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Arithmetic of singular moduli and class polynomials

Scott Ahlgren and Ken Ono

Abstract

We investigate divisibility properties of the traces and Hecke traces of singular moduli.
In particular we prove that, if p is prime, these traces satisfy many congruences modulo
powers of p which are described in terms of the factorization of p in imaginary quadratic
fields. We also study generalizations of Lehner’s classical congruences j(z)|Up ≡ 744
(mod p) (where p � 11 and j(z) is the usual modular invariant), and we investigate
connections between class polynomials and supersingular polynomials in characteristic p.

1. Introduction and statement of results

Let

j(z) = q−1 + 744 + 196 884q + 21493 760q2 + · · · ∈ 1
q
Z[[q]]

denote the usual elliptic modular function on SL2(Z) (q := e2πiz throughout). The values of j(z)
at imaginary quadratic arguments in the upper half of the complex plane are known as singular
moduli; two important examples are the evaluations

j(i) = 1728 and j

(
1 +

√
−3

2

)
= 0. (1.1)

Singular moduli are algebraic integers which play many important roles in classical and modern
number theory. For example, they generate ring class field extensions of imaginary quadratic fields.
Also, the work of Deuring [Deu58, Deu46] highlights their deep connections with the theory of elliptic
curves with complex multiplication. In recent work, Borcherds [Bor95a, Bor95b] used them to define
an important class of automorphic forms possessing certain striking infinite product expansions.

There is a vast amount of literature on the computation of singular moduli which dates back
to the works of Kronecker; this includes the classical calculations of Berwick [Ber28] and Weber
[Web61]. In more recent work, Gross and Zagier [GZ85] computed exactly the prime factorization
of the absolute norm of suitable differences of singular moduli (further work in this direction has
been carried out by Dorman [Dor89, Dor88]).

In this paper we investigate the divisibility properties of the traces and Hecke traces of singular
moduli in terms of the factorization of primes in imaginary quadratic fields. We begin by fixing
notation. Throughout, d denotes a positive integer congruent to 0 or 3 modulo 4 (so that −d is the
discriminant of an order in an imaginary quadratic field). Denote by Qd the set of positive definite
integral binary quadratic forms

Q(x, y) = ax2 + bxy + cy2
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with discriminant −d = b2 − 4ac. For each Q let αQ be the unique complex number in the upper
half-plane which is a root of Q(x, 1); the singular modulus j(αQ) depends only on the equivalence
class of Q under the action of Γ := PSL2(Z).

We define the class polynomial of discriminant −d as

Hd(x) :=
∏

Q∈Qd/Γ

(x − j(αQ)) ∈ Z[x].

This is a mild departure from the customary definition since the product above is taken over all Q
with discriminant −d, not just the primitive ones (note also the mild departure from the definition
in [Zag02]). Nevertheless, if −d is a fundamental discriminant, then Hd(x) is the minimal polynomial
of each j(αQ) over Q.

Define ωQ ∈ {1, 2, 3} by

ωQ :=


2 if Q ∼Γ [a, 0, a],
3 if Q ∼Γ [a, a, a],
1 otherwise.

Let J(z) be the Hauptmodul

J(z) := j(z) − 744 = q−1 + 196 884q + 21493 760q2 + · · · .

Then, following Zagier [Zag02], define the trace of the singular moduli of discriminant −d by

t(d) :=
∑

Q∈Qd/Γ

J(αQ)
ωQ

=
∑

Q∈Qd/Γ

j(αQ) − 744
ωQ

.

We also consider more general Hecke traces; these are defined in terms of a natural sequence of
modular functions. Let J0(z) := 1, and for positive integers m define Jm(z) by

Jm(z) = J(z)|T0(m), (1.2)

where T0(m) is the normalized weight zero Hecke operator of index m. Each Jm(z) is a monic
polynomial in j(z) of degree m with integer coefficients; the first few are

J0(z) = 1,
J1(z) = j(z) − 744 = J(z),

J2(z) = j(z)2 − 1488j(z) + 159 768 = q−2 + 42987 520q + · · · .

Then, for each positive integer m, we define the mth Hecke trace of the singular moduli of discrim-
inant −d as the integer

tm(d) :=
∑

Q∈Qd/Γ

Jm(αQ)
ωQ

.

Zagier [Zag02] showed that these traces tm(d) are determined as the coefficients of a certain sequence
of meromorphic modular forms on Γ0(4) (see § 3 for details). Note that t1(d) = t(d); for convenience,
we define tm(n) := 0 for every positive integer n ≡ 1, 2 (mod 4).

Remark. For fundamental discriminants −d, let h(−d) denote the class number of primitive positive
definite binary quadratic forms of discriminant −d. Then the values tm(d) for 0 � m � h(−d)
determine the respective power sums in the j(αQ). Therefore, these Hecke traces completely deter-
mine the polynomial Hd(x).

Our first result shows that these traces satisfy many striking congruences based on the factor-
ization of primes in certain imaginary quadratic fields.
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Theorem 1.1. Suppose that p is an odd prime and that s and m are positive integers with p � m.
Then the following are true.

(1) If n is a positive integer for which p splits in Q(
√
−n), then

tm(p2n) ≡ 0 (mod p).

(2) A positive proportion of the primes � have the property that

tm(�3n) ≡ 0 (mod ps)

for every positive integer n coprime to � such that p is inert or ramified in Q(
√
−n�).

(3) A positive proportion of the primes � have the property that

tm(�2n) ≡ tm(n)
(

2 −
(
−n

�

))
(mod ps)

for every positive integer n with �2 � n such that p is inert or ramified in Q(
√
−n).

Remarks.
(1) It would be interesting to find a natural description of the primes � which arise in the second

and third parts of Theorem 1.1.
(2) If −d is a fundamental discriminant and � is a prime, then the class numbers h(−d) and h(−�2d)

are related by the formula

h(−�2d) = h(−d) ·
(

� −
(
−d

�

))
.

Note the resemblance between this formula and the congruences in the third part of
Theorem 1.1.

(3) The proof of the second (respectively, third) part of Theorem 1.1 shows that the primes � can
be chosen from the arithmetic progression −1 (mod 4ps) (respectively, 1 (mod 4ps)).

Here we give some examples of the phenomena described in Theorem 1.1.

Example 1.2. For each p � 11, the maximal congruence modulus in the first part of Theorem 1.1
exceeds p; these moduli are 729, 125, 49, and 121. If p = 7, for example, then for every non-negative
integer n we have

t1(343n + 147) ≡ t1(343n + 245) ≡ t1(343n + 294) ≡ 0 (mod 49).

Example 1.3. As an example of the phenomenon described in the second part of Theorem 1.1, we
have

t1(133n) ≡ 0 (mod 7)
for every positive integer n coprime to 13 with

(−13n
7

)
�= 1.

Example 1.4. As an example of the third part of Theorem 1.1, we have, for each positive integer n
such that (−n

7 ) �= 1 and 292 � n, the congruence

t1(292n) ≡ t1(n)
(

2 −
(
−n

29

))
(mod 7).

In the second part of the paper we turn to a study of the arithmetic properties of the class
polynomial Hd(x). If p is prime, then let Fp[x] denote the polynomial ring over the finite field with
p elements. For fundamental discriminants −d, it is natural to study the factorizations of Hd(x)
over Fp[x]. This question is of particular interest for those primes p which are inert or ramified in
Q(

√
−d); for such p a theorem of Deuring (see, for example, Theorem 12 of [Lan87, § 13.4]) implies
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that each root of Hd(x) over Fp[x] is the j-invariant of a supersingular elliptic curve in characteristic
p (this fact is an essential ingredient in Elkies’ proof [Elk87] that every elliptic curve over Q has
infinitely many supersingular primes).

In view of this, it is natural to seek a general description, for arbitrary primes p, of the set of −d
for which the distinct roots of Hd(x) in Fp form the complete set of supersingular j-invariants in
characteristic p. Using a result of Koike (which is related to work of Dwork and Deligne on the p-adic
rigidity of j(z)) we show in Theorem 1.5 below that this question is closely related to the problem of
classifying certain congruences for the Fourier coefficients of nearly holomorphic modular functions.

We recall that a modular form on a congruence subgroup Γ′ is called nearly holomorphic if its
poles (if there are any) are supported at the cusps of Γ′. Every non-zero nearly holomorphic modular
function f(z) on SL2(Z) is a polynomial in j(z) and has a Fourier expansion of the form

f(z) =
∑
n�n0

a(n)qn,

where n0 � 0 and a(n0) �= 0. We define the operator Up by

f(z)|Up :=
∞∑

n=−∞
a(pn)qn.

For nearly holomorphic modular forms with integral coefficients, we consider congruences of the
form

f(z)|Up ≡ a(0) (mod p). (1.3)

Perhaps the most famous congruences of the form (1.3) are due to Lehner [Leh49], who proved that
if p � 11 is prime, then

j(z)|Up ≡ 744 (mod p). (1.4)

To state our first result in this context, it is convenient to make the following definition. If p � 11
is prime, then let Sp(x) := 1, and for p > 11 define Sp(x) ∈ Fp[x] by

Sp(x) :=
∏

E/Fp supersingular
j(E)�∈{0,1728}

(x − j(E)), (1.5)

where the product is taken over Fp-isomorphism classes of supersingular elliptic curves E. It is well
known that the degree of Sp(x) is �p/12�. With this notation we have the following general result.

Theorem 1.5. Let F (x) ∈ Z[x] be a polynomial of degree m, and let p > m be a prime for which
F (x) �≡ 0 (mod p). If Sp(x)2 divides F (x) in Fp[x], then

F (j(z))|Up ≡ a(0) (mod p),

where a(0) is the constant term in the Fourier expansion of F (j(z)).

Remarks.

(1) The converse is false in view of the fact that if the conclusion of the theorem holds for F (x),
then it holds for F (x) + α for every α ∈ Fp.

(2) Since Sp(x) = 1 for p � 11, Lehner’s congruences (1.4) follow from Theorem 1.5.

For fundamental discriminants −d, define integers cd(n) by

Hd(j(z)) =
∞∑

n=−h(−d)

cd(n)qn.
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After Theorem 1.5, it would be desirable to find a characterization of those primes p for which

Hd(j(z))|Up ≡ cd(0) (mod p). (1.6)

Computations reveal many uniform sets of examples. For example, we have the following corollary.

Corollary 1.6. If −239 < −d < 0 is a fundamental discriminant and h(−d) < p < 6h(−d) − 1 is
a prime which is inert or ramified in Q(

√
−d), then Sp(x)2 divides Hd(x) in Fp[x] and

Hd(j(z))|Up ≡ cd(0) (mod p).

The uniformity of the range of primes in Corollary 1.6 suggests that this phenomenon might
hold in generality. However, this is not true; when −d = −239, we have

H239(j(z))|U79 ≡ 44 + 2q + 62q2 + · · · (mod 79),

although 79 is inert in Q(
√
−239) and h(−239) = 15. In this case S79(x) divides H239(x) in F79[x],

but the supersingular j-invariant j = −15 is a root of multiplicity only 1.
Another natural question to ask is whether or not, for those primes p > h(−d) which are inert

in Q(
√
−d), the condition that Sp(x)2 divides Hd(x) in Fp[x] is implied by a congruence of the

form (1.6) (recall the first remark following Theorem 1.5). Computations reveal that the answer is
affirmative for all fundamental discriminants −d with −700 < −d < 0. However, further calculation
reveals sporadic counterexamples (there are only three counterexamples with d < 1000; these are the
cases when (−d, p) = (−707, 47), (−731, 79), and (−767, 101)). Nevertheless, this condition appears
to be necessary for the vast majority of −d; for these −d it is clear by comparing the degrees of
Sp(x) and Hd(x) that Hd(j(z)) can satisfy the congruence (1.6) only for those inert primes p with

p � 6h(−d) + rp, where rp ∈ {1, 5, 7, 11} has rp ≡ p (mod 12). (1.7)

In view of (1.7), it is natural to seek an unconditional upper bound for those primes p which admit
a congruence of the form (1.6). Here, as a special case of a result for nearly holomorphic modular
forms on SL2(Z), we show, for all −d, that (1.6) can only hold for those primes

p � 12h(−d) + 1.

To state our general result, some notation is required. If k � 4 is an even integer, then let Mk

denote the space of weight k holomorphic modular forms on SL2(Z). Furthermore, if p is prime, then
let Mk,p denote the set of reductions modulo p of those forms f(z) ∈ Mk with integral coefficients.
The filtration of a power series f(z) whose reduction belongs to Mk′,p for some k′ is defined by

ωp(f) := inf{k : f(z) (mod p) ∈ Mk,p}.
Let ∆(z) := q

∏∞
n=1(1−qn)24 be the unique normalized cusp form of weight 12 on SL2(Z). We define

the usual theta-operator on power series by

Θ
( ∑

n�n0

a(n)qn

)
=

∑
n�n0

na(n)qn. (1.8)

Then we have the following theorem.

Theorem 1.7. Suppose that f(z) =
∑∞

n=m a(n)qn is a nearly holomorphic modular form of integral
weight k on SL2(Z) with integral coefficients. Furthermore, suppose that p � max(5, k − 12m) is a
prime for which p � a(m) and p � m. If there is a non-negative integer s for which ps + m > 0 and

ωp(Θfp,s) ≡ 1, 2 (mod p),

where

fp,s(z) := f(z) · ∆(z)p
s
,

then f(z)|Up �≡ 0 (mod p).
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As a corollary, we obtain the following.

Corollary 1.8. Suppose that F (x) ∈ Z[x] is a polynomial of degree D � 1. If p > 12D + 1 is a
prime which does not divide the leading coefficient of F (x), then

F (j(z))|Up �≡ 0 (mod p).

In particular, if −d is a fundamental discriminant and p is a prime for which

Hd(j(z))|Up ≡ cd(0) (mod p),

then p � 12h(−d) + 1.

We remark that, since j(z)|U13 �≡ 744 (mod 13), Corollary 1.8 implies that Lehner’s list of
congruences of the form (1.4) is complete. This recovers an observation of Serre (see (6.16) of [Ser76]).

In § 2 we record some preliminaries on modular forms. In § 3 we recall recent work of Zagier,
and in § 4 we use the theory of integral and half-integral weight modular forms to prove Theorem 1.1.
In § 5 we prove Theorem 1.5 and Corollary 1.6, and in § 6 we prove Theorem 1.7 and Corollary 1.8.

2. Preliminaries on modular forms

We begin by collecting some facts which we require on half-integral weight modular forms. For details
on many of these facts one may consult, for example, [Kob84] or [Koh82]. If f(z) is a function of
the upper half-plane, λ ∈ 1

2Z, and
(

a b
c d

)
∈ GL+

2 (R), then we define the usual slash operator by

f(z)|λ
(

a b
c d

)
:= (ad − bc)λ/2(cz + d)−λf

(
az + b

cz + d

)
(2.1)

(we always take the branch of the square root having non-negative real part). If γ =
(

a b
c d

)
∈ Γ0(4),

then define

j(γ, z) :=
( c

d

)
ε−1
d

√
cz + d, (2.2)

where

εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ −1 (mod 4).

(2.3)

If k is an integer and N is an odd positive integer, then we denote by Mk+1/2(Γ0(4N)) the infinite-
dimensional vector space of nearly holomorphic modular forms of weight k + 1/2 on Γ0(4N); these
are functions f(z) which are holomorphic on the upper half-plane, meromorphic at the cusps, and
which satisfy

f(γz) = j(γ, z)2k+1f(z) for all γ ∈ Γ0(4N). (2.4)

As usual, we denote by Mk+1/2(Γ0(4N)) (respectively, Sk+1/2(Γ0(4N))) the finite-dimensional sub-
space of Mk+1/2(Γ0(4N)) consisting of those forms which are holomorphic (respectively, vanish)
at the cusps. Finally, denote by M+

k+1/2(Γ0(4N)) and M+
k+1/2(Γ0(4N)) the ‘Kohnen plus-spaces’

of holomorphic and nearly holomorphic forms which transform according to (2.4) and which,
in addition, have a Fourier expansion of the form∑

(−1)kn≡0,1 (mod 4)

a(n)qn. (2.5)

We next recall some facts on the expansions of modular forms at the cusps of a congruence
subgroup; many of these can be found, for example, in [Mar96]. The cusps are represented by
rational numbers a/c together with the point at infinity. We say that the cusps s1 and s2 are
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equivalent under the congruence subgroup Γ′ if there exists γ′ ∈ Γ′ such that s1 = γ′s2; by a cusp
of Γ′ we typically mean an equivalence class of cusps under this relation.

If N is a positive integer, then a complete set of representatives for the cusps of Γ0(N) is{ac

c
∈ Q : c | N, 1 � ac � N, gcd(ac, N) = 1, ac distinct (mod gcd(c,N/c))

}
. (2.6)

If γ1∞ is a cusp of Γ0(4N) and g ∈ Mk+1/2(Γ0(4N)) is not identically zero, then at the cusp γ1∞
we have an expansion of the form

g|k+1/2γ1 = c · qα + · · · for some α ∈ Q and c �= 0. (2.7)

Moreover, if γ1∞ and γ2∞ are equivalent under Γ0(4N), then the first term in the expansion of
g|k+1/2γ2 differs from (2.7) only by multiplication by some root of unity.

We now consider the cuspidal behavior of products and quotients of Dedekind’s eta-function

η(z) := q1/24
∞∏

n=1

(1 − qn)

(although only the integral weight case is discussed in [Mar96], similar facts hold in the half-integral
weight case). Suppose that f(z) is the eta-quotient f(z) :=

∏
δ|N ηrδ(δz), and set λ := 1

2

∑
δ|N rδ ∈

1
2Z. Then for γ =

(
a b
c d

)
∈ SL2(Z), we have an expansion of the form

f(z)|λγ = ξ · qτ(c)

(
1 +

∞∑
n=1

α(n)qn/β

)
, (2.8)

where ξ �= 0 is an algebraic number, the coefficients α(n) are algebraic, β ∈ N, and

τ(c) :=
1
24

∑
δ|N

(δ, c)2

δ
rδ. (2.9)

Finally, we remark that to explicitly compute the expansion (2.8), we can use the fact that, for each
γ ∈ SL2(Z), we have the transformation formula

η(z)|1/2γ = εγ · η(z), (2.10)

where εγ is a root of unity. Also, for any δ ∈ N and γ ∈ SL2(Z), there exist a matrix γ′ ∈ SL2(Z) and a
matrix

(
A B
0 D

)
, where B is an integer and A and D are positive integers, such that

(
δ 0
0 1

)
γ = γ′( A B

0 D

)
.

By using this fact together with (2.10), one can compute, up to a root of unity, the value of ξ
appearing in (2.8).

We briefly recall some properties of the Hecke operators on the spaces M+
k+1/2(Γ0(4N))

(these definitions are given in [Koh82] for holomorphic forms, but the situation is the same if we
allow poles at the cusps). Suppose that � is a prime with � � N (note that this does not
necessarily exclude � = 2). Then the action of the Hecke operator Tk+1/2,4N (�2) on a modular
form

f(z) :=
∑

(−1)kn≡0,1 (mod 4)

a(n)qn ∈ M+
k+1/2(Γ0(4N)) (2.11)

is given by

f(z)|Tk+1/2,4N (�2) :=
∑

(−1)kn≡0,1 (mod 4)

(
a(�2n) +

(
(−1)kn

�

)
�k−1a(n) + �2k−1a

(
n

�2

))
qn. (2.12)

Then, for each positive m coprime to N , the operator Tk+1/2,4N (m2) on M+
k+1/2(Γ0(4N)) can be

expressed as a polynomial in the operator Tk+1/2,4N (�2) via the usual multiplicative relations.
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If f(z) is as in (2.11) and χ is a quadratic Dirichlet character with conductor α, then we have
the quadratic twist

f ⊗ χ :=
∑

(−1)kn≡0,1 (mod 4)

χ(n)a(n)qn ∈ M+
k+1/2(Γ0(4Nα2)). (2.13)

Suppose now that f(z) is as in (2.11) and that χ is a quadratic character with conductor α, where m
is coprime to Nα. Then, combining (2.12) with (2.13) and the fact that the operators Tk+1/2,4Nα2(�2)
with � � Nα generate the Hecke algebra on M+

k+1/2(Γ0(4Nα2)), we see that

(f ⊗ χ)|Tk+1/2,4Nα2(m2) = (f |Tk+1/2,4N (m2)) ⊗ χ. (2.14)

3. Zagier’s formulas

To prove Theorem 1.1, we make use of recent work of Zagier [Zag02] on the traces of singular moduli.
We begin by recalling Zagier’s results on two particular sequences of nearly holomorphic modular
forms. Let θ1(z) and E4(z) be defined by

E4(z) := 1 + 240
∞∑

n=1

n3qn

1 − qn
,

θ1(z) :=
η2(z)
η(2z)

=
∞∑

n=−∞
(−1)nqn2

= 1 − 2q + 2q4 − 2q9 + · · · .

Then let g1(z) ∈ M+
3/2(Γ0(4)) be the nearly holomorphic modular form defined by

g1(z) :=
θ1(z)E4(4z)

η6(4z)
= q−1 − 2 +

∑
0<d≡0,3 (mod 4)

B(1, d)qd = q−1 − 2 + 248q3 − 492q4 + · · · . (3.1)

More generally, if D ≡ 0, 1 (mod 4) is a positive integer, then let gD(z) denote the unique element
of M+

3/2(Γ0(4)) whose Fourier expansion has the form

gD(z) = q−D + B(D, 0) +
∑

0<d≡0,3 (mod 4)

B(D, d)qd.

(The existence and uniqueness of these forms is discussed in § 4 of [Zag02]).
Similarly, for a non-negative integer d ≡ 0, 3 (mod 4), let fd(z) be the unique form in M+

1/2

(Γ0(4)) whose expansion has the form

fd(z) = q−d +
∑

0<D≡0,1 (mod 4)

A(D, d)qD.

Existence and uniqueness follow from Lemma 14.2 of [Bor95a]; see also § 4 of [Zag02]. All of the
coefficients of each fd(z) and gD(z) are integers.

For each m � 1 and each pair of integers D ≡ 0, 1 (mod 4) and 0 � d ≡ 0, 3 (mod 4), define
integers Am(D, d) and Bm(D, d) in the following manner:

Am(D, d) := the coefficient of qD in fd(z)|T1/2,4(m
2),

Bm(D, d) := the coefficient of qd in gD(z)|T3/2,4(m
2).

For D = 1 and m � 1 (see (19) of [Zag02]) we have

Am(1, d) =
∑
n|m

nA(n2, d). (3.2)
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Using this notation, Zagier [Zag02, Theorem 5] proved the following result.

Theorem 3.1. The following are true.

(1) If m � 1 and 0 < d ≡ 0, 3 (mod 4), then

tm(d) = −Bm(1, d).

(2) If m � 1, 0 < D ≡ 0, 1 (mod 4), and 0 � d ≡ 0, 3 (mod 4), then

Am(D, d) = −Bm(D, d).

Example. As an illustration of the first part of Theorem 3.1, we compare the coefficients on q3 and
q4 in (3.1) with the following values (which are computed using (1.1)):

t1(3) =
j((1 +

√
−3)/2) − 744

3
= −248,

t1(4) =
j(i) − 744

2
= 492.

4. Proof of Theorem 1.1

We now turn to the proof of Theorem 1.1. The proof of the first part follows easily from Zagier’s
work.

Proof of Theorem 1.1(1). Since p � m, a calculation using the definition (2.12) and the first part of
Theorem 3.1 shows that it suffices to prove Theorem 1.1(1) in the case where m = 1. Suppose that
n is a positive integer for which (−n

p ) = 1. By (2.12) and Theorem 3.1, we have

t1(p2n) = −B1(1, p2n)

= −Bp(1, n) +
(
−n

p

)
B1(1, n) + pB1

(
1,

n

p

2
)

≡ −Bp(1, n) + B1(1, n) (mod p).

Then, using the second part of Theorem 3.1 and (3.2), we obtain

t1(p2n) ≡ Ap(1, n) + B1(1, n)

≡ A1(1, n) + pA1(p2, n) + B1(1, n)
≡ A1(1, n) + B1(1, n)
≡ −B1(1, n) + B1(1, n) ≡ 0 (mod p).

This establishes the first claim in Theorem 1.1.

The proofs of the second and third parts of Theorem 1.1 are more involved. To begin, for each
odd prime p we define

h1,p := g1 −
(
−1
p

)
g1 ⊗

(
•
p

)
∈ M+

3/2(Γ0(4p2)). (4.1)

Using (3.1) and Theorem 3.1, we find that

h1,p(z) = −2 −
∑

0<d≡0,3 (mod 4)
p|d

t1(d)qd − 2
∑

0<d≡0,3 (mod 4)

(−d
p

)=−1

t1(d)qd. (4.2)

We next define, for each positive integer m with p � m, the modular form

hm,p(z) := h1,p|T3/2,4p2(m2) ∈ M+
3/2

(Γ0(4p2)). (4.3)
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Using (2.14), (4.2), (4.3) and Theorem 3.1, we see that for some integer cm,p we have

hm,p(z) = g1|T3/2,4(m
2) −

(
−1
p

)
· (g1|T3/2,4(m

2)) ⊗
(
•
p

)
= cm,p −

∑
0<d≡0,3 (mod 4)

p|d

tm(d)qd − 2
∑

0<d≡0,3 (mod 4)

(−d
p

)=−1

tm(d)qd. (4.4)

We require the following crucial result.

Theorem 4.1. Suppose that p � 3 is prime, and that s and m are positive integers with p � m.
Then there exists an integer β � s−1 and a holomorphic modular form fm,p,s(z) ∈ M+

3/2+(pβ(p2−1))/2

(Γ0(4p2)) with the property that

fm,p,s(z) ≡ hm,p(z) (mod ps).

To prove Theorem 4.1, we employ the following lemma.

Lemma 4.2. The form h1,p(z) defined in (4.1) is a nearly holomorphic modular form on Γ0(4p2)
which is holomorphic on the upper half-plane and at the cusps 1/p2 and 1/4p2, and which vanishes
at the cusp 1/2p2.

Proof. Using (4.1) and (2.13), we see that h1,p(z) is a modular form on Γ0(4p2). From (3.1) and
(4.2) it is clear that h1,p is holomorphic on the upper half-plane and at 1/4p2 (which is equivalent
to ∞ under Γ0(4p2)).

Therefore, we only have to prove that h1,p(z) is holomorphic at 1/p2 and vanishes at 1/2p2;
to this end we consider the series

h1,p(z)|3/2

(
1 0
p2 1

)
and h1,p(z)|3/2

(
1 0

2p2 1

)
.

We begin by noting that

g1(z) =
η2(z)

η(2z)η6(4z)
· E4(4z).

Using this description together with (2.8), (2.9) (and the discussion thereafter) and the fact that
E4(z) is a modular form on SL2(Z), we conclude (after a lengthy computation) that there exist
roots of unity ζ1 and ζ2 such that

g1(z)|3/2

(
1 0
p2 1

)
=

ζ1

23/2
+ O(q1/4), (4.5)

g1(z)|3/2

(
1 0

2p2 1

)
=

ζ2

2
· q−1/4 + O(q3/4). (4.6)

Let g :=
∑p−1

v=1(
v
p)e2πiv/p be the usual Gauss sum. Then we have

g1 ⊗
(
•
p

)
(z) =

g

p

p−1∑
v=1

(
v

p

)
g1(z)|3/2

(
1 −v/p
0 1

)
. (4.7)

The expansion of g1 ⊗ (•p) at 1/2p2 is given by(
g1 ⊗

(
•
p

))∣∣∣∣
3/2

(
1 0

2p2 1

)
. (4.8)

We now make the crucial observation that if, for each v appearing in (4.7), we choose an integer kv

satisfying
4kv ≡ 3v (mod p), (4.9)
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then we have (
1 −v/p
0 1

)(
1 0

2p2 1

)
= γv

(
1 0

2p2 1

)(
1 −4v/p + 4kv/p
0 1

)
,

where

γv =
(
−8pv + 8pkv − 16p2vkv + 16p2v2 + 1 1/p(3v − 4kv − 8pv2 + 8pvkv)

−16p3v + 16p3kv 8pv − 8pkv + 1

)
∈ Γ0(4).

Using (2.1)–(2.4), we see that

(g1|3/2γv)(z) =
(
−16p3v + 16p3kv

8pv − 8pkv + 1

)
g1(z) =

(
−pv + pkv

8(pv − pkv) + 1

)
g1(z) = g1(z).

Using these facts, together with (4.6), (4.7) and (4.8), we see that the only term in (4.8) with a
non-positive exponent on q is the term

g

p

ζ2

2
q−1/4

p−1∑
v=1

(
v

p

)
e2πi(v−kv)/p. (4.10)

A computation shows that if N is defined by 4N ≡ 1 (mod p), then the expression in (4.10) is equal
to

g

p

ζ2

2
q−1/4

p−1∑
v=1

(
v

p

)
e(2πi/p)Nv =

g2

p

ζ2

2
q−1/4 =

(
−1
p

)
ζ2

2
q−1/4. (4.11)

Using (4.11) together with (4.1) and (4.6) we conclude that

h1,p(z)|3/2

(
1 0

2p2 1

)
= O(q3/4).

The situation is similar at the cusp 1/p2; here we use the fact that if kv is defined by (4.9), then
we have (

1 −v/p
0 1

)(
1 0
p2 1

)
= γ′

v

(
1 0
p2 1

)(
1 −4v/p + 4kv/p
0 1

)
,

where, as in the previous case, γ′
v ∈ Γ0(4) has (g1|3/2γ

′
v)(z) = g(z). It follows from this together

with (4.5) that the first term in the expansion of

g1 ⊗
(
•
p

)
(z)|3/2

(
1 0
p2 1

)
is

ζ1

23/2
· g

p

p−1∑
v=1

(
v

p

)
= 0.

We conclude from this together with (4.1) that h1,p(z) is indeed holomorphic at 1/p2. This finishes
the proof of Lemma 4.2.

Proof of Theorem 4.1. Suppose first that the result has been proved in the case when m = 1, and
let f1,p,s be the form given by the theorem in this case. Using (2.12) together with the facts that
φ(ps) | pβ(p2 − 1)/2 and that the operators of prime index generate the Hecke algebra, we conclude,
for each m coprime to p, that

f1,p,s|T3/2+pβ(p2−1)/2,4p2(m2) ≡ h1,p|T3/2,4p2(m2) (mod ps).

Since the form on the left is again an element of M+
3/2+(pβ(p2−1))/2

(Γ0(4p2)), we conclude that it
suffices to prove the theorem in the case when m = 1.
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To accomplish this task, we first consider the modular form

Fp(z) :=


ηp2

(4z)
η(4p2z)

= 1 − p2q4 + O(q8) if p � 5,

η27(4z)
η3(36z)

= 1 − 27q4 + · · · if p = 3.

(4.12)

By a well-known criterion (see, for example, [GH93]) together with (2.8) and (2.9), it follows, for
each prime p � 3, that Fp(z) is a holomorphic form of integral weight on Γ0(4p2) which vanishes
at each cusp a/c ∈ Q for which p2 � c (when p � 5 the weight is (p2 − 1)/2, and when p = 3 the
weight is 12). Moreover, it is clear from the definition of the eta-function that Fp(z) ≡ 1 (mod p)
for each p.

Suppose that we are in the case when p � 5. By the preceding discussion, we see that if β � s−1
is sufficiently large, then the modular form

f1,p,s := h1,p · F pβ

p ≡ h1,p (mod ps)

is a form of weight 3/2 + (pβ(p2 − 1))/2 on Γ0(4p2) which vanishes at all cusps a/c for which p2 � c.
Using (2.6), we see that the equivalence classes of cusps of Γ0(4p2) for which p2 | c are represented
by 1/p2, 1/2p2, and 1/4p2, and after Lemma 4.2 we know that h1,p is holomorphic on the upper
half-plane and at these cusps. This gives Theorem 4.1.

In the case when p = 3, the situation is essentially the same; the only difference is that the form
f1,p,s defined above has weight 3/2 + (pβ+1(p2 − 1))/2. Therefore, Theorem 4.1 follows exactly as
before.

We proceed with the proof of Theorem 1.1. Fix p, s, and m with p � m, and let

fm,p,s(z) :=
∞∑

n=0

am,p,s(n)qn

≡ cm,p −
∑

0<d≡0,3 (mod 4)
p|d

tm(d)qd − 2
∑

0<d≡0,3 (mod 4)(
−d
p

)
=−1

tm(d)qd (mod ps) (4.13)

be the form given by Theorem 4.1. Theorem 1.1 is an easy consequence of the following result.

Lemma 4.3. Let fm,p,s(z) ∈ M+
3/2+(pβ(p2−1))/2

(Γ0(4p2)) be the form given in (4.13). Then we have

the following.

(a) A positive proportion of the primes � ≡ −1 (mod 4ps) have the property that

fm,p,s(z)|T3/2+(pβ (p2−1))/2,4p2(�2) ≡ 0 (mod ps).

(b) A positive proportion of the primes � ≡ 1 (mod 4ps) have the property that

fm,p,s(z)|T3/2+(pβ (p2−1))/2,4p2(�2) ≡ 2fm,p,s(z) (mod ps).

Deduction of Theorem 1.1(2) and (3) from Lemma 4.3. Suppose for the moment that the lemma
has been proved, and let � be a prime as in the first part of the lemma. Then, using (2.12), we
obtain

fm,p,s|T3/2+(pβ (p2−1))/2,4p2(�2) ≡
∞∑

n=0

(
am,p,s(�2n) +

(
−n

�

)
am,p,s(n) + �am,p,s

( n

�2

))
qn

≡ 0 (mod ps).
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Replacing n by n� in the last equation, we conclude that

am,p,s(�3n) ≡ 0 (mod ps) for all n with � � n.

By (4.13) it follows that tm(�3n) ≡ 0 (mod ps) for all n coprime to � such that p is inert or ramified
in Q(

√
−n�). This establishes the second assertion in Theorem 1.1.

We turn to the third assertion. If � is a prime as in the second part of Lemma 4.3, then for all
n we have

am,p,s(�2n) +
((

−n

�

)
− 2

)
am,p,s(n) + �am,p,s

(
n

�2

)
≡ 0 (mod ps).

Therefore, if �2 � n and p is inert or ramified in Q(
√
−n), we conclude from (4.13) that

tm(�2n) ≡
(

2 −
(
−n

�

))
tm(n) (mod ps).

This gives the statement in the third part of Theorem 1.1.

Lemma 4.3 is a consequence of the next result, which was proved by Serre [Ser76, § 6.4] using
the Chebotarev Density Theorem and modular Galois representations.

Lemma 4.4. Suppose that λ and N are positive integers. Suppose that K is an algebraic number
field with ring of integers OK , and that M is a positive integer. Then let Mλ(Γ0(N))M denote the
set of reductions modulo M of those forms in Mλ(Γ0(N)) with coefficients in OK . If � is prime then
let Tλ,N (�) be the usual integral weight Hecke operator of index � on Mλ(Γ0(N)). Then we have the
following.

(1) A positive proportion of the primes � ≡ −1 (mod NM) have the property that for all f ∈
Mλ(Γ0(N))M we have

f |Tλ,N(�) ≡ 0 (mod M).

(2) A positive proportion of the primes � ≡ 1 (mod NM) have the property that for all f ∈
Mλ(Γ0(N))M we have

f |Tλ,N(�) ≡ 2f (mod M).

Proof of Lemma 4.3. To begin, recall that for all m coprime to p we may take

fm,p,s = f1,p,s|T3/2+(pβ(p2−1))/2(m
2).

By the commutativity of the Hecke operators, we see that it suffices to prove the lemma in the case
when m = 1.

We begin by recalling some facts about the Shimura correspondence [Shi73]. In particular,
if g(z) :=

∑∞
n=1 b(n)qn ∈ Sk+1/2(Γ0(4N)) with k � 1, then for every positive squarefree integer t,

we have the Shimura lift St(g)(z) :=
∑∞

n=1 Bt(n)qn, where the coefficients Bt(n) are given by
∞∑

n=1

Bt(n)n−s = L(s − k + 1, χtχ
k
−1) ·

∞∑
n=1

b(tn2)n−s (4.14)

(here χ−1 and χt denote the Kronecker characters for the fields Q(i) and Q(
√

t), respectively).
For each such t we have

St(g)(z) ∈ M2k(Γ0(4N)).

Moreover, if k � 2, then St(g)(z) ∈ S2k(Γ0(4N)). This correspondence commutes with the
action of the Hecke operators T (�2) and T (�) on the relevant half-integral and integral weight
spaces.
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For simplicity, we define

f(z) := f1,p,s(z) = h1,p(z) · F pβ

p (z) ∈ M+
3/2+(pβ (p2−1))/2

(Γ0(4p2)) (4.15)

with some sufficiently large β � s − 1.

Unfortunately, we cannot apply the Shimura correspondence directly to f(z), since f(z) is not
a cusp form. Overcoming this obstacle requires some additional work. To begin, note that, using
Lemma 4.2 and the properties of the form Fp(z), we may assume that f(z) vanishes at each cusp
a/c which is equivalent neither to 1/p2 nor to 1/4p2 under Γ0(4p2).

We now recall some important properties of half-integral weight Eisenstein series on Γ0(4) as
developed, for example, in § 4.2 of [Kob84]. For each integer k � 2 there are Eisenstein series
Ek+1/2(z) and Fk+1/2(z) ∈ Mk+1/2(Γ0(4)) (these Eisenstein series are not in the plus space) with
the following properties.

(i) Ek+1/2(z) has constant term equal to 1 and vanishes at the cusps 1 and 1
2 of Γ0(4). Fk+1/2(z)

has value ζ3(
√

2)−2k−1 at the cusp 1 (where ζ3 is some root of unity) and vanishes at ∞ and
1
2 (recall that the value of a modular form at an equivalence class of cusps is defined only up
to multiplication by roots of unity).

(ii) For each prime � �= 2, the forms Ek+1/2(z) and Fk+1/2(z) are eigenforms of the operator
Tk+1/2,4(�2) defined in (2.12) (where the domain of definition is extended to all of Mk+1/2

(Γ0(4))). Moreover, the eigenvalue of each of these forms under Tk+1/2,4(�2) is 1+�2k−1 (this fact
follows from the Euler factors given in (2.30) and (2.32) in § 4.2 of [Kob84]).

Using (4.15), (4.12), (4.2), and item (i) above, we see that, for any constant c, the modular form

f ′ := f + 2E3/2+(pβ(p2−1))/2 + cF3/2+(pβ (p2−1))/2 (4.16)

vanishes at the cusp ∞. Using the discussion following (2.9), we compute that the first non-vanishing
term in the expansion of F pβ

p at the cusp 1/p2 is (up to a root of unity) an integral power of 2.
It follows from this together with item (i) above, (4.15), and (4.5) that, if we set c = ζ42λ/2 with
some appropriate root of unity ζ4 and integer λ, then the modular form f ′ defined in (4.16) vanishes
at the cusps 1/p2, 1/2p2, and ∞.

Of course, it will now be the case that f ′ does not vanish at the other cusps of Γ0(4p2) which
are equivalent to 1/p2 and ∞ under Γ0(4). However, this situation is easily remedied using the form
Fp(z) defined in (4.12). In particular, since Fp(z)p

s−1 ≡ 1 (mod ps) vanishes at each cusp a/c for
which p2 � c, we see that the modular form

f ′′ := (f + 2E3/2+(pβ (p2−1))/2 + cF3/2+(pβ (p2−1))/2) · F ps−1

p

is in fact a cusp form of weight 3/2 + ((pβ + ps−1)(p2 − 1))/2 on Γ0(4p2).

Before we proceed we need the following fact.

Lemma 4.5. Suppose that p � 3 and that β is a non-negative integer (with β � 1 if p = 3). Then the
Eisenstein series E3/2+(pβ(p2−1))/2 and F3/2+(pβ(p2−1))/2 have p-integral Fourier expansions at ∞.

Proof. Write E3/2+(pβ(p2−1))/2 =
∑∞

n=0 a(n)qn, F3/2+(pβ (p2−1))/2 =
∑∞

n=0 b(n)qn. Using the Euler
factors (2.30) and (2.32) in § 4.2 of [Kob84], we see that it suffices to prove that if n is square-
free, then a(n) and b(n) are p-integral. Moreover, formula (2.18) of the same section shows that
it is enough to prove that b(n) is integral for each square-free n. Set λ := 1 + (pβ(p2 − 1))/2.
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Then from (2.16) in that section we obtain, for each such n,

b(n) =
L(χ−n, 1 − λ)

(1 − i)ζ(1 − 2λ)
·


22λ−1/2

2λ + χ−n(2)
if −n ≡ 1 (mod 4),

21/2+λ

22λ − 1
if −n ≡ 2, 3 (mod 4).

The desired result now follows after a lengthy case by case computation (in particular, one must
separate the case when p = 3; recall that in this case we have β � 1). In each case, the L- and ζ-values
in this formula can be written in terms of Bernoulli numbers and generalized Bernoulli numbers.
The desired conclusion follows after applying standard results on the divisibility properties of these
numbers (see, in particular, Theorems 1 and 3 of [Car59], and Proposition 15.2.1 and Theorem 5 of
[IR90, § 15.2]). We do not include the details here.

Together with item (ii) above and (2.12), this result implies that for each prime � ≡ −1 (mod ps)
we have

f ′′|T3/2+((pβ+ps−1)(p2−1))/2,4p2(�2) ≡ 0 (mod ps) ⇐⇒ f |T3/2+(pβ(p2−1))/2,4p2(�2) ≡ 0 (mod ps),
(4.17)

and that for each prime � ≡ 1 (mod ps) we have

f ′′|T3/2+((pβ+ps−1)(p2−1))/2,4p2(�2) ≡ 2f ′′ (mod ps) ⇐⇒ f |T3/2+(pβ(p2−1))/2,4p2(�2) ≡ 2f (mod ps).
(4.18)

After this discussion, Lemma 4.3 follows from Lemma 4.4. Here we prove only the first case.
Lemma 4.4 shows that a positive proportion of the primes � ≡ −1 (mod 4ps) have the property
that

(Stf
′′)|T2+(pβ+ps−1)(p2−1),4p2(�) ≡ 0 (mod ps) for all squarefree t.

Since the Shimura correspondence commutes with the Hecke operators, we conclude that for such
a prime � we have

St(f ′′|T3/2+((pβ+ps−1)(p2−1))/2,4p2(�2)) ≡ 0 (mod ps) for all squarefree t. (4.19)

A computation using (4.14) shows that (4.19) implies that

f ′′|T3/2+((pβ+ps−1)(p2−1))/2,4p2(�2) ≡ 0 (mod ps),

which, together with (4.17) and (4.15), gives the first assertion in Lemma 4.3. Using (4.18), the
proof in the second case proceeds in a similar manner, and we do not include it here. This proves
Lemma 4.3, and so finishes the proof of Theorem 1.1.

Remark. There are other congruences, similar to those appearing in the second part of Theorem 1.1,
which correspond to instances where gm(z) (or some related modular form) is an eigenform modulo
ps of the relevant Hecke operator T (�2), and the eigenvalue has some special property. As examples
of such congruences, we have

t1(81n + 9) ≡ t1(81n + 36) ≡ t1(81n + 63) ≡ 0 (mod 3),
t1(135n + 63) ≡ t1(135n + 90) ≡ t1(135n + 117) ≡ 0 (mod 5).

5. Up-congruences and the proof of Theorem 1.5

We begin by recalling a result of Koike [Koi73] which is closely related to work of Dwork and Deligne
[Dwo69] on the p-adic rigidity of the map j(z) → j(pz). If p � 5 is prime, then let Sp denote the
set of those supersingular j-invariants in characteristic p which are in Fp \ {0, 1728}, and let Mp
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denote the set of monic irreducible quadratic polynomials in Fp[x] whose roots are supersingular
j-invariants. If ερ(p) and εi(p) are defined by

ερ(p) :=

{
0 if p ≡ 1 (mod 3),
1 if p ≡ 2 (mod 3),

εi(p) :=

{
0 if p ≡ 1 (mod 4),
1 if p ≡ 3 (mod 4),

then it is well known (see, for example, [Sil86]) that, with Sp(x) as defined in (1.5), we have∏
E/Fp

supersingular

(x − j(E)) = xερ(p)(x − 1728)εi(p) ·
∏

α∈Sp

(x − α) ·
∏

g∈Mp

g(x)

= xερ(p)(x − 1728)εi(p) · Sp(x). (5.1)

Koike’s result describes the Fourier expansion of j(pz) (mod p2) in terms of j(z) and the col-
lection of supersingular j-invariants in characteristic p. To be precise, Proposition 1 of [Koi73]
implies, for primes p � 5, that there exist integers A(α), B(g), and C(g), as well as a polynomial
Dp(x) ∈ Z[x], such that

j(pz) ≡ j(z)p + pDp(j(z)) + p
∑

α∈Sp

A(α)
j(z) − α

+ p
∑

g(x)∈Mp

B(g)j(z) + C(g)
g(j(z))

(mod p2). (5.2)

Moreover, the integers A(α), B(g), C(g) have the property that

p � A(α) and p � gcd(B(g), C(g)).

The work of Deligne and Dwork (see [Dwo69, § 7]) considers the full p-adic expansion of j(pz).

Example. As an example of (5.2), when p = 37 we have Mp = {x2 + 31x + 31}, S37 = {−29}, and

j(37z) ≡ j(z)37 + 37(33j(z)36 + 22j(z)35 + 30j(z)34 + · · · + 5j(z) + 6)

+
370

j(z) + 29
+

37(9j(z) + 10)
j(z)2 + 31j(z) + 31

(mod 372).

Remark. In [KZ98], Kaneko and Zagier give many descriptions of the supersingular polynomials
Sp(x). In § 10 of the same paper, they provide an explicit description of the interplay between
supersingular polynomials and certain modular polynomials.

Proof of Theorem 1.5. We begin by considering the cases where p � 11. For these primes p, a
calculation shows that for each non-negative r < p, we have

j(z)r|Up ≡ ar(0) (mod p),

where ar(0) is the constant in the Fourier expansion of j(z)r. Since Up is a linear operator, it
follows that every F (x) ∈ Z[x] with degree m < p has the property that F (j(z))

∣∣U(p) ≡ 0 (mod p).
The theorem holds since Sp(x) = 1 for these primes.

In the case when p � 13, denote the Fourier expansion of F (j(z)) by

F (j(z)) =
∑

n�−m

a(n)qn.

The action of the normalized weight zero Hecke operator T0(p) on F (j(z)) is given by

F (j(z))|T0(p) = pF (j(z))|Up + F (j(pz)).
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Since p > m, it follows that

pF (j(z))|Up = F (j(z))|T0(p) − F (j(pz)) = p
∞∑

n=0

a(pn)qn. (5.3)

Using the modular functions Jm(z) defined in (1.2), we see that F (j(z))|T0(p) is a polynomial
in j(z) with integral coefficients (this also follows from the fact that F (j(z))|T0(p) is a nearly
holomorphic modular function on SL2(Z)). Suppose now that F (j(pz)) (mod p2) is congruent to
an integral polynomial in j(z). Then (5.3) implies that there is a polynomial F̃ (x) ∈ Z[x] for which

F (j(z))|Up ≡ F̃ (j(z)) ≡
∞∑

n=0

a(pn)qn (mod p).

However, the constants in Fp[j(z)] are the only polynomials whose Fourier expansions modulo p have
no terms with negative exponents; it follows that F (j(z))|Up ≡ a(0) (mod p). Therefore, to prove
Theorem 1.5 it suffices to prove that if Sp(x)2 divides F (x) in Fp[x], then F (j(pz)) is congruent
modulo p2 to a polynomial in j(z).

To this end, suppose that Sp(x)2 divides F (x) in Fp[x], and write F (x) =
∏m

s=1(x−rs). Then (5.2)
implies that

F (j(pz)) =
m∏

s=1

(j(pz) − rs)

≡
m∏

s=1

(
j(z)p − rs + pDp(j(z)) + p

∑
α∈Sp

A(α)
j(z) − α

+ p
∑

g(x)∈Mp

B(g)j(z) + C(g)
g(j(z))

)

≡
m∏

s=1

(j(z)p − rs) + pDp(j(z)) ·
m∑

s=1

∏
1�t�=s�m

(j(z)p − rt)

+ p

( ∑
α∈Sp

A(α)
j(z) − α

+
∑

g(x)∈Mp

B(g)j(z) + C(g)
g(j(z))

)
·

m∑
s=1

∏
1�t�=s�m

(j(z)p − rt) (mod p2).

(5.4)

Since
∑m

s=1

∏
1�t�=s�m(j(z)p − rt) is a polynomial in j(z) with integer coefficients (note that this

polynomial is symmetric in the rt), the first two summands in the last expression above are integral
polynomials in j(z). Moreover, it follows that for the last summand we have( ∑

α∈Sp

A(α)
j(z) − α

+
∑

g(x)∈Mp

B(g)j(z) + C(g)
g(j(z))

)
·

m∑
s=1

∏
1�t�=s�m

(j(z)p − rt)

≡
( ∑

α∈Sp

A(α)
j(z) − α

+
∑

g(x)∈Mp

B(g)j(z) + C(g)
g(j(z))

)
·

m∑
s=1

∏
1�t�=s�m

(j(z) − rt)p (mod p),

which is a polynomial in j(z) over Fp (in view of (5.1) and the fact that Sp(x)2 divides F (x) in
Fp[x]). Consequently, (5.4) shows that F (j(pz)) (mod p2) is an integral polynomial in j(z), and this
completes the proof.

Proof of Corollary 1.6. Corollary 1.6 is obtained by verifying that Sp(x)2 divides Hd(x) in Fp[x] for
those primes p and fundamental discriminants −d satisfying the given hypotheses. The factorizations
of Hd(x) were computed using MAGMA.
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6. Filtrations and the Proof of Theorem 1.7 and Corollary 1.8

Here we prove Theorem 1.7 and Corollary 1.8 using the theory of modular forms modulo p as
developed by Serre and Swinnerton-Dyer (see, for example, [Swi73]). Recall the definition (1.8) of
the theta-operator. Then we have the following facts.

Proposition 6.1. Suppose that f(z) ∈ Mk and g(z) ∈ Mk′ have integral coefficients. If p � 5 is
prime and

0 �≡ f(z) ≡ g(z) (mod p),

then k ≡ k′ (mod p − 1).

Proposition 6.2 [Swi73, Lemma 5]. If p � 5 is prime and f(z) ∈ Mk∩Z[[q]] has f(z) �≡ 0 (mod p),
then

ωp(Θf) ≡ ωp(f) + 2 (mod p − 1).

Moreover, we have ωp(Θf) � ωp(f) + p + 1, with equality if and only if p � ωp(f).

If f(z) ∈ Mk, then the valence formula implies that ord∞(f) � k/12. This implies the following
proposition.

Proposition 6.3. Suppose that p � 5 is prime, and that f(z) =
∑∞

n=n0
a(n)qn ∈ Sk ∩ Z[[q]].

Suppose further that p � a(n0) and that p � n0. Then for every non-negative integer m we have
ωp(Θmf) � 12n0.

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. In the notation of Theorem 1.7, we have

fp,s(z) = f(z) · ∆(z)p
s

= a(m)qps+m + · · · ∈ S12ps+k. (6.1)

Suppose that the conclusion of the theorem is false (in other words, suppose that f(z)|Up ≡ 0
(mod p)). Since ∆(z)p

s ≡ ∆(psz) (mod p), we conclude from this that

fp,s(z)|Up ≡ 0 (mod p).

Since we have (f |Up)p ≡ f − Θp−1f (mod p) for all f , it follows from this assumption that

0 �≡ Θp−1fp,s(z) ≡ fp,s(z) (mod p). (6.2)

Suppose that p � ωp(Θp−2fp,s). Then by Proposition 6.2, we would have

ωp(Θp−1fp,s) = ωp(Θp−2fp,s) + p + 1. (6.3)

However, Proposition 6.3 and (6.1) together give ωp(Θp−2fp,s) � 12(ps + m), while by (6.1) and
(6.2) we have ωp(Θp−1fp,s) � 12ps + k. Taken together with (6.3), these inequalities contradict the
assumption that p � k − 12m. Therefore, we must have p | ωp(Θp−2fp,s); it follows that there is a
smallest positive integer j � p − 3 for which p | ωp(Θj+1fp,s). For this j, Proposition 6.2 implies
that

ωp(Θj+1fp,s) = ωp(Θfp,s) + j(p + 1) ≡ ωp(Θfp,s) + j ≡ 0 (mod p).

Since 1 � j � p− 3, this contradicts the assumption that ωp(Θfp,s) ≡ 1, 2 (mod p). This completes
the proof of Theorem 1.7.

Proof of Corollary 1.8. Let the notation be as in the statement of Corollary 1.8. Since p > 12D + 1
is prime, we have p > 12D + 3 > 5. Set f(z) := F (j(z)), and consider the modular form

fp,1(z) := f(z) · ∆(z)p = a(−D)qp−D + · · · ∈ S12p. (6.4)
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By Proposition 6.3 and (6.4), we obtain

12(p − D) � ωp(fp,1) � 12p.

Therefore, since p > 12D+3 and ωp(fp,1) ≡ 12p (mod p−1), we must have ωp(fp,1) = 12p. It follows
by Propositions 6.2 and 6.3 that

12(p − D) � ωp(Θfp,1) � 12p + 2. (6.5)

The facts that ωp(Θfp,1) ≡ 12p + 2 (mod p − 1) and that p > 12D + 3, together with (6.5), show
that

ωp(Θfp,1) = 12p + 2.
Corollary 1.8 now follows from Theorem 1.7.
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