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Abstract. Let X be anm dimensional smooth projective variety with @ékler metric. We construct
ametrized line bundl€ with a rational sectior over the producf, (X) x C,(X) of Chow varieties
Cp(X), Cq(X) such that

(m—il)! log|s(4, B)* = (4, B)

fordisjoint A, B. That gives an answer to a part of Barry Mazur’s proposal in a private communication
to Bruno Harris about the Archimedean height pairfrg B) on a smooth projective variety .
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1. Introduction

In higher dimensional arithmetic geometry, Archimedean height pairing originated
from Arakelov’s work (JA1], [A2]) was first introduced by Bloch ([B]), Beilinson
([Be]). It is the local pairing at infinity. It was studied by Gillet, SéuBost, and
Hain in various contexts. On the other hand, the Chow variety has a longer history
that goes back to Cayley, Chow, van der Waerden ([CW]), and Chow coordinates
have always been useful in Diophantine geometry ([BGS], [P1], [P2], [P3]). Butas
for the geometry of the Chow variety, we seem to be so far from understanding it.
In 1993, aiming at the geometry of Chow varieties Barry Mazur proposed series of
qguestions ([M]) concerning the incidence relation induced from the Archimedean
height pairing.

To view it in a naive way, for a smooth projective varietyof dimensionm,
we take the incidence st = {(A4, B) € C,(X) x C4(X) : AN B # @}, where
Cp(X) andC,(X) are the Chow varieties of dimensipmndg with p+¢ = m — 1.
The question is: i a variety, a divisor, or even more, is it a Cartier divisor?
Mazur’'s proposal is to relate tHB to the Archimedean height pairing. This is
based on the fact that Archimedean height pairing is a continuous function outside
of D in C,(X) x Cy(X), but as the pair of disjoint cycled x B approaches
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D, the Archimedean height pairing of, B goes to infinity (W3] or [W4]). In

the special case whel® is a projective space, and= 0,q¢ = m — 1, D is the
classical universal hypersurface. In general, to obtain a divisor, we need to associate
a ‘multiplicity’ to each(A4, B) € C,(X) x Cy(X), which shall reflect the way how

A andB intersect. In [M], a Weil divisorD,, supported on the incidence $tis
defined by using intersection theory. Two of the questions asked by Mazur are:

(1) IsD,, a Catrtier divisor?
(2) Ifitis, let £ be the corresponding line bundle anthe section that defines
Dy . Does there exist a metrjt- || on £, such that

log||s|[*(4, B) = (4, B) (1.0)

for any disjoint cyclesA € C,(X), B € C,(X), where(A, B) is the Archimedean
height pairing?

1.1. THE STATEMENT

The main purpose of this paper is to construct a line bundle and a sedtimugh
the calculation of the Archimedean height pairing, which give a formula close to
(1.0) (see 1.1.3 below).

DEFINITION 1.1.1. LetX be a smooth, irreducible projective variety of dimen-
sionm with a Kahler metric. Let4, B be a linking pair of effective cycles iX of
dimensiong andgq respectively, i.ep + ¢ = m — 1, andA, B are disjoint. IfA
and B are disjoint irreducible subvarieties i, the Archimedean height pairing
(A, B) of A andB is defined to be the integrdl, (G 5] (it is well-defined because
of the condition (2) of the smoothness below) of a Green’s curreBtofer A. A
Green'’s current ([Bo], 1.2) aB is a curren{G ] of type (p, p) on X satisfying:

(1) Ascurrentsi/2r)00[Gg] = 6 — [wp], whered is the current of integration
over B and|wp] is the current of a smooth formp on X,

(2) [Gg] is smooth outside aB,

(3) (Normalization)wp is harmonic and the harmonic projection[6fz] is zero.

If, furthermore,[G ] can be represented by af form that is smooth oX'\ B,
the L form will be denoted by? 5 called ‘Green’s form’'.

We linearly extend the definition of Archimedean height pairing, and Green’s
currents to cycles. L&t (X ') denote the Chow variety of which parametrizes the
effective cycles of dimensionin X with cohomology clas&. By linear extension
one can view Archimedean Height Pairing as a function on an open sdlo$éte
productCs(X) x Cg(X) of the Chow varieties, wheté consists of all the disjoint
pairs of cycles.
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THEOREM 1.1.2.There exist a metrized line bundfeon the closuré/ of / in
Cp(X) x Cqﬂ(X), and a rational section that is regular, no where zero @, such
that

Aog||s(4, B)||> = (4, B) (1.1.3)

for A, B € U, where = 1/(m — 1)!. The line bundle is unique, and the metric,
the section are unique up to a constant.

The Archimedean height pairing function is not defined on an irreducible com-
ponento’y(X) x Cg (X) that contains only intersecting pairs of cyckgsB. Such
a component therefore should not be considered in our theorem. As matter of fact
U consists of all the components@f (X) x Cg(X) that contain at least one pair
of disjoint cyclesA, B. Our formula is a little different from Mazur’s conjecture,
because of the coefficieat= 1/(m — 1)!. We don’t know if an(m — 1)!st root of
our sections can be taken to realize the formula (1.0), Re= 1. On the contrary
we suspect the presence of some nontrivial coefficient might be inevitable. But
we are unable to find an example with# 1. In [M], the incidence divisoD,,
is defined by using Fulton’s intersection theory. Then Mazur’s first question (see
question 1 above before 1.1) leads us to ask: issflie (m — 1)!D,, ?

1.2. SKETCH OF THE PROOF
By the reduction to the diagonal ([Bo]):
<A7B>X = (A X B7A>X><X7

we only need to consider the height pairing between 1 cycleC = A x B and

the diagonalA in X x X with the cycleA fixed. The general principle is that the
Archimedean height pairing shall behave well under the correspondence, as the
global pairing does ([Be], Lemma 2.1.3). Following that principle, we try to find a
suitable correspondence

FcXxXxY
o m2 (1.2.1)

X x X Y,

such that under and the transpos& of I, ‘T',ya = A for a pointy in Y, T',C
is a divisor inY’, and the Archimedean height pairings satisfy

<Cat F>i<yA>X><X = <F*Ca yA>Y + C(yAa C)a (122)
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wherec(ya, C) is a continuous function (therefore bounded) in variablesC

that comes from the normalization condition of Green’s currents, and therefore
depends on the &hler metrics on bothX, Y. So, up to a bounded(ya, C)

(C = A x B), the pairing(A, B)x is equal to the pairing between the divisor
I'.(A x B) and the poinya with ya fixed. Let L be the line bundle corresponds

to the divisoT',(A x B) onY. The Poincag—Lelong formula then can be applied

to (T'«(A x B),y)y, i.e.

(Tw(A x B),ya)y = log|loaxs(ya)ll?, (1.2.3)

whereo s« p is a section ofL that defines the divisof',(A x B) in Y, and
|| - || is some suitable metric oh. In the meantime, there is a sectignof O(1)
bundle of the projective spade(H°(L,Y)) of divisors onY (the linear system
containingl’, (A x B)), defined by evaluating the regular sectiore H°(L,Y)
of L aty, i.e. s'(div(c)) = o(y) € C = fibre of L aty. Thus (1.2.3) can be
written as(T(A x B),ya)y = log(||s'(T«(A x B))||1)? for the metric|| - ||
of O(1) on P(H°(L,Y)) induced from the metric o.. Under the new metric
|- ]l2=|| - []2e—°¥2:C), we then have

(A, B)x =log(]|s'(T'+(A x B))|]2)2. (1.2.4)

Note if A x B stays in the same cohomologdy,(A x B) will be in the same
linear system, provided ifY’ rational equivalence coincides with homological
equivalence for divisors. Therefore the correspondé&rinduces a morphism from
productCy’(X) x Cg(X) of the Chow varieties to the linear systeéMiH?(L,Y))
by sendind A, B) toT',.(A x B). Using the morphism, we pull back the metrize line
bundle 1), and the sectios’ on P(H%(L,Y)) to the producty(X) x C;f(X)
of the Chow varieties to complete the construction.

So the problem boils down to finding such a correspondence (1.2.1) for the
fixed cycleA. WhenX is a projective space, one can chobde be the incidence
correspondence between points and divisors. Such a detailed construction has been
worked out in [W1]. As a corollary of this, for a general smooth projective variety
X, if Aisthe intersection cycle of a subvariety akick X in a projective space, the
construction can still be carried out by using the incidence correspondence for the
projective space ([W1], Coro. 2.2.8). But in genefals not such an intersection
cycle of a subvariety withX x X, not even in the cohomology group. So the
idea is to move the diagond in its rational equivalence class to a new cycle
for which above suitable corresponderitean be found. That can be done for
the cycle(m — 1)!A (this is why (m — 1)! shows up in (1.1.3)), by the results
of Kleiman (see Proposition 4.3) involving a ‘twisted imbedding’26fx X in
some Grassmanniah(k, n). Precisely, the new cycle &1 — A (i.e. (m — 1)!A
is rationally equivalent td\; — A») hereA; is an intersection cycle of a special
Schubert cycle withX x X in the Grassmannia@'(k,n), andA; is an integer
multiple of an intersection cycle of a linear space withx X in a projective space.

comp4256.tex; 21/07/1995; 13:13; v.7; p.4

https://doi.org/10.1023/A:1000650009973 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000650009973

MAZUR'’S INCIDENCE STRUCTURE FOR PROJECTIVE VARIETIES (I) 307

As we mentioned above, in [W1] the construction for the fixed cyxlehas been
worked out by using the incidence correspondence. In this paper (Section 3 and
Proposition 5.3.1) we show that the correspondence (1.2.1) for the fixed&ycle
can be found, and is the induced correspondence between Grassmannians

r={(V,W)eGk,n) xGn—k+m,n): dmV W) >m+1}.

ThenI'.(A x B) is a divisor. We call it a ‘twisted Chow divisor’ (see Section 3).
Then'T,ya, is a special Schubert cycle @#(k, n). Finally, we show that moving

A only changes formula (1.1.3) by adding a logarithm of a rational function
(Proposition 5.3.1).

1.3. POSSIBLE FUTURE APPLICATIONS

It is important to point out that the divisor defined bys supported on the set of
intersecting pairs of cycles. Therefore it is appropriate to think of it as a ‘universal
cycle’ (only forZ{), or the collection of intersecting cycles counted with naturally
defined ‘multiplicity’. As matter of fact it is the generalization of the universal
hypersurface.

The study of the incidence line bundfeand the sectior has a wide range of
implications in algebraic geometry. We list a couple in the following:

(1.3.1) We define the incidence divisor to Be= div(s). The noneffectivity of

D which sometimes occurs is an obstruction to the existence of a positive Green’s
current, which is defined by Bost-Gillet—-S6y[BGS], p. 1015). The ampleness

of the incidence divisor was proposed and studied by Griffiths [G2]. We'll discuss
these questions in Section 6.

(1.3.2) The line bundle induces a duality mag: CHy,(X) — Pic(Cy(X)),
whereC H,(X) is the Chow group. If two cycles have the same image urigler

we say they are incidence equivalémiain’s results ([H]) on the the Archimedean
height pairing imply that the homomorphisinfactors through the intermediate
Jacobian via the Abel-Jacobi map. One of the open problems in Hodge theory —
understanding the Abel-Jacobi map — therefore can be approached with the aid

* Griffiths defines incidence equivalence in [G2], using smooth parameter spaces and obtains
divisors modulo rational equivalence.
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of L. In general, rational equivalence implies Abel-Jacobi equivalence, and Abel-
Jacobi equivalence implies incidence equivalence. It is a conjecture of Griffiths that
Abel-Jacobi equivalence is the same as incidence equivalence ([G1]). We intend
to study such a duality map in [W2].

(1.3.3) Here is the outline of the rest of the paper. Our construction is based on
Gillet—-Souk’s theory of Green’s currents. In Section 2, we recall some techniques,
namely, the push-forward and the pull-back of cycles, currents, and in particular the
Green’s currents. In Section 3, we discuss the ‘twisted Chow form’ of a cycle via
special Schubert cycles (instead of planes for the usual Chow form), and then we
show a morphism from the usual Chow variety to the ‘twisted’ one. In Section 4,
we discuss ‘moving lemmas’. Section 5 is the core of this paper where we present
all the calculations of Archimedean height pairing we need for the construction,
and prove Theorem 1.1.2. In Section 6 we discuss the positivity and effectivity of
the incidence divisor and, furthermore, give some examples.

2. Currents and cycles

We would like to introduce some of the techniques, namely the push forward and
the pull back of currents and cycles. L&§(X) be the group of algebraic cycles

of dimensionp. Let D, (X) (resp.D, ;) be the set of currents of dimensian
(resp.(p, p) type), andA™(X) (resp.L(™ (X)) be the set of smooth forms (resp.

L forms) of degree:. There are natural maps

Zp(X) = Dppy C— [p
A"(X) = Dy—pn(X); n— linear functionaka — [ ya An},
L™(X) = Dy n(X); n— linear functional{a — [y An}.

LetC € Z,(X), andgp € A™(X)(resp L(™ (X)), then denote their images in the
space of currents by, [¢] respectively.
2.1. PUSHFORWARD

The following are the definitions and properties of the push-forward of cycles and
currents. LetX andY always be smooth algebraic varieties oZeandR(Z) the
field of rational functions on algebraic varief

(2.1.1) Letf: X — Y beaproper morphism between smooth projective varieties.
Then the push-forward

f«: Dp(X) — Dy(Y)
T — f.(T)
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of currents is defined by, (T")(n) = T'(f*n), n is a smooth form.

(2.1.2) Suppos¢ is smooth, and proper. Then the push-forward of a smooth
form

ful API(X) — APTSOTS(Y)
n — fin

is defined by the fibre integration, wherés the complex dimension of the fibres.
Using the iterated integral, we haygln] = [f.n]. f» commutes with the operator
dd°®.

(2.1.3) Letf be proper,Z an irreducible subvariety oK. Denote the space of
cycles of dimensioik by 7, (X'). We'll denote the cycle represented Byby the
same letteZ. We knowZ’ = f(Z) is a closed subvariety &f. Let

[R(Z): R(Z")], ifdim(Z)=dim(Z"),

degZ/Z’) = {0, ifdim(Z,) < dim(Z).

The push-forward, Z of V is defined byf.Z = deq Z/Z')Z'. f. can be extended
linearly to cycles, and the extension will be denotedfbyoo. The push-forward
of a cycle and the push-forward of a current coincide. Precisely, this means

PROPOSITION 2.1.4Let f: X — Y be a morphism of smooth projective vari-
eties. Then for any cyclg € Z,(X),

55z = fbz. (2.1.5)

Proof. It suffices to assum¢ is an irreducible subvariety. Let’ = f(Z).
If dim(Z') < dim(Z), then both sides of (2.1.5) vanishes. Thus we can assume
dim(Z) = dim(Z'). We only need to prove (2.1.5) locally. Singef is a morphism,
then there is a Zariski open 9étC Z’, such thal’ lies in the smooth locus df’,
andf: f~1(U) — Uis adedZ'/Z) sheets covering. Take any neighborhood (in
usual topology): of an arbitrary pointiri/, thenf —1(u) is the union of de(’ / 7)
many copies ofi.. For any smooth forny onY,

/fl(u> fin= dqu'/Z)/un-

Thusf.d, = ded Z'/Z)é 4, which is equivalent to what we would like to prove.
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2.2. PULL-BACK

(2.2.1) Supposg a smooth morphism. Then the push-forward of differential
forms has its duaf* defined on currents,

Dn(Y) - Dn-i—s(X)
T — [*T(¢) =T(f+9),

wheres is the dimension of fibreg'* commutes withid®.

(2.2.2) Suppose the morphisfis flat. LetZ be a subvariety of . The pull-back
f*Z of Z is defined byf*Z = f=1(Z). We then extend it linearly to the cycles
to obtain the pull-back on cycles. The pull-back of cycles and the pull-back of
currents coincide in the same fashion as in Proposition 2.1.4.

2.3. GREENS CURRENTS

This section is adopted from [GS], 2.1.3, 2.1.4 for the convenience of the readers.
Let f: X — Y be a morphism between two smooth projective varietiesA_be
a cycle of codimensiop onY. Assumef (| B|) has pure codimensign Then
the pull-backf* B of the cycleB is well-defined (see [GS], [F], Chapter 8).flfis
an imbedding, therf* B is the intersection cycle as defined by J. P. Serre [S].

THEOREM 2.3.1 (Gillet-Sow)

(1) LetGp be an unnormalized Green’s form of log-type. TiféG/ is a well-
definedL! form on X. As a current,[f*G ] is an unnormalized Green’s
current for f*B, i.e. dd°[f*Gg| = 075 — f*[ws], Wherewp is a smooth
form Poincagé dual toB on X.

(2) If A, Baretwocyclesiry’, and they meet properly. L&tz be an unnormalized
Green'’s form of log-type, theli’ 5] A 0 4 is a well-defined current, i.e. for any
smooth formp onY’, the integralf , G g A ¢ converges. It satisfiedd®([G ] A
5,4) =048 — [o.JB] ANdy.

If fis animbedding, then the part (1) says the restriction of Green'’s dpnof
B to a smooth subvariety is a Green’s form of the intersection cycle- B in
X. See [GS], 2.1.4 for a more general statement.

3. Twisted Chow forms

Let £ be a vector space overof dimensiom. LetG(k, n) be the Grassmannian,
i.e. the set oft dimensional linear subspacesih We would like to imitate the
use of the incidence correspondence in projective space. The correspondence we
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are going to use here is the following that also satisfies Bertini’'s theorem proved
by Kleiman ([K1], Thm. 3.3). Let- be an integer, and & » < k. Let

I'"={(V,W)eGk,n) xGin—k+r—1n):dmV W) >r}.

We have a correspondence

PT
% \ 59
1 2
G (k)

Gn—Fk+r—1n)

DEFINITION 3.1. For anyW € G(n —k +r — 1,n), (n\"), o ({")*(W) is
called anrth special Schubert cycle, denoteddy(\W').

Itis awell known fact that a special Schubert cycle representsht@hern class
¢ (Q) of the universal quotient bundl@ on G(k,n). The following theorem is
Bertini's theorem due to Kleiman ([K1]), Theorem 3.3. We first recall his definition
([K1, 3.1): animbedding! C Grasg (F)= Grassmannian af-dimensional quo-
tients of ' is called twisted if itis the Segre product of amorphigdm> Grassg (F1)
and an imbeddingl — P(E»).

THEOREM 3.2 (Kleiman, [K1], Theorem 3.3)Let A be a twisted subvariety in
G(k,n) of dimensiorp, then for a general plan®” € G(n — k +r — 1,n), the
intersectionA N o,. (W) has pure dimensiop — r, especially whep — r < 0, the
intersection is empty, and furthermore it is smooth at the smooth locdsaoid

or(W).

PROPOSITION 3.3Let A be a twisted cycle irG(k,n) of pure dimensiom,
then(wg”ﬂ))* o (w&”“))*A is a cycle of codimension 1i(n — k + p,n), i.e. a
hypersurface.

Proof. It suffices to assumd is an irreducible variety. Note

(p+1)

ret) L, Gk, n)

is a flat morphism with each fibre isomorphicgot+ 1st special Schubert cycle
in G(n — k + p,n). By Theorem 11.12. in [Ha]gw§p+l))—1(A) is an irreducible
variety of dimensior{n — k + p)(k — p) — 1.

Let W' be a generaln — k + p — 1)-plane inE, then by Theorem 3.2. the
dimension of the intersection af,(W') and A is zero, therefore they intersect
properly at finitely many point¥;. Let w be a general vector i, andW =
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W'+ Cw a generap-plane, then ifo,,,1(W) N A is not empty, it has to be a
subset of{ V;}, which is finite. That shows among thoBé that (wg”“))—l(W)

intersects(r{” ") ~1(4), suchW that (r*"Y)~L(W) meets(xP*)~1(4) at
finitely many points, is generic. Thqgrg”“))* o (7r£”+1))*A is of dimension

(n—k+p)(k—p) -1 0

(3.4) LetX C G(k,n) be a twisted imbedding. Then any subvarietyXofwill
be a twisted subvariety @¥(k, n). Proposition 3.3 defines a map

¢: Cp(X) — Ch(G(n—k +p,n))
A s (ﬂ_éPJrl))* o (ﬂ_](-PJrl))*A’

whereh = (n — k + p)(k — p) — 1. From now on we denote the hypersurface

(), o (r{PTV)* A by D 1. One can viewD , as a ‘twisted’ Chow form ofd.

We believe the parameter space of effective cycles, define® yi&s isomorphic
to the Chow variety. Here we are not going to verify our speculation, instead, we
only prove

PROPOSITION 3.5.The mapyp is a morphism.

Proof. This is an immediate consequence of Barlet’s theorem of intersection
([Ba], Chapter VI, Theorem 10), and theorem of direct image ([Ba], Chapter
IV, Theorem 6), which say that the maps between Chow varieties induced by
intersection and directimage are analytic. ket n — k + p, Ny = dim(G(k,n))
andN, = dim(G(e, n)). Letm; andmy be the projections frot(k,n) x G(e,n)
to the first and the second factors respectively. We vieag a composite map

CP(X) - CN1+P(G(k7n) X G(evn))
— Cn,—1(G(k,n) X G(e,n)) — Cn,—1(G(e,n),
A = mi(A) = TP i (A) = (m)o(TPH - i (A)),

which is a morphism by Barlet’s theorems, where the-doéans the intersecting
of cycles.
Clearly (), (TP+L.75 (A)) = ¢(A). |

Remark3.6. NoteC,(G(e,n)) is the space of hypersurfacesiite, n). Hence

itis the union oC¢(G (e, n)) = P(H%(G(e,n), O(d)))-the space of hypersurfaces
of degreel in G(e,n), which is a projective space, denoted By

4. ‘Moving lemmas’

Several results concerning ‘moving lemmas’ are needed for the calculations in
Section 5. We list them in this section for the convenience of the readers.
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PROPOSITION 4.1let X C P™ be an imbedding of the smooth varieXy of
dimensionmn. Let Z be an irreducible subvarietyy a subvariety inX. Let L be
a linear space of dimensian — m — 1, andCy,(Z) the cone with verteX. Then
for genericL,

(a) CL(Z) meetsX properly, and the intersection is transversalati.e.

l
CL(Z)- X =2+ 7,
j=1

wherey_; Z; called the residual cycle is a cycle that has dimenglon(Z),
and does not contai@ (There might be repeated;).

(b) If Z does notmeé¥ properly, therdim(Z;NW) < dim(ZNW) in particular,
if dim(Z NW) = 0, Z; is disjoint fromW/.

(c) If Z meetsWW properly, then the intersection && and Z; is generically
transversal.

Parts (a) and (b) were proved by J. Roberts ([R]) and part (c) by Hoyt ([Ho]).
The following is a special case of a more general statement proved by Kleiman
[K2], 8 Corollary.

PROPOSITION 4.2 (Kleiman, [K2])LetZ, W be subvarieties oP”, then there
is a nonempty open s&tof PGL(n + 1), such that the intersection gf Z) and
W is generically transversal for alj € T'.

PROPOSITION 4.3 (Kleiman, [K1])For anya € CH,(X) (the Chow group),
there is a twisted imbedding X — G(k,n) such that

(m—p—Dla=1i"(cm-p(Q)) — [H]P,

where( is the universal bundle @¥ (%, n), [H] a hyperplane section, andsome
integer.

PROPOSITION 4.4 (Angniol, [An], Cor. 8.1.2.2). Let X be a smooth projective
variety. LetU be the subset of the product of the Chow variafigsy) x C,y (X),
such that the intersectioA - B is well-defined fok A, B) € U. ThenU is an open
set, and the map

U — Cy(X)
(A,B) - A-B

is @ morphism, where = p + p' — dim(X).
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5. Calculation of Archimedean Height Pairing

In this section we always assumieis a smooth projective variety of dimensign
equipped with a Khler metric, and4, B are linking pairs inX, i.e. dim4) = p,
dim(B) = gwithp+¢=m — 1.

5.1. THE CASE WHEREA IS A HYPERSURFACE

Let's see a special case which serves as a prototype for the formula (1.0§. Let
be a smooth projective variety of dimension B a fixed point inX (¢ = 0),
and L a line bundle onX. Give a Fubini—Study metric on the projective space
P(H®(X, L)) # o i.e. projectivization of the space of holomorphic section& of
which is a subvariety of the Chow variety &f C,,,_1(X) (of dimensionm — 1,
and with the rational equivalence cldgs). Take any sectiorf 4, which defines

a hypersurfacel. Given an admissible Hermitian metrion L., Poincae—Lelong
formula saysid®([log || f4]|?]) = 64 — [w], wherew is the curvature form.

To normalize the Green'’s function, i.e. Idg||?, we subtract a suitable num-
berh(f4), whereh(fa) = [y log||fal|?>dv (dv is the volume form defined by the
Kahlerformwithf dv = 1). By the proposition 1.5.1in [BGS}(f4) is a contin-
uous function onP(H°(X, L)). We then havéA, B) = log(e *(/4)||f4(B)|[?).
One can viewf, (B) as a section of the Q1) bundle onP(H°(X, L)) evaluated
atA € P(H°(X, L)), wheres is defined by{ A : s(A4) = 0} = {A: f4(B) = 0}.
The metric|| - ||, on (1), which is only continuous is the induced metric
from the admissible metric o multiplied by e”(/4), With above setting,
viewing Archimedean height pairing as a function ®H°(X, L)), we have
(A, B)x = log||s(A)||2 with s a section of the line bundle(@).

5.2. CALCULATION FOR TWISTED CHOW FORMS

Let X be a twisted smooth subvariety of Grassmanididh, n). Assume given a
Kahler metric onX. LetCy*(X) be the Chow variety gf cycles in the cohomology
classa. Recall in Section 3, we le®; = P(H%(G(e,n),0(d))) be the projective
space of the hypersurfaces of degiem G(e,n), wheree = n — k + p. For a
W € G(e,n), there is a holomorphic sectiort of O(1) bundle onP; (which
should be in the dual of the vector spdé&(G (e, n), O(d)) ) defined by evaluating
o € H°(G(e,n),0(d)) atW,i.e.s'(0) = o(W) € C = fibre of O(d) atW.

Recall there is a morphism via the ‘twisted Chow divisor'Cy(X) C
C,(G(k,n)) — P4, whered is the degree of the ‘twisted Chow forn® 4 (see
3.4) for A € C(X). Then we define a line bundié on C;(X) to be the pull-
back#*O(1) of O(1) on P,;, and a holomorphic sectiofy, to be the pull-back
¢*s' of s'.

* The curvature form is a harmonic form under the givexhier metric.
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PROPOSITION 5.2.1Let B be a fixedg-dimensional intersection cycle of a
special Schubert cycle,,—,(W) on X, i.e. B = 0,,,—p(W) - X. For above line
bundleL and the holomorphic sectiony onCy (X), there is a continuous metric
|| - || on £ such thatog ||sw|[?(A) = (A, B)x for all A disjoint fromB.

5.2.2(Proof). Let E be a vector space of dimensiarequipped with a Hermitian
metric, G(k,n) andG(n — k + p,n) the Grassmannians of subspaces imbedded
in projective spaces by theiRlker imbedding. The&'(k,n) andG(n — k + p,n)

are equipped with the standardailer forms which are the restrictions of the
induced Fubini-Study formgs, u» on P(AFE), P(A"**PE) respectively. The
U(n) action onE gives actions orG(k,n) andG(n — k + p,n). These actions
are transitive and preserve the standaéhler metrics and they are all denoted
bygeU(n). Leti: X — G(k,n) be the inclusion map. L&¥, be a normalized
Green's form ob,,,_,(W) in G(k, n) with singularity of log-type. Then by (2.3.1),
the restriction™ (G, ) of G, to X defines a current that is an unnormalized Green’s
current of B in X, i.e. as currents iX dd°[i*(G,)] = ép — |[w], wherew is
some smooth form oX, to be precise, the restriction £ of the harmonic form
Poincaé dual too,,, (W) in G(k,n). Letwp be the harmonic form oX that is
Poincaé dual toB. Sincew andwpg are both Poinc@& dual toB in X, then there
exists a smooth fornf, such thatld®(f) = w — wp. We choose suclf that the
harmonic projection of is zero. Leth be the harmonic projection of(G,). Itis
clear thafi*(G,) — h + f] is a normalized Green'’s current 8fin X. Let A be a
p-cycle in Z disjoint from B. We obtain

<A7 B>X = (Aa O-m*P(W»G(k,n) + C(A) (523)

wherec(A) = [,(f — h), is a continuous function ol in C,(X), that depends on
the Kahler metrics orX andG(k, n), and cohomology class d@f.
Next we calculaté A, 0., (W))G(k,n)- LEL 71, T2 DE the projections of

G(k,n)G(n —k+ p,n)

to the two factors, an@”?t! be the correspondence defined in (3.0). Ket=
w{l(A) andG 4 Green'’s form of log-type. Note that G 4 defines Green'’s form of
ZinG(k,n)x G(n—k+p,n). Thent;[G ] A épp+1 is a well defined current (see
[GS],(2.1.3.2)) on the product these Grassmannians. TtWs(7; [G 4] A dpp+1)

is also well-defined. By (2.3.1),

ddc(ﬂ'I [GA] A 5Fp+1) = 62_Fp+1 - 7TI [(L)A] A 5Fp+1,
wherew 4 is the harmonic form Poincadual toA in G(k,n). Thus
dd* ((m2)«(71[Ga] A Opp+1)) = (m2)4(0z.00+1) — (m2)s (71 [wa] A Oppia), (5.2.4)

where(n2)«(d4.rp+1) = dp, by (3.4).
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Letw, be the harmoni€l, 1) form Poincae dual toD 4. Notew,, only depends
on the cohomology class and the Fubini—Study metric ai(n — k + p,n)*
It follows from (5.2.4) that, in order to show

(m2) (71 [G A] A Oppt1) (5.2.5)
is a normalized Green’s function &f 4, it suffices to prove that
(1) the harmonic projection dfrz). (75[G 4] A drp+1) is zero, i.e.

G(n—k+p,n)

whereN; = dim(G(n — k + p,n)), andu is the Kahler form.
(2) wa = (m2) (7] [wa] A dpp+1), i.€.(m2) (7] [wa] A dpp+1) IS harmonic.
(3) (m2)« (1[G A] A dpp+1) Is sSmooth outside dfD 4.

To prove (1), it suffices to show

/ (2)(}[Ga] A i) A 1
G(n—k-+p,n)

= [ Gan((m). (O Alm3) = 0.
G(k,n)
Letg € U(n) act on currents, we havygl'?*1) = I?*+1 So
(1)« (Opper A [m5157))

= (11)1(98ro+1 A g(m2) “[13"]) = (1)« (G A [m3137)).

Hence (1) (dpp+1 A [7@@72]) is U(n) invariant on a symmetric space and, there-
fore, a harmonic form. By the normalization condition@n,

[ G ((r2)u (e A [30d) = O
G(k,n)

To prove part (2), we reverse the orderafandm,. Then we see that part (2)
is equivalent to the above assertidfy ). (0pp+1 A [W;MQVZ]) is harmonic. By the
virtue of above proof, we prove part (2).

To prove part (3), we letip, be Green’s function oD 4 in G(n — k + p,n).

Then according to (5.2.4),

dd®((m2)« (75 [G A] A dpp1) — Gp,) = 0.

* Actually w, = du. for some integer d depending an and clearly d equals to the topological
intersection number ef with special Schubert cycle of complimentary dimensio&{m —k+p, n).
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Note that we are dealing with currents of degree 0. Therefose. (71[G 4] A
drp+1) — Gp, is a harmonic current of degree 0 and, in particular, a smooth
function. The smoothness @f,, outside of|Dy4|, implies the smoothness of
(72)«(75[G A] Adpp+1) outside of D 4 |. Thus(m2) . (77 [G 4] Adrp+1) is@anormalized
Green’s current oD 4.

By the proposition (1,5.2) of [GBS], the fibre integﬁ;lgfl(W),FpH G 4 coincides

with the continuous functiofr2). (73 [G 4] A drp+1) oOutside ofl D 4|. Hence

<DA7 W>G(n—k:+p,n)

= (m2)«(M1[G A] A Opp+1) (W) = / . Ga
(71-2 (W))-FP+1

= (A, 0m (W) = (4, B)x — c(A).

Applying 5.1 to the pairingDa, W) g(n—k+p,n), We know there exist a section
s' of the (1) bundle onP(H°(G(n — k + p,n),0(d)), and a continuous metric
|| - []1 on O(1), such tha{D 4, W) = log||s||2. Note(A, B) = (D4, W) — c(A).
Then pulling back the sectiosi, and the line bundle ) to C;*(X) via the map

¢ (from (3.5)), and multiplying the pull-back metric by%, we obtain the
sections = ¢*s’, the line bundleC = ¢*(O(1)) and the metrid| - ||, such that
(A, B) = log||s||?(A). This completes the proof of 5.2.1. O

5.3. THE PROOF OF THEOREM. 1.2

We now go backto the generEl RecallC;(X) is the Chow variety of thg-cycles
in the cohomology class. Let/y be the open set afy(X) that consists of the
p-cyclesA disjoint from B (i.e. their supports are disjoint) forgacycle B.

PROPOSITION 5.3.1Let B be ag-cycle rationally equivalent to zero. Then there
exists a rational function on the closuré{z of i, suchthatog|r|?(A) = (A, B)
for A € Up.

One can prove the proposition by using Hain’s result in [H]. Such a proof will
appearin [W2], where the relation with Intermediate Jacobians will be emphasized.
But here we present another proof by using Gillet—-8sudnalytic tool — ‘Green'’s
Currents’ —for on the one hand, we would like to maintain the consistent approach
of ‘Green’s currents’ throughout the paper, and on the other hand we hope this
method alone might be of interest in the study of the incidence relation.

Proof. Note first that since the height pairing is additive &n it suffices to
assume there is only one irreduciple 1 varietyZ in X with a rational functionr,

onZ,suchthatdi¢r;) = B and, secondly, for the technical reason we need to work
on an irreducible component 6f (X), where there is at least one cycle disjoint
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from B. But we'll see the construction of the rational functiois independent of
such an irreducible component. Therefarayill be defined ori/g, which is the
union of all these irreducible components. Weddte an irreducible component of
Cy (X), in which there is at least one cycledisjoint from B (i.e the intersection
of Up with C is nonempty). We will work ort.

Step 1.In this step we assume

() There is anA € C such that4 intersectsZ properly at the smooth locus of
Z,i.e|A| N |Z] consists of finitely many smooth points Bt

Letr: Z — Z be a smooth resolution &f, i: Z — X the inclusion map, and
f = i ox. Give a Kahler metric toZ, such that the induced volume formis
normalized, i.e[; n = 1. Leta be the intersection number af with a. LetG 4
be a normalized Green’s form df of logarithmic type. Then by (2.3.1)f*(G 4)]
is a current orZ, anddd®[f*(G 4)] = 84 — [f*wa], Wherew, is the harmonic
form representingr on X. Note that since we assumkintersectsZ properly at
smooth locus o7, f*A is supported om points (with multiplicity). That shows
[f*G 4] is an unnormalized Greens’ current tifA. As before, in order to obtain
a normalized Green’s current, one needs to subtract the harmonic projéction
of [f*(G 4)] and add a smooth form, orthogonal to closed forms afi, which
satisfiesld®¢, = f*w, — ap. Then

f*GA~+ pa — 1 (5.3.2)

is a normalized Green’s form ¢ A.
We shall prove

f«(0pB) = dB. (5.3.3)

By Proposition 2.1.4, it suffices to provef*B = B = div(ry) in Z,41(Z). A
formula in [F], p. 34, sayg.(f*B) = deq Z/Z)B. Here de¢Z /Z) = 1, sinceZ
andZ are birational. Thereforé, (f*B) = B. This proves (5.3.3).

Next we calculaté A, B) x. Becausé7 4 is smooth in a neighborhood 6B],
then

(A,B)x = / Ga
B
(by 5.3.3)
f«(f*B)
(by the definition of the push forward of currents. Note(divo ) = f*B)

[ pGa= / N
f*B div(riom)
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(by 5.3.2)

— (div(ry o 7). f*A) —/f*B bt | ¥

Note [;. 5z 1 = 0 (¢ is harmonic, and* B is homologous to zero), and

(div(ry o ), f*A) = (/f*Alog|rlo7r|2> _ ka,

wherek = [ log|r o r1|?y is the harmonic projection of log; o =|? (since the
Green's form of diyry o ) is log|r1 o 7|> — k by Poincaé Lelong formula, i.e

dd®(log|riom[?) = 6;4 ONZ).

Therefore

(A, B)y = </f*A|og|rloqr|2> _ (/*nga) _ka (5.3.)

To view (5.3.4) as the Chow variety, we let SYt#) be the symmetric product
of Z, which is the 0-Chow variety of with degreez. Then the rational function
r1 o w induces a rational functiorp on Synf(Z7)

r2(21, 2 Hrl o m(z).
Letz1(A) +--- + 2,(A) be the zero cyclg* A, then the formula (5.3.4) yields

log [ra(z1(A), .. . , za(A))2 — (A, B)x = ka + . ba. (5.3.5)

Finally, we interpretf* A. By Proposition 4.4, there is an open &&tn C, which
is nonempty by our assumption (consisting of the cyclewhich have proper
intersection with?), such that intersection mdp

U — Co(Z) = Synt(2)

A—Z7-A

is a morphism. Thus we have a composite rational gnap

-1 -
Cy — Co(Z) = Synf(Z) = Synf'(Z),
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wherer; 1 is the obvious rational map induced frern®. Formula (5.3.5) becomes
IWMWMW—MBM=m+A b (5.3.6)
*B

where the right-hand side is independentdoandr; o j is a rational function on
C. Note that (5.3.6) only holds for thosé that intersectZ properly at smooth
points. But the set of thos#& is an open set, which by our assumption is nonempty,
therefore dense in the irreducible compor@ot the Chow variety. The continuity
of the Archimedean height pairing allows us to extend (5.3.6) to the €htiiz .

The constant term (with respect #) will now be calculated and shown to be
independent of the resolutidfi of Z and so dependent only ¢f, B andr.

bt [ ga=hatdpp(da)
f*B
(use the formula just before 5.3.4)

:ka+[|0g|worl|ddc¢a
7

— ka + / log |7 0 r12(f*wa — a)
A

(use the definition of)

:/ |Og|7"1|2wa.
z

At this point we have proved Proposition 5.3.1 under the assumptj@x¢ept for
a constant which can be absorbed into the rational functiory.

Step 2.We now drop the assumptionin step 1. We first fix an imbedding
X C P", and a rational functiom, on P™ inducing the rational functiom; on
Z whose divisor isB. We proceed by the induction on digh N Z). Suppose for
A, e = dim(AN Z) > 0. By Propositions 4.1, 4.2 there is a linear spacef
dimensiom —m — 1 in P™, such that the con€7,(Z) meetsX transversally af
and

(@) Cu(Z)- X =7+ 7,
i

(b) for each irreducible variety’;, dim(Z; N A) < e, Z; is not contained in
div(rz) and div(rz|z; ) is disjoint from A,
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(c) alsothere is a Zariski open $tn PG L(n + 1), such thatfoy € T', A meets
g(Cr(Z)) transversally at finitely many points, the intersection

9(Cr(2)) - X = ZZ'

is proper, and di@/r2|Zé .) is well-defined and disjoint froml.

Note the support ofl is contained inX, andg(Cr (%)) - X = 32, Z; ;. We have
A- Z =A-g9(Cr(2)).

Since the intersection of andg(C, (7)) is transversal, then the intersectiondf
and)_, Z;ﬂ. is also transversal The assumptienin the first step then is satisfied
for the cyclesd, Y, Z; ;. We can apply the step 1 to the cyde= 3, dIV(T2|Z/ )

i.e. by Equation (5.3. 6) in step 1, there is a constgnand rational functlomg on
C such that

> (div(ral ), A) = loglre|*(4) — ¢,. (5.3.7)
i
We will discuss the behavior of each term in (5.3. 7y @approaches to the identity
I.Recalley, =32, [, log|r2|?w,. By the continuity of fibre integrals in [BGS],
g,

Proposition 1.5.1, the limit; of ¢, is [, 10g|r2[?wa + X; [, 10g|ra|°w, which
is finite. Also due to the continuity of fibre integrals, the limit of

div(ra|, ), A :/ “
;( (2|Zg,1) > Zidiv(rz\zl ) A

is (here the cycles being paired do not intersect and so we are integrating smooth
form G 1) (B, A) + 32;(div(rz|z;), A), which is finite. Lastly we examing,. By
(4.4), there is a rational map (using intersection),

T x C -2~ Synf(X)

(g,A) — g(CL(Z)) - A.

By the construction of, in the step 1y, is the composition withy of a rational
function on Syri(X') which is the product o# copies of the rational functiorp.
Thereforer, is a rational function-(¢g, A) onT x C or PGL(n 4 1) x C. The
existence of the limits of other two terms in (5.3.7) @s+ I impliesr(g, A)
restricts to a well-defined rational functief, A) = r; onC. Taking the limits of
(5.3.7), we have

(B, Ay + Y (div(ra|z,), A) = log|r{|(A) — cr. (5.3.8)
J
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Thus

(B,A) =log|r|(A) —ecr — Z(div(r2|zj),A>,
J
where din{Z; N A) < e. The induction can be performed on di#} N A) until
the residual cyclg”; Z; intersects4 transversally. Then apply step 1 to complete
the proof. 0O

(5.3.9) Proof of Theorem 1.1.2By the reduction to the diagonal ([Bo]),
(A,B)x = (A x B,A)xxx, WhereA is the diagonal. We then consider the
height pairing betweeml x B and A in X x X with the cycleA fixed. By
Proposition 4.3, there exist a twisted imbeddind x X — G(k,n), a special
Schubert cycle,, that represents theath Chern class of the quotient bundle, and
am-codimensional plane sectidf#™ such that

(m — DIA — (o - i(X x X) — LH™)

is rationally equivalentto zero oki x X, where is some integer. L&t} (X x X)

be the Chow variety with cohomology clag®f A x B in X x X. LetUa be the

open set of’) (X x X) that consists of thém — 1)-cycles inX x X disjoint

from A. Letly, U> be the open sets i/, (X x X) that consist offm — 1)
cycles disjoint fronv,, - i(X x X) andH™ respectively. We may also assume in
each irreducible component b there is at least one cyc@ disjoint fromo,,
andH™ (it can be achieved by choosing a general position of the special Schubert
cycleo,,, and the plane sectiaf™). Therefore the closuig, N NUA is equal

to the closuré/x. Note for a cycleC € Uy NU> NUA, We have

(m —DIA,C) = ((m — 1A — (o - i(X x X) — H™),C) +
Hom - i(X x X),0) — (LH™,C).
By (5.3.1), there is a rational functiononi{a = U1 NUs NUA, such that
(m —DIA = (0 - i(X x X) —[H™),C) = log|r|? (5.3.10)

for C e 1 NU2 NUA. By (5.2.1), and Corollary 2.2.8 in [W1], there are metrized
line bundlesl;, Ly, with rational sections; ands, onC;!, (X x X) such that

(om -i(X x X),C) = log||s1||%, (5.3.11)
(IH™, C) = log||s2]|? (5.3.12)

for C € UyNihp. LetL = Ly x Ly, ands’ = r-s1- s, . Metrize L by multiplying
two continuous metrics af; andZL,. We obtain the metrized line bundieand a
sections’ oni/x. Combining formulas (5.3.10), (5.3.11) and (5.3.12), we obtain

(A, C)xxx = log||s'||? (5.3.13)

-
(m—1)
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for C € Uy NU; NUA. By the continuity of the Archimedean height pairing
function, and the fact the closure@f N/, NUA is equal to the closure dfa, we
can extend (5.3.13) @Wa.

Finally we need to have everything @t (X) x Cg(X). By a proposition of
Barlet ([Ba], Chapter VI Prop. 1),

X1 CH(X) x CH(X) = C)_1(X x X)
(A,B) - AxB

is @ morphism. Especially the restrictionsdy;: U« — Ua is a morphism (recall
is an open set af, (X) x C;f(X) consists of all the disjoint pairs of cycles B).
Using the mapx|;; to pull backL ands’, we obtain a line bundl€ and a section
s onl{ as required.

To see the uniqueness, we J&f ands; be another metrized line bundle and
section satisfying 1.1.3. Then

lIsll _

log—— =1
|EE]E

This implies that the line bundiex L1t is a trivial bundle, and-s7tis a constant.
This completes the proof. O

6. Positivity and effectivity of the incidence divisor
6.1. EFFECTIVITY

The incidence divisor is defined to & = div(s). We can now define the duality
map induced by the intersection with. That is

CH(X) —> Ca(X)
A = (P)(D-({A} xCJ (X)),

where P; is the second projection fro(X) x CJ(X) to CJ(X), andCa(X)

is the group of Cartier divisors. No®(A) is not always well-defined on all the
components of ) (X) (see Example 6.3.3). Since the sectianay be identically

0, or has a pole everywhere on some components. But this will not happen on the
component onf(X) in which there is at least one cydgdisjoint from A.

(6.1.1) We would like to make some comments on our definition of the incidence
divisorD(A). We believe the definition above is equivalent to those of Griffiths in
[G1], [G2] (up to torsion). In [G1], Griffiths defined the incidence divigofA)

on a suitable irreducible component of Chow variety, later in [G2] he, in a precise
way, definedD(A) modulo rational equivalence for any smooth parameter space
S. His approach put the emphasis on algebraic cycles and their equivalences, not
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the parameter space. Thus the study of the Chow variety was not issue there.
Our construction with the approach of Archimedean height pairing allows us to
defineD(A) in a universal sense as a Cartier divisor, therefore also contains the
information of Chow varieties. More on this will appear in [W2].

In [BGS], Bost, Gillet, and Soeéldefined an effective Arithmetic cydlel, G 4)
by imposing a positivity condition o' 4, whereA is an effective cycle, an€ 4 is
an unnormalized, positive Green’s form. They further studied the existence of such
positive Green’s currents. From our point of view, the effectivity of incidence divisor
D = div(s) is related to the Bost—Gillet—Saupositivity of Green’s currents.

PROPOSITION 6.1.2If there exists a positive Green’s currér, for the effective
cycle A on X, then the divisoD(A) is effective onﬁg(X). Furthermore, if there
exist positive Green’s currents for the diagonalinx X, then the incidence divisor
D is effective o1, (X) x Cy(X).

Proof. If D(A) is not effective, letV_ be an irreducible subvariety with a
negative coefficient ifD(A). Choose a poinf3p on V_, but not on any other
varieties appearing ib(A). Take any holomorphic patf; on C,(X) passing
through By att = 0. Then the sectior(A, B;) has a pole at = 0. Due to
the positivity of Green’s current, as — 0, the left-hand side of the formula
(A, B;) = Xlog||s(A, By)||? is bounded above, while the right-hand side clearly
goes to positive infinity. That is a contradiction. The same proof is applied to the
second assertion.

Remarl6.1.3. We don’tsee any convincing evidence thatthe converse statement
of Proposition 6.1.2 should be true. In [BGS], it is proved that on a compact
homogeneous space, the diagonal has a positive Green’s current, therefore the
incidence divisor for such a space is effective, in other words the incidence section
s in Theorem 1.1.2 is holomorphic.

6.2. POSITIVITY

Following the definition of Griffiths ([G2]), we define:

DEFINITION 6.2.1. An algebraic cyclel is positive, if D(A) is ample on any
component/ (X).

PROPOSITION 6.2.2Let A be an algebraic cycle, and its rational equivalence
classis a positive linear combination of Chern classes of very ample vector bundles,
thenA is positive.

Proof. It suffices to assume the rational equivalence clagkisefthe Chern class
of a very ample vector bundle. By Proposition 5.3.1, changing the cyateits
rational equivalence class does not change the line bundle determir2gd4A)y
We may then assume that is imbedded in a Grassmannian, aftids the cut-out
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of a special Schubert cycle. The situation is the same as in Proposition 5.2.1, in
which the incidence line bundle of we constructed is ample.

6.3. EXAMPLES

We discuss the coefficient/tn — 1)!, which we don'’t know if is the best, i.e.
closest to 1 for all theX. For a specificX, the best\ is a numerical invariant

of X, denoted by\y. For a specific irreducible componeadt the besth is an
invariant ofC, denoted by x ¢. In [W1] we see for a projective spagé, Ap» = 1,
thusApn ¢ = 1 for all the components. It seems that, in general, for most of the
components, the coefficient should be 1. But we can'’t prove it is always the case,
nor can we give any example with# 1.

Intersection with the incidence divisor provides us with a microscope to look
into the singular nature of Chow varieties. The full account of intersection theory
involving D will not be clear until the coefficientdx ¢ are understood. In the
following discussion, for the sake of convenience, we’'ll fixed cytle

EXAMPLE 6.3.1. LetX C P". Take a subvariety! of dimensiong + 1 in X.
AssumeA intersectsZ transversally atl many points{z;}. Let H, be a family

of hyperplanes with € P!, andu,H; = P". Assume eaclfl; contains at most
onezx;. Corresponding is denoted by;. ThenZ;, = Z - H; gives a morphisnf,

P! — C,(X) whose image meeB(A) at the pointsZ;,. LetC# be the irreducible
component o, (X), that contains the image. By the asymptotic calculation in

[W3] or [W4], ast — t;
(A, Z) = log|t — t;]? + O(1).

By the definition in [F], Chapter 7, ds— t;,
s(4,Zy) = (t = t:)" + O(1),

wherey is the intersection multiplicity(¢;, D(A) - P, C#). Comparing both sides
of

AX,CZ |Og|S(A, Zt)|2 = <Aa Zt>a

we then have

N _ 1
X7 7 i(t;, D(A) - PLCZ)

(6.3.2)

EXAMPLE 6.3.3. LetP be the blow-up of projective spad& of dimension 2 at
one point,EZ C P the exceptional divisor. Use the complex variabte C U {oo}
to express the points in projective spaeeof dimension 1. LefX = P x PL.
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(1) LetA = E x {0} andB; = E x {t}. Pl is the parameter space that para-
meterizes cycle®, on X. In this case, the incidence divisbx(A) is —{0}
which is not effective.

(2) LetA = {e} x Plfore € E andB; = E x {t}. Then the incidence divisor
is not defined 0I’P1~, sinceA meets all the cyclé;.

(3) LetC be acurveinP thatdoes notmedi. LetA = C x {0}. ThenD(A4) =0
on P,
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