
may assume that 27 = Spf B for some wcfg algebra B, and thus (3.3) F = M
for a finitely generated B-module M. The R-torsion submodule of M, M =

{meM: z¥m = 0 for some is N}, a B-submodule of M. Since B is noetherian
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and M is finitely generated, there exists an integer N such that z¥M’ = 0.
We claim also that 7= #7’, which will complete the proof of our assertion.
It is equivalent to prove that the sheaf @ = (M/M’)~ associated to the
quotient module M/M’ is torsion free over R. Assuming that B is the weak
completion of a polynomial ring, we have that for each principal open
subset U = 2°, of 22, I'U, 72°) = By, is torsion free over R. Therefore
U, Q)= M/M’' ®z B, is torsion free over R, and so, for each point z& 22,
the stalk of @ at =, @,, is torsion free over R, (it is the direct limit of torsion
free modules.) Therefore @ is torsion free over R.)

Let @ be the quotient sheaf F/T. @ is a coherent sheaf of #&72°-modules,
and @ is torsion free over R. Thus, for all sufficiently large integers m,
HY(22, T(m)) = H(Z, Q(m)) =0. Therefore, for all sufficiently large integers
m, H(Z”, F(m)) = 0, proving (1).

The subsheaf =F of F is also a sheaf of coherent /722-modules, so for
m sufficiently large, H(Z”, =F(m)) = 0. Also, for m sufficiently large, (F/zF)
is generated by its global sections.

Thus, for all sufficiently large integers m, the natural map I'(2”, F(m))
— (%, (F|zF)(m)) is surjective and F/zF(m) is generated by its global
sections. By Nakayama’s lemma and (1.2), for all such m, F(m) is generated
bylits global sections.

TuEOREM 5. The functor F— F' taking coherent modules on Pj into
coherent modules on Pjt is an equivalence of categories.

Proof. TFirst we will show that this functor is fully faithful, and then we
will prove that every Pf-module is the weak completion of a P-module.

If F and G are P-modules, we must show that Hom (F, G) = Hom (F't,
G1). Since Hom (F, G) = I'(P, 5/ (F, G)) and Hom (Ft, Gt) = (P, 5Z» (F1,
G1), by (6.4) it suffices to prove that 2%.» (F, G)! = 9% (Ft, G'). To esta-
blish this last equality, we need only check the affine analogue. Let A be
a finitely generated R-algebra, and M, N be two finite A-modules. We will
prove that Hom,(M, N)* = Hom,(M?', N1). Let F,— F,—~ M—0 be a finite
presentation of M by free A-modules. We have a commutative diagram with
exact rows.

0— Hom/ (M, N)t — Hom,(F,, N)t — Hom,(F,, N)t
al bl c
0— Hom,(Mt, Nt)— Hom,+(F}, Nt)—> Hom,:(F!, NY)

https://doi.org/10.1017/50027763000014641 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014641

WEAK FORMAL SCHEMES 37

The top row is exact because weak completion is an exact functor of finite
A-modules (4.7). We will show that b and ¢ are bijective. Then the snake
lemma proves a is bijective. If F is a free A-module, then Hom,(F, N)t
= Hom,(F, N) ®4 A! = Hom,'(Ft, Nt), which shows & and ¢ bijective.

It remains to prove only that every coherent module G over Pt is the
weak completion of a coherent P-module. First we will show that there exist
locally free P*-modules:

Fo = Elﬁ(ni)f, and F; = Elﬁ(mj)*
so that G may be finitely presented:

i
Fl“)Fo_’G”“)O.

Select an integer N’ so large for N=N’, G(N) is generated by its global
section (Proposition 4). Thus G is the image of a locally free sheaf F, as
required. Since 751 is coherent over itself, F, is coherent, the kernel of the
chosen projection F,— G is also coherent, and by the foregoing argument
this kernel is the image of a locally free sheaf F;, as required.

Let E,= > (n;) and E, = X}¢(m;). That is, F;=E!. Since the
natural map H:)m r(Ey, Ey) —>HomP]T(F1, F,) is bijective, there is a homomor-
phism e : E;— E, such that et = f. Let H =coker (¢). The natural map
E}— F, induces a bijection Ht — G.

COROLLARY 6. Suppose F is a coherent sheaf ¢7.27-modules, where 2= Pit. Then
Jor all sufficiently large integers m,

(a) HY 2, F(m)) =0, i>0
(b) F(m) is generated by its global sections.

Proof  Corollary 4, Theorem 5, and (5.4).
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