ON CONDITIONS OF DIFFERENTIABILITY OF
LOCALLY COMPACT GROUPS

MASATAKE KURANISHI

A formulation of the differentiability of the product function of a locally
compact group at the identity may be given in the following way: In a suffi-
ciently small euclidean neighborhood of the identity product satisfies the con-

dition :
*) |2y — (% + y)| £ M(|x] + [y])[«]
where M(X) is a function such that #(A) - 0 as A~ 0. From this we can de-
duce easily
. 1 1
}gx: 2”(-2—,,—x Q,Ty) =x+y.

In a differentiable group we can introduce a coordinates system in which it
stands that x = mx. In this coordinates system the above equality can be
written

lim (27" =x + y,

n-r®

where x, 2%, 5V, x¥¥" ... is the sequence of successive square roots
of x in the neighbcrhood of the identity. In words, the function sequence
Fo(2,9) = (X091 converges to the product of an abelian local group. It
is a remarkable fact that this property is independent of the choice of the co-
ordinaies system, and it will be reasonable that this is one of the topological
group theorctical formulations of the differentiability of the product function at
the identity.

P. A. Smith proved that under the condition (*) a euclidean local group
becomes a Lie group. The main purpose of this paper is to obtain conditions
that a locally compact group forms a Lie group from the last point of view.

Let & e a locally compact group and let U be a neighborhocd of the iden-
tity e. If, for an element x of U, 2% x",1%,. .., 2" €U, s U, we put
7 = J¢(x). 1f such an » does not exist, we put dy(x) = . G is said to have
property (S) if there exists a neighborhood U7 of e such that dv(x) is finite for
every elment x of U — {e}). It will te shown that if G has property (S) we can
define a function sequence F,(x,y) = (x7/¥y*")*", which we shall call Lie’s
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function sequence, in ® x O, where 0 is a closed subset of U. Theorem 1 states
that if Lie’s function sequence has a subseguence converging to a function, which
defines product in @ in such a way that ® becomes an abelian local group, G
must be a Lie group. Theorem 2 states that if the Lie’s function sequence has,
roughly speaking, a uniformly converging subsequence, G is a Lie group. As a
corollary it is shown that a locally compact group of transformations of class
C! which is effective in the stringent sense of S. Bochner and D. Montgomery ¥
must be a Lie group.

1. Conditions of differentiability

In this section a locally compact separable group G having property (S) will
be treated. Take a neighborhood U = U-! of e with U compact and such that
dv(x) is finite for x = U — {e} and such that in U? square root is unique, that
is, from #® = »* & U® and x,y € U? follows x = »» Such a neighborhood is said
to be regular. Put

0,7 = {x| there exists x/** = U such that (¥/*)* = x for every k = n and
(2" C U for h <k}, 07 = N0,7.
n=1

om

0,V and OV are closed sets. It is easy to see that (¥/°")*" = x¥"™ (n> m).
An element (% ¢) of 07 is called regular (in U). For a regular element ¥ we
mean by the square root sequence of x the sequence {x*"}n-0,1,,... Ifyxe
were a limit point of the square root sequence of x, then y** would be also limit
point of {x?"}, hence belong to U, which contradicts to property (S). There-
fore the square root sequence converges to e. We now introduce a function on
0,° x 0,7 by
Fu(x,y) = (xM/FyV2")2",

Since square root is unique and U is compact, the function can be defined and
is continuous. The sequence of functions Fr(x,y), (# =1,2,...) is called Lie’s
function sequence of G in U,

LemMma 1. For every regular element x of U, there exists a unique one-para-
meter subgroup g:(4) such that g,(1/2%) = 2" for n =0,1,2,. . ..

Proof. If 7> m, NN = gV ()T o (U o e
Hence the closed subgroup A generated by the square root sequence of x is
abelian. Since A does not have arbitrarily small subgroups, A is a Lie group.
Let A° be the component of ¢ in A. Since A" covers a neighborhood of e and
x'%" coverges to e, there exists an integer k such that for every m =k, x/" & A°.

I Cf. [6].
® Cf. Lemma 1 of [4].
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Hence x'2" & A" for every 7 and so A == A°. Therefore for every element y = A
there exist unique one-parameter subgroup g,(4) such that g,(1) =v. Since A
is a Lie group, there exists a neighborhood W of e such that g,(2) C U for |[i]
=1 and for y&= W. If xwxe& W, it follows that gezx(1/27) = 2% and
8:/2(2%2) = g.(1). From this, it follows that g.(1/2%) = xV*" for every =.

Remark. Since no confusion will occur, we shall write x* instead of g.(4)
in the following.

LemMMa 2. There exists a real continuous function f(x) defined on U satis-
fying the following conditions:
i) f(#) =2f(x) for v, & U,
ii) f(x) =0if andonly if x = e.

Proof. Put ¢(x) = x* for x & U™ Since ¢ is continuous and square root is
unique in U? there exist with given p(% ¢) €U open sets Vi"'p* and Vi'¥p*
for 2 =0,1,. .., dv2(p) such that

1) Viip™ C Vep? C OB,
@) @(Vap™) C Vi, 07",
3) Vkmp?k NV psj =¢ (kxj),

¢ denoting the empty set. Construct continuous functions f%?'(x) for k= 0,1,
., 0uv:(p) defined on P satisfying the conditions

) 1  ipe
@ S (®) = sy, for xE Vet
(5) Se?(x) =0 for x €8 Vi'p*,
1
(6) 0 éf-k(m(X) = 2m.
Or-e(p)
Let /2 (x) = Lz‘ipfk‘f”(x). Then it is easily shown that f#'(x) satisfies the
k=0
condition i). Since U — {e} & U V,''p," there exists a countable set {pn},
vET (e}

(n=1,2...),such that U — {¢) € U Va""p». Define f(x) = i%,; Fou(x),
1

= =

then f(x)|U fulfills our requirements.
The following two lemmas show the non-triviality of @%.

LeMMa 3. OF — {e} % ¢

LevMa 4. Let Z be the center of G. If GNU R ZNU, there exists a
neighborhood V of ¢ such that ZN VSN V.

3 Vo' is depend with p.
4 Cf. Lemma 5 of [7].
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Proof. Since Z does not contain arbitrarily small subgroups, Z is a Lie
group. Hence there exists a discrete subgroup H of Z such that Z/H is a torus
group. G/H is locally isomorphic to G and the center of G/H is Z/H. Hence
we have only to treat the case where Z is a torus group. Moreover, to prove
the Lemma it is sufficient to prove that G/Z contains at least one-parameter
subgroup,” and for this last purpose it suffices to prove that G/Z doces not con-
tain arbitrarily small subgroups.?”

Let ¢ be a natural mapping G- G/Z, and put U* =¢ (U,), where U:
= {x|f(x) < 8} CU with a function f(») in Lemma 2 and a sufficiently small
positive number 4. Suppose x¥ = y* for x*, y* & U* Take x,y & U, such that
x* = ¢(x) and y* = ¢(y). Then x*=y%2 and 2€U'NZ. (y2'/*)* = x°. Hence
if U, is sufficiently small, 2/ = x, and so x* = y*. Thus square root is unique
in U,/*.

Now let K* be a closed subgroup contained in Uy*. K = ¢~!(KX*) is a com-
pact subgroup of G, and so K is a Lie group. Hence K* is also a Lie group.
I{ K* were not discrete, there would exist an element k/*(=% e*) €2 K* such that
ko*? = e*, which is a contradiction to the fact that square root is unique in U;*.
Therefore K* must be a finite group.

Suppose K* is not trivial. Take &* = ¢(k) x ¢* (k= U,) of K*. We assert
that % is a regular element in U and ¢ (%/2") & K* for every n. Namely, since
K* is finite, there exist m and [ (m > 1) such that 2" = k*¥, and so k* = k="'
= (B2 Hence kz = h?, where h & U, and ¢(h) = &*"", Then z& Uy
N Z and (hz=Y/?)? = k. Therefore if U, is sufficiently small %z~ V2 = Bt U.
But as U, = {xlf(x) <d} and J(x*) =2/(x), BP&U,. Moreover o(k'?)
= @(hz=WY) = P e K%, Since E/* e Z, we can easily prove the assertion
by induction. Since K* is discrete, there exists a neighborhood I,* such that
Us N K* = {¢*). Because k""" - ¢ as n — «, there exists an integer », such
that k2" & o= 1(Us*). Hence ¢(B'*") & U* N K* = {e*}, and so k" & Z.
Therefore k& Z, which is a contradiction to ¢(k) = k* x e*. Thus K*is trivial,
and proof of our Lemma is completed.

LEmma 5. Let @ be a locally compact abelian local group containing no
subgroup in the large. Suppose for every element x of @ square root x'/% of x
exists uniquely and determined continuously. Let @, be the set of element x
such that there exists one-parameter subgroup x*(jA] £ 1). Then @ is a closed

focal subgroup of @ and is locally isomorphic to a neighborhood of the identity

% If H is a normal subgroup of G and both C/H and H are Lie groups, then G is a Lie
group. Cf. [2] or Theorera 7 of [3].

6 Cf, Lemma 5 of [7].
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of a vector group, (i.e. @, is a local vector group).

Proof. Let o denote the product operation in @. x*is a local 1-dimensional
vector group. Assume that there exist x5,%.,. .., x» such that for a fixed
positive ¢ x4 % 0) ef B, ={ply = aMoxdo . . ox}iy, 4] < ey C O, (i=1,2,

.,#). E is alocal n-dimensional vector group. Suppose £¢' does not cover
a open set of @,. We shall show that there exists x,.; & @; such that

xh,, (A% 0) & £F. If not, there exists a 4’ and a sequence x,( 0, — Ef) — ¢
such that x}v = x%*mod E/2 e.g. for some |A,| <1 and such that i, -» ¥, Take
a rational number 7 {< 1) such that |’ —y|<¢/4. Then %] = x> mod E.,,
where |7, > ¢/4. Since x'? is a continuous function of x, x" is also, whence
%1->e. But x; can not converge to any element of E{®',. Hence there exists
%ns1 SUCh that x,, & E,P. Then we can easily construct Zf}, for a sufficiently
small ¢ > 0.

Thus to prove the lemma we have only to show that @; is finite dimensional.
Suppose @, is infinite dimensional. Then there exists, by the above observation,
a sequence of local vector group £y, E.,. .., Ex,. .., where E, is n-dimensicnal
local vector group and a neighborhood of the identity of Ej is a local subgroup
of E,,+ 1. Let £, be a sequence of #-dimensional vector group such that Ef C £
.. 2, C K., C ... and such that E; (j = »n) is a local subgroup of E,/

Denote £ = UE,, and £ = UE,,. Consider £’ as an abstract group and intro-
duce a topo'og j by taking E‘(lW V. as a fundamental neighborhood system of the
identity in F’, where V, is a fundamental neighborhood system of the identity
in #. We can complete £’ to a group ED Completed neighborhood of £ V,

must be isomorphic to Z[) V, (closure in @), because of the uniqueness of
completion.®” Thus E’ is locally compact and contains no small subgroups.

Hence £ is finite dimensional, which is a contradiction.

TueoreMm 1. Let G be a locally compact separable group having property (S)
and let U be a regular neighborhood. Suppose that Lie’s function sequence in U7
has a subsequence Fn,(x,y) satisfying the following conditions:

(A) Fp(x,9)|0° converges to a function F(x,y) such that there exists a
neighborhood W of e so as F(x,y) € 07 for x,y = W 9.

(B) By the product operation xoy = F(x,y), O becomes an abelian local
group. Then G is a Lie group.

7 Theorem II of [10].
3) Theorem II of [10]. Consult alsc the method of completion.
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Proof. Observing that xoy = x.y when x and y are commutative, we can
see easily that 0V is a local group satisfying the condition of Lemma 5, whence
o7 = {x|x* = @ for |A| 21} = {x]x* U for |1| = 1} is a local vector group.
As the square root i8 unique in U?, Fr(p™'xp, p~Yyp) = p~'Fu(x,y)p for x,y € 0,7
and pe=U. Hence (p~'xp)o(p~'yp) = p7'(xoy)p. For a given element p of U,
there exists V such that p~' Vp CU. Since @, is a local vector group, there
exists V; such that for every x&= @V NV, it stands that 2> = V. Whence
1 OF N V)P C 0. Therefore the transformation x - p~'xp for p= U is an
automorphism of the local vector group @,°, and so is a linear transformation.
Let Ap be the matrix of this linear transformation.

It is clear that for a sufficiently small neighborhood L of ¢ in G, L3 p - Ap
is a representation of our group. We call this the canonical representation. Let
L* be its kernel and G* be the closed subgroup generated by L*,

i) G*NL=L*

For, take x & G* N L. Since G* is generated by the elements commutative
with 0,7, x is also commutative with @,". Hence x & L* by definition.
i) If G = G*, then L is abelian.

Suppose L is not abelian, and let Z be the center of G. L2Z N L. By
Lemma 4, there exists at least one regular x¥ which is not contained in Z, hence
at least one element x, of 0, such that x, &= Z. Moreover G (= G*) is generated
by L. Whence there is at least one element of L not commutative with x;.
Therefore G £ G* by i).

G* also satisfies, as a closed subgroup of G, the conditions of Theorem 1
with U N G* instead of U. Therefore we can define (G*)*.

iii) (G¥)* = G*.

Since G* 2 (G*)*, we have only to prove that (G*)* 2 G*. Let & be the
set of regular elements of G* in G*NU. Then & C 0". Every element of G*
is commutative with @7, whence with @. Hence (G*) S (G*)*.

Now we can complete our proof. G/G* is a Lie group and by ii) and iii)
G* is an abelian normal subgroup of G and is a Lie group. Hence G is a Lie
group by the extension theorem of Lie groups.”

THEOREM 2. Let G be a locally compact separable group having property (S)
and let U be a regular neighborhood of G. Suppose Lie’s function sequence in
U has a subsequence F. n:(%,9) satisfies the following conditions :

(C) For every neighborhood V of e, there exists an integer I such that for

9 Cf. [2] or Theorem 7 of [3].
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every i > I and x,y & ng
VFu(2,9) 2 Fu,(x,5) .
(D) There exists a neighborhood W of e such that for x,y = 0° W
Fuplx,y) CU, (n=0,1,2,...)
Then G is a Lie group.
Proof. By (C) Fu/(x,y)|0% converges uniformly to a continuous function
F(x,y). We show that F(x,y) satisfies the condition (A) and (B) of Theorem 1.

(A) By Lemma 2, there exists a neighborhood W, of e such that if x= W,
e Wiorn=12.... fx,yesdtNW,

~y Loty | allij=k -k =k ok i~k otk ol oK T
(x"" ‘tyl,z"t),"z - ((xt/- )1/2"2 -(y"' )1/2"4 ).h — Fn,-__k(x'/‘ ’yx/- Yyeu.

Now, take ,y in our W, thus obtained. If v is a limit point of (x!/" y1=")="*,
(n; > k), then v U and v = F(x,y). Hence, for x,y = W, 07, F(x,y) = 0.

(B) a) (x0y)ow = xo(yow) (associative law)
For every neighborhood V of e, there exists / such that if x,y & 07
N Velxoy) B Fny(x,5),
and such that if 7= Jand x,y € 07,
(8) VFpn, (%,5) 2 Fni(2.y) .

Since 0,0 is closed, Fr(x,y) is uniformly continuous, and so there exists, by (7),
a neighborhood V; of e such that for every x,y & @,

9) V2 (x0y) D Fny(Vix N 05, )
By 0%, D dY, , (8), and (9)
Fo.(VixN w—,’t,y) C VFnI(le N ml;l ) C V”(xoy)

for every x,y = @V and = I Hence

(10) Vi((x2y)ow) D Fn,(Vi(xoy) N 05, w)
If n; is large enough,
(11) Vi(xoy) N 85, B Fr(%,)

Therefore, by (10) and (11),

VP((x09) ow) D Fry(Fni(%,5), w) = (x4l =% |
whence
(xoy)ow = lm (x"2" yh2"i goi/e iyt

n>w

Similarly we can obtain

xo(yow) = lim (wV2" yl/="e gty |

>0
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B8) xoy = yox, Fox~'=e,
Since Fn(x,y) = 22" (g g=317" = °F,(y, 2)x~4*" and #/%" -» e. Thus, by
the product operation o, @7 becomes an abelian local group.
Remark. If Fu(x,y) is a sequence satisfying the condition (C), G is a Lie

group. For F(x,y)|07 converges uniformly to F(%,y), there exists W satisfying
(D).

2. Groups satisfying some metric conditions

TrEOREM 3. Let G be a locally compact group. Assume that for a suffi-
ciently small neighborhood V of e, we can introduce a metric o satisfying the
Sollowing conditions ;

(B) If x,y,2y 7V, then
Koo(y,e) £ o(xy, %) = Kio0(y,0) ;
(F) If n=dv(x), 6v(y), then
K, 2%0(x,9) € p(2¥,5") £ Ks2%0(, ) ;
with positive constante K;, 1 =1,2,3,4.
Then G is a Lie group.

Outline of the proof. From (F), G has property (S). We shall show that
(; satisfies the condition of Theorem 2.
From (E) and (F) we can deduce that '

(12) o(Fn(x,9), Fp(x',5')) € B{o(x, 25"y + 0(y.¥')}
with a positive constant K.
Therefore, if we take a sufficiently small neighborhood U of e¢ which is re-

gular, the function sequence F,(x,¥)[0 x @' is a uniformly bounded and equi-
continuous sequence with respect to the uniform structure introduced by p. We

can select a uniformly converging subsequence Fn,(x, )07 x @7, i=1,2,.. ..
For every positive ¢ there exists an integer I; such that for every ¢, 7= 71, and
¥,y e oY

(13) 0(Fn(x',9"), Fny(%',5")) < /3.

Since 97 = r_‘\lmnﬁ, there exists % such that Ueex,(07)) D 0%, for every i = bk,
where U:(#) denotes the e-neighborhood of @. Therefore, there are, for every
2,y E 05, v,y & 0¥ such that

14) p(x, %) <e/(6k), 0(3,9") <e&/(6F).

19 This Theorem generalizes the theorem of [4].
m Cf. §2 of [4].
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From (12) and (l4),

(15); 0(Fn(2,9), Fni(2',9")) < K(o(x, %) + 0(y,5")) <e¢/3.
If 7=max ([;, ) and i=1,
(16) Ue(Fny(2,9)) D Fui(x,y)

by (13), (158), (15);.

As the uniform structure of the compact space is unique, we can deduce
from (16) that the condition (C) of Theorem 2 is satisfied. (D) follows im-
mediately from (12) putting ' =3 =e.

3. Groups of transformation of class C!

Let G be, throughout this section, a locally compact group of transformation
of class C' of a manifold M of class C.'” Elemants of G are denoted by v, w,
%, 9, etc. and point of M by p, q, 7, s,etc. The point of M to which p is trans-
formed by x, will be denoted by x(p) or f(x,p). Let a coordinate neighborhood
Q of M with @ compact be fixed. The i-coordinates of p, x(p), and f(x,p) E @
are denoted by pi, xi(p), and fi(x,p) respectively. Denote ofi(x,p)/ox; by
Sij(x,p).

TueoreM 4. Let G be a locally compact group of transformation of class C*
of a manifold M of class C'. Suppose G acts on M in such a way that the
identity is the only element whose set of fix points contains interior points. Then
G is a Lie group.

Proof. Take a sufficiently small neighborhood V of e and open sets @), @
with V(§)) C §., V(§:) C Q. Denote by |p — q| (p,qE Q) the euclidean met-
ric in @ and define

o(x,9) = max [x(p) — y(p)|
rEQ)
for x,ye= V. It is easily verified that p is a metric in V.
As x(p) is a transformation of class C', we have

%(p) — %) = 3385 - a) [ Fustws 0 + 1(p — @)t

for every x &V and p,q & Q..
Since it is known ™ that f;;(x,p) is continuous in V x @, fi;(x,p) is near
10 8; uniformly in p, if x is sufficiently near to e. From this follows

(17) [£(p) ~x(q) = (p~ @) = M([x])|p - al,

12y Cf. [6].
) Theorem 3 of [6].
) Cf. (5].
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where M (A) ™ is a function such that M (1) - 0 as 2> 0, and |x]| = p(x,¢e).
If we put p = y(q)
(18) [(x(q) — @) —{(x(@) — @) + (y(@) ~ D)} = M(x])|y(q) — qi = M(Ix])ly].
If we put p = y(7), ¢ = w(z) in (17), it follows that
lxy(r) — xw(r) — (¥(r) —w(n)| = M(x))|y(r) —w(n)],

whence

(19) o(xy, xw) = Kp(y,w) .
From (19) follows, putting w = e,

(20) lxy| = [x] + Kly].

If we assume that x,%% .. .,x" =V and that for ¢ = @;
[(x™=(q) —q@) — (m — 1) (x(q) — q)| £ M{(m - D]x)|x(a) —q],

it follows from (18) that

[(x™(@) - q) — m((x(q) — q)]

= [(@™1ex(9) — @) —{(x(@) — @) + (m ~1)(x(q) - )}

£ [(x"ex(q) — @) — {(x(q) = @) + (x™ (@) — O}

+ [(x™(q) —q) — (m —=1)(x(q) — D)}

£ M(|x™)|x(q) — ql + M((m = 1)|x]) (m — 1)|x(q) — q|

£ M(m|x|)m|%(q) — q|.
Thus if x,%2% . . .,x"EV
1) |(™(q) — q) - m(x(q@) — @)| € M(m|x])m|x(q) — q] £ M (m|x])m|x] .
(22) Kom|x| < |¥™ = Kim|x| (when V is sufficiently small).
From (19) and (22) follows ®
{23) o(yw, xw) = Ko(y,x) .

By (19), (23)

%)) p(x™, y™) < )}Z})p(x’”“kyk, am- kD gk = Kmp(x,y) ,

By (22), G has property (S). Let V; bz a neighborhood of e in which the
above inequalities stands. Take a regular neighborhood U C V,. We shall show
that G satisfies the conditions of Theorem 2 with U. If x,y & 07, ., it follows
that
[y (q) — @) = {(x"(q) — @) + (¥/*"(q) — @) }| = M(1/2"|x}) (1/2%) |y ((18)),
[ = (@) (q) — g)+ 2 (&2 (g) - )]

= M((1/2%) |x] + (1/2%) [y]) (1/2"){|%| + [y]}
_ ((21), (20)),

1) 1t goes without saying that M(32) varies from inequality to inequality. But since only
finite numbers of M(2.) are used, we can use a unique M(2).

16 Consult the beginning of § 2 of [4].
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{ = 250 Ty (q) — q) + 25{(x2 () — @) + (3" (q) — q)}]

= MA/2melx) A2l ((8)),

{22 (g) — g} — 257" (q) — @)| £ M((1/2%)1x]) (1/27) x| ((21), (22)),
Ky (q) — q) = 2532 (q) — q)| = M((1/27)]y]) (1/27)]y].

Summing up these five inequalities, we get

(25) |2y (q) — (V2" p T (q) | £ M((L/2m) %] + (1/27) [v]) (1/27) (J%] + 3]).
By (24) and (25)

p( (xl/.znyllgn)(-,n, (x,/‘.,n+sy]/2n+s)2n+s) ,é_ Z”K‘lp (xugny”‘zn’ (xllf_.wf-sy”ﬂufs)zs)

= M((1/27) x| + (1/27) ) (%] + ) = M((1/2ME) K

for x,y e 0%,,. Thus G satisfies the condition (C) of Theorem 2, and by the

remark to Theorem 2 G must be a Lie group.
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