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1. Introduction

By a CM-field, we mean a totally complex quadratic extension of a totally real field.
In [12], Stark conjectured that given a positive integer 4, there are only a finite
number of CM-fields L with class number equal to 4. He was able to prove that
the number of such fields with a fixed degree > 6 is finite. Odlyzko [10] refined this
to show that there are only a finite number of such fields of degree > 6 whose
maximal totally real subfield K occurs in some tower
Q=Ky € Ky €--- € Kp =K

of number fields, with each member normal over its predecessor. In particular, this
includes all K which are Galois over Q. Hoffstein—Jochnowitz [5] showed that there
is an absolute, effectively computable (large) constant C > 0 such that the tower
condition above can be replaced with a discriminant bound dx > CX©l. In this
paper, we shall prove Stark’s conjecture for CM fields of degree > 6 whose normal
closure is solvable.

Stark’s conjecture is based on his results about zeros of the Dedekind zeta
function near s = 1. Let L/K be a Galois extension of number fields. In [12],
Stark showed that every simple real zero of the Dedekind zeta function {;(s)
is actually a zero of the Dedekind zeta function {y(s) of a field KC N C L
and [N : K] < 2. If the extension L/K is not Galois, there is no reason why such
a statement should be true.
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However, one case in which it does often happen that simple real zeros come from
at most quadratic extensions of the base is when the zero occurs near s = 1. The
meaning of the word ‘near’ depends on the context. Stark showed that for any
number field L, a zero of {;(s) which is in the region*

()

is necessarily real and simple. As in [7], we shall call such a zero a Stark zero.
Now let L/K be an extension, not necessarily Galois. As Stark observed, by
choosing ¢ > 0 sufficiently small, a zero p in the slightly narrower region
¢ ¢

- <o<l1, i <
nlogdy, ’ Il nlogd;,

where n = [L : K] (for some ground field K) is necessarily a simple zero of {;,(s)
where M is the compositum of L and a conjugate field L°. Indeed,

logdy, < 2nlogd;,

and so the zero lies in the region

2¢ 2¢
<o<l1, i<

logdy “ logdy

If 0 < ¢ < 1/8, this lies inside the Stark region (1). Hence, it is a simple zero of {;,(s).
If we assume Artin’s holomorphy conjecture for F/K, where F is some extension of L
which is Galois over K, then

() (s)
L) ()

is entire. Here, N = LN L°. It follows that {y(s) has a zero at the same point.
Moreover, as the discriminant of N is at most that of L, the same bound as above
applies to p with d replaced with dy. In particular, p is a Stark zero of {y(s)
and so is a simple zero. Now repeating this process if necessary, will yield an at
most quadratic extension of K where this zero occurs.

In general, we do not have Artin’s conjecture, but it is still useful to be able to
deduce the above consequence for zeros. As established by Stark himself [12], this
has applications to the growth of class numbers and the finitenes assertions
mentioned above. However, the nearer the zero p is to s = 1, the weaker these growth
estimates tend to be. In general, Artin’s conjecture can be eliminated only at the cost
of narrowing the region in which the zero occurs.

*Throughout this paper, ¢ and ¢ shall denote the real and imaginary parts (respectively) of the
complex number s. Thus the region refers to the set of complex numbers s = ¢ + it with ¢ and ¢
real and satisfying the given inequalities. For a zero p of a zeta or L-function, we shall often
write p = f§ 4+ iy where f and vy are real.
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A consequence of our main result is that the conjecture holds for CM fields of
degree > 6 whose Galois closure is solvable. We get effective lower bounds on
the minus part of the class number. These bounds are not best possible, but suf-
ficiently strong to deduce the finiteness theorem.

In [7], it was proved that for an extension L/K of odd degree and having solvable
normal closure, zeros of the Dedekind zeta function {;(s) sufficiently near s = 1
are also zeros of (g(s). To state precisely what ‘near’ means here, we need some
notation. Define the function

() = 12771317, )

Let n =[L: K] and e(n) = mﬁx o. Then set
p*In

3(n) = (e(n) + 1)*p(e(n)) = (e(n) + 1)*3'/312¢0-1,

In [7], Theorem 4.1, it was proved that there is a constant ¢; > 0, absolute and
effective, such that for any 0 < ¢ < ¢, and n odd, a zero of {;(s) in the rectangle

-  <o<l, < -——
S(n)logd;, ~ = = d(n)logdy

is already a zero of {g(s). The same constant ¢; will occur in the results of this article.
To get an idea of how much narrower the above rectangle is than the Stark region,
note that since

logn
< =
e(n) log2

we certainly have 6(n) <« n*. For most n, 5(n) will be much smaller. For example, if
n is squarefree,

d(n) <4-32 ~ 5.7690.

Except for a set of n of density zero, d(n) < (log n)’.

In this paper, we study the effect of removing the condition that the degree of L/K
be odd. We get a slightly weaker result due to the lack of control of the 2-Sylow
subgroup of the normal closure. However, the bound we obtain is sufficient to
deduce the finiteness result for class numbers of CM-fields.

In Section 2, we establish the main results on zeros. In Section 3, we apply these to
Stark’s conjecture on the class numbers of CM-fields. Finally, in Section 5, we make
some remarks about higher order zeros.
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2. Zeros of Dedekind Zeta Functions

THEOREM 2.1. Let L/ K be an extension of degree n whose Galois closure is solvable.
Let 0 < ¢ < ¢1/2. Suppose that {;(s) has a zero f in the range

C C
]—————— <0<, HS ———m—m—.
0oy logd, = ° 1S sy logd,

Then, there is a field N with K € N C L and [N : K] < 2 with {y(f) = 0.
In some cases, we are able to get as good a result as in the case of odd degree. Two
such cases are given below.

THEOREM 2.2 Let L/K be an extension of degree n whose Galois closure is
supersolvable. Suppose that {;(s) has a zero [ in the range

c
<o<l1, <

- d(n)logd, ®)

¢
d(n)logdy”

Then, there is a field K C N C L with [N : K] <2 and {5(f) = 0.

Remark. This result generalizes the result of Odlyzko—Skinner [11] to extensions
whose normal closure is supersolvable. Their result states that if L/K is a radical
extension of odd degree, then a Stark zero of {;(s) is already a Stark zero of
{k(s). Note that we have also eliminated the parity restriction on the degree of
the extensions which is imposed in [11].

THEOREM 2.3. Let L/K be an extension of degree 2" with solvable normal closure.
Suppose that {;(s) has a zero in the range (3). Then, there is a field K € N C L with
[N:K]<2and {y(p)=0.

Remark. In all of the above results, the zero f is necessarily real and simple
because it lies in the Stark region (1).

Remark. All irreducible characters of a supersolvable group are monomial and so
Artin’s conjecture is known. Thus, Stark’s theorem implies the above result with d(n)
replaced by n.

We note that the method of [7] actually proves the following result.

PROPOSITION 2.1. Let 0 < ¢ < ¢1/2. Let L/K be an extension of degree n such that
the Galois closure is solvable and there are no intermediate extensions K € M C L.

https://doi.org/10.1023/A:1017589432526 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017589432526

CLASS NUMBERS OF CM-FIELDS 277

Suppose that {;(s) has a zero f in the rectangle

4 c

- <o<l, <.
smylogdy ~° 'S Soyiogd;

Then, there is a field K € N € L with [N : K] <2 and {y(f) =0.

Proof of Theorem 2.1. We will proceed by induction on the degree n of L/K.
Denote by L the normal closure of L/K. Let H be the subgroup Gal(L/L). If H
is maximal, then the result follows from Proposition 2.1. Thus, we may suppose
that H € Hy and we may suppose that H; is a maximal subgroup of
G = Gal(L/K). Denote by L, the fixed field of H,. Let m =[L: L;]. Then m < n
and we can apply the induction hypothesis to L/L;. We get a field N, contained
in L and of degree at most 2 over L; such that {y,(f) =0. If ny =[N, : K] <n,
we can apply the induction hypothesis again to the extension N;/K. Then, we pro-
duce an extension N of K with [N : K] < 2 and {y(f) = 0. Thus, we are done by
the induction hypothesis except if n; = n, i.e. L = N}, so we now consider this case.

Denote by L; the normal closure of L, /K. Note that L is not contained in L, (as
Gal(Z/Zl) is a normal subgroup of G and is therefore not contained in H). Thus
the compositum M = LL, is of degree 2 over L;. Now replacing L with its Galois
conJugates we see that the compositum of the fields L°Lisa (2,2,---,2) extension
of L1 containing L and which is Galois over K. Hence, it is equal to L. Thus,
L/L, is an elementary Abelian 2-extension. Denote the Galois group of this exten-
sion by 7. We see that H N T is a subgroup of 7 of index 2 and M is its fixed field.

o |
/\

Consider G = G/T = Gal(L,/K). Then H, = H,/T is a maximal subgroup of G.
Let 4 be a minimal normal subgroup of G. As G is solvable, so is G and so, 4 is
elementary Abelian. If 4 = {1}, then Ly =L, and M = L. In this case, {,(s) has
a simple zero at s = f. Let us show that this is always the case.

Thus, we may assume that 4 # {1}. Then 4 ~ (Z/p)" for some prime p. Then
G = H; - A (semidirect product). Note that n =2[L; : K] = 2|4| = 2p’.

Hence, lifting to G, we have G = Hy4 and Hi N A = T.Notethat H; = HT and
that # N T is normal in H;. Let us set H = H/H N T. Then,

\@

H ~ HT/T ~ H\/T ~H.
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We proceed as in [7] and produce a simple zero of {y,(s). Let us briefly recall the
argument. We have Gal(M/L) = H ~ H;. Moreover,

H| — Aut(4) ~ GL.(Z/p)

is an irreducible solvable subgroup of GL,(Z/p). Hence, by a result of Dixon [1], we
know that there is a subnormal Abelian subgroup B (say) of H of index bounded
by y(r). Setting Y to be the fixed field of B, we have the following diagram.

L
HNT ‘
M
5]
Y
<0 |
L
If i, ---,a, are elements of G which project in G/T to generators of A, then

H () (N aHa™") € HNT.
To see this, let us set

H = H, ﬂ (N aiHha; ™).
For any a € A, if x € Hy NaH;a™' then xT commutes with a7. Indeed, writing
x =aya~! for some y € H;, we see that

xy V=aya'y'e ANnH, = T.
Hence, xT = yT. Thus, the image of H' in H, = H;/T commutes with 4. In fact, it is
easily seen that

H'T/T = {xT € H; : xT commutes with A4}.

It follows that H; normalizes H'T/T and so H'T/T is normal in G = H, - 4 and is
contained in H;. But as L; is the normal closure of L;/K, this forces
H'T)T ={1} (as 4 # {1}). Thus, H < T and

Hﬂ (Nia;Ha; ™) € HNT

as claimed.
Thus, M is the compositum of at most r+ 1 conjugates of L and so
logdy < [Bly(r)(r+1)logd].
On the other hand, |B|logdy < logdy andsologdy < y(r)(r + 1)logdr. Thus,
o< <1<
(r+ 1)logdy o(n)logd;,
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and so f3 is a simple zero of {y(s) as it lies in the region (1). Next, using the fact that
M /Y is Abelian, the zero-free region of [§8], Proposition (3.8), and the conductor
bound of [7], Proposition (3.2), we deduce that f is a simple zero of {,,(s) also.

Suppose M /K is not Galois. Let o € Gal(L/K) be such that M # M?. As the zeta
function of a conjugate field has the same zeros, we get a simple zero of {;s(s)
as well. Putting these together, we get a zero of the zeta function of the compositum
extension MM?°. Note that as M and M° are quadratic over L, we have
logdyye < 4logdy,. Thus, if

4

B =1

B logdy
for a 0 < ¢ < 1/16, then it follows that

4c

] [ —
lOngMU

p

\Y

and it is a simple zero of MM?°. This forces the zeta function of the intersection
M N M° = L to have a simple zero at s = f§ since

Caante (S)CL'l (s)
Car () age ()

is entire. Indeed, as M M? is a biquadratic extension of L, there is a quadratic exten-
sion M’ (say) distinct from M and M° with L, € M’ € MM?° and the above quotient
of zeta functior}s is {3r(s)/Cp, (s) and this is equal to the Hecke L-function of the
extension M'/L,.

But EI/LI is Galois, and so there is a field L; € N, € L, with [1\71 : L] <2 and
{y,(B)=0.If Ni = L, then f is a Stark zero of {r,(s) and we are in the maximal
case. Thus the result of Proposition 2.1 implies the result. If [N, : L;] =2, then
Ny N L= L, and then, the compositum LN, would be a subfield of M whose zeta
function vanishes to order > 2at . By the Aramata-Brauer theorem, (; y (s) divides
Cm(s) (that is, {a(s)/C; , () 1s entire). Thus, ord,—pCy(s) = 2 contradicting the sim-
plicity of the zero of {;,(s). Hence, we must have

1
< l-——
p<t 16logdy,
Now, we have as before, the inequality logdy, < [H|(r + 1)logd;. Since
H ~ H| — Aut(4) ~ GL.(Z/p)

it follows that

2

H| < p~ = A <n'™.
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Hence,

1
~16n°0(r + 1) logd,

B <1

contradicting the hypothesis of the theorem. This contradiction establishes that
M/K is in fact Galois. But in this case, by Stark’s theorem, there exists
K C N C M with [N : K] <2 such that {y(f) =0 and such that any subfield of
M whose zeta function vanishes at s = ff must contain N. Thus, K € N C L and
we are done.

Proof of Theorem 2.2. We proceed exactly as in the proof of Theorem 2.1 up to the
point where we produce a simple zero of {,,(s). The case p = 2 is included in Theorem
2.3 so we may restrict ourselves here to p # 2. As G is supersolvable, it contains a
normal subgroup of odd order divisible by p whose projection to G contains A. Call
this subgroup S. Now 7T and S are two normal subgroups of G of coprime order.
In particular, they are disjoint and this implies that they commute. In particular,
S commutes with A N 7" But this means that # N T is normalized by H,S = G. This
forces HN T =1 and so M /K is Galois. Hence, by Stark’s theorem ([12], Theorem
3) the simple zero f§ of {3/(s) comes from a zero of {y(s) where K C N C M,
[N : K] < 2. By the uniqueness of N, it follows that N C L.

Proof of Theorem 2.3. We proceed as in the proof of Theorem 2.1 to obtain a
simple zero of {;,(s). (We use the same notation as in the proof of Theorem 2.1.)
Now we observe that HN T acts on A by conjugation, and this action factors
through the quotient 4 = A/T. Thus, we get a map HNT — GL.(Z/2). As
HNT is a 2-group, it must have a fixed vector. This means that H N 7T has a
normalizer which is strictly larger than H;. But H; is maximal and so as above,
this forces HNT =1 and M /K is Galois. We are done as above.

3. Applications to Class Numbers

We begin by proving a slight strengthening of Theorem 2.1. We will be considering
the class & of number fields M which have solvable normal closure over Q. We
define a subclass Spr of fields for which there is a chain Q= M, C
M; C---C M, =M such that for each 1 <i <1t the extension M;/M; | has
solvable normal closure and

maxe([M;y1 : Mj])) < R

and

max[Miy : M;] < D.
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PROPOSITION 3.1. Let M € Gpr. Let 0 < ¢ < ¢1/54. Suppose there is a real f in
the range

c

T oD RS AR egdy P ST @)

such that {3/ (f) = 0.Then there is a quadratic field F contained in M such that
{p(B) = 0. If further, M is complex, M,_y is real, [M : M,_] =2 and {y,_ (p) # O,
then F is complex.

Proof. We proceed as in [12], Lemma 10, using Theorem 2.1. Let K C L C M be
fields with L/K and M/L having solvable normal closure. Suppose that
{y(P) = 0 with S in the range (4). To prove the first part, it suffices to show that
there is a field N contained in M such that N = K or [N : K] =2 and such that
{ny(P) = 0. This is because we can shorten the sequence by one field and in doing
this, we do not increase D or R. Moreover,

logdy < logdy, [N:Q] < [M:Q]

Hence, we can proceed inductively.
By Theorem 2.1, there is a field

LCPCM

with [P: L] <2 and {p(f) =0. If P = L, then we reapply Theorem 2.1 to get N.
Hence, we may suppose that [P: L] = 2.

Let M be the normal closure of M/L and L the normal closure of L/K. Set
P = PL. Consider the various conjugate fields {P°} as ¢ ranges over embeddings
¢ : P — Q which are the identity on K. Let P; be the compositum of the P°. Then
P/K is Galois and it is a (2,2, ---,2) extension of L. As Gal(i/K) is solvable,
it follows that Gal(P;/K) is solvable. Thus P/K has solvable normal closure and
so by Theorem 2.1, the field N exists. Notice that because [P: K] =2[L: K],
e([P: K]) <r+1, where r = ¢([L : K]). Then, with n = [L : K], 6(2n) < 276(n) and

| 27¢ < 1- c
Q)M s@nylogdy DR+ 1)*y(R)logdp

<p <l

Since 27¢ < ¢;/2, Theorem 2.1 applies.
For the second part of the Proposition, consider the sequence of fields

QCF CFM\CFM,C---CFM,.y CFM, = M.

Each extension has solvable normal closure over its predecessor. Hence, by the
Theorem of Uchida [13] and Van der Waall [14] (see also [9]), f is also a zero
of (p(s), E=FM, . But this means that E # M, | as we are assuming that
{m_(B) #0. Also, as we are assuming that [M : M,_1] =2, it follows that
E = M. As we are assuming that M is complex and M, ; is real, it follows that
F is complex. This proves the Proposition.
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PROPOSITION 3.2. Let K be a totally real field of degree n with solvable normal
closure over Q. Let L be a totally complex quadratic extension of K. Let
0 < ¢ < c1/54. Suppose f is a real zero of {;(5)/{k(s) in the range

c

[ — P |
ne™d(n)log dr b

wheren = [L : Q). Then, there is a complex quadratic field F contained in L such that

{r(p) = 0.

Remark. The zero f is necessarily simple as it lies in the Stark region (1) and so

{k(B) # 0.

Proof. Let K denote the normal closure of K/Q and set M = K L. It is easy to show
as above that the normal closure of L/Q) is solvable. By Theorem 2.1, there is a field
N with QC NC L and [N:Q]=2, {(y(f)=0. It only remains to check that
it is complex. This is clear, for N is not contained in K. Thus KN = L and as L
is complex, so is N. (Note that N is not contained in K as {g(f) #0.) O

Now using Proposition 3.1 and proceeding as in the proof of Stark [12], Theorem
1, we deduce the following.

THEOREM 3.1. Let K be afield of degree nin S and denote by py the residue at s = 1
of {k(s). Then

pr > e di "
ne(11)5(n)

for an effective absolute constant ¢ > 0.

For the next result, let K be a totally real field in S and let L be a quadratic
extension of K which is totally complex. Denote by A(L) the class number of L.

THEOREM 3.2. Let K be a totally real field of degree nin S and let L be a quadratic
extension of K which is totally complex. Writing d, = d%f, we have

h(L) ¢ fH

C
>
n(2n)“"d(n)

where ¢ > 0and cg > 1 are effective and absolute constants. For any ¢ > 0, there is an
effective constant c(¢) > 0 depending only on ¢, such that

WD > — & g

11
@) ®sm) ¢ S
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Proof. Denote by f, the possible real zero of {;(s) in the region

4

] ———— < <.
s(mylogd,

Write d; = d%f. For any ¢ with

1+ ! <o <2
= O o
410g dL 0x01 X
and
5 bo if it exists
= 1— W otherwise

we have, as in [12] and [10], §4,

WL = ' = por P e ke )

By Theorem 2.1, it follows that for 0 < ¢ < ¢;/54, {;(s) has no real zeros in the region

max|1— ¢ 1-— @ <o <1
Q) omylogd,” 4] T 0 T
(Indeed, if {;(s) has a real zero in the interval

1— 5 ¢ < 0<
2n)“®"5(n)logd;

then Theorem 2.1 implies that it comes from a quadratic extension N (say) of Q.
Note that L/(Q) has solvable normal closure. But such a zero must lie in the interval

—— < o < 1.
d\?

Now using the estimate di > dJ, the result follows.) In particular, it follows that
-1

C
1 - > —24 _m
M= i)

in(d "/, (log ) ™).
It is easy to deduce that

dfl/nf—l/Zn

-
1—p > — 4
b n(2n) @ (n) K

h s (n—1)/2 di*
L) > ——> 0=k
&) n(2n)e(2")5(n)f {k(o1)(2m)

By Odlyzko [10], pp. 284-285, we deduce that for some effective, absolute constants
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cg, c7 > 0,

-1
S

"2 a0

f(nfl)/Zn(l +C7)n'
This proves the first lower bound. For the second, take ; = 1 4 2¢1in (5) and proceed
as in Stark [12], (32). This gives the second bound.

COROLLARY 3.1. Given h, the set of (complex) CM fields Lin S, and[L" : Q] > 2
and having h(L) = h is finite and can be determined effectively.

Proof. Since n =[L* : Q] > 1, the first bound of Theorem 3.2 and the condition
h(L) = h bound n and f. Here, we are using the fact that

‘™ <« exp{c(logn)’} = o(cy).

In particular, given LT, there are only a finite number of possibilities for L. Since
[L*: Q] > 2, the second estimate of Theorem 3.2 bounds the discriminant of
L*. Thus the number of possibilities for L* are finite. All of this is effective.

Remark. 1t should be possible to get an effective estimate for the number of L with
h(L) = h as a function of /.

4. Examples

We note that if [L : K] < 4, then the Galois closure is necessarily solvable over K. We
deduce from Corollary 3.1 the following.

PROPOSITION 4.1. As L ranges over the set
{L a CM field,[L: Q] <8,[L:Q]#4}

we have h(L) —> oo effectively.
Proof. If [L : Q] = 6, this follows from Corollary 3.1. If [L : Q] = 2, this follows
from the work of Goldfeld [3] combined with that of Gross and Zagier [4].

5. Remarks on Higher-Order Zeros

We make some remarks on the generalization of Stark’s theorem on simple zeros to
zeros of higher order. Most of our remarks require the assumption of Artin’s con-
jecture. However, we will see how in the solvable case, the full strength of the con-
jecture is not needed.

Let L/K be a Galois extension. For each zero p of {;(s), we wish to associate a
subfield L,, normal over K such that

(1) ords—p(y,(s) = orde—, {1 (s)
(2) if K € M C L and ord,_,{y(s) = ord,_,{;(s), then M 2 L,.
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If we assume Artin’s conjecture, the existence of L, is immediate. Indeed, we
have the factorization {;(s) =[] L(s, 7"V where the product ranges over the
irreducible characters of Gal(L/K). Consider the set Z, = {y : L(p, y) = 0}. Define
H, = Nyez, ker y. Then H), is a normal subgroup of G and we let L, denote its fixed
field. It is easy to see that properties (1) and (2) above are satisfied.

We do not need the full strength of Artin’s conjecture to establish the existence of
L,. Consider the following result which we have already used several times. Let
M, and M, be two subfields of L with L = MM, and K = M| N M,. Suppose that
L is contained in a field L (say) which is Galois over K. Assume Artin’s conjecture
for L/K. Then the quotient

L) k(s)
Car, (9)Car, ()

is entire, a fact we have already used several times, and which according to [12] is due
to Brauer. In the case that L/K has solvable normal closure, the above suffices to
establish the existence of L,. This follows from the following.

PROPOSITION 5.1. Let L/K have solvable normal closure. Let M| and M, be two
subfields of L containing K, with the property that

Ords:pCMl (S) = Ords:pCMz(S) = Ords:pCL(s)'
Suppose that the quotient

§M| 14, ar, 0, (5)

¢ M, ()¢ M, ()

is entire. Then
Ords:pCMlﬁMz(S) = OI’dS:ng(S).
Proof. Let N = M;N M, and M = M{M;. Then by hypothesis,

()N (s)
§M1 (S)CMZ(S)

is entire. Moreover, by the result of Uchida [13] and Van der Waall [14], {,/,(s)
divides {4(s) and {,,(s) divides {;(s). (Here, and elsewhere in the paper, we say that
a function f(s) divides another function g(s) if the quotient g(s)/f(s) is entire.) Thus,

Ords:pCMl (S) < Ords:pCM(S) < Ordszpé’L(s)
and thus we have equality throughout. Hence,
Ords:pCN(S) = Ords:pCL(s)~

The reverse inequality also holds (as {y divides {;). O
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PROPOSITION 5.2. Under the hypotheses of Proposition 5.1, there is a subfield L, of
L satisfying (1) and (2). Moreover, L, is normal over K.
Proof. By Proposition 5.1, the set of subfields M of L with

ordy—,{y(s) = ords—,{, (s)

is closed under intersections, and thus has a minimal element. To see that L, is nor-
mal over K, we can apply Proposition 5.1 to two conjugates of L,,.

The full strength of Artin’s conjecture gives some information on the structure of
Gal(L,/K). O

PROPOSITION 5.3. Assume Artin’s conjecture for L/K and let s = p be a zero of
{1(s) of order r. If L/K has solvable normal closure, then Gal(L,/K) has a normal
subgroup of index divisible only by primes < r+ 1. In general, the index is divisible
only by primes < (2r 4+ 1). Moreover, it has an Abelian normal subgroup of index
bounded by a function of r alone.

Proof. 1f we factor {; (s) = ITLGs, 2D then by Artin’s conjecture, it follows that
any y for which L(p, y) = 0 has y(1) < r. Now the assertion follows from results of
Ito (see Isaacs [6], Corollary (14.6)) and Feit-Thompson ([6], p. 245). The last state-
ment is due to Mal’cev (see Dixon).

PROPOSITION 5.4. If in the above situation, Gal(L,/K) has an irreducible represen-
tation of degree r, then this representation is also faithful.

Proof. Such a representation would be the unique one whose L-function vanishes
at s = p and it would be a simple zero. If this character were not faithful then it
would contradict the minimality of L,.

Remark. Note that we need only assume Artin’s conjecture at the point s = p.

Next, one can ask whether every subfield of L which is normal over K is of the form
L, for some zero p of {;(s). Let M be such a subfield. The question then, is whether
there exists p such that

(1) Ords:pCM(S) = Ords:pé,L(S)
(2) orde=,{n(s) < ord,=,{r(s) for any proper subfield K €N Cc M with N/K

normal.
If we write
B Cr(s)
Cr(s) = Cp(s) i)’

condition (1) means that {;(s)/{y(s) # 0. As for (2), this means that

e0) G (L L
) N(”)(aM(p)> =0
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Now, M /K has a faithful irreducible character y (say). If we take p to be a zero of
L(s, ) then {;;/{n(p) =0 for any N as above. The question then is whether there
exists such a zero which is not a zero of {; /{;;. We do not know the answer to this
question.
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