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DISMANTLABILITY REVISITED FOR ORDERED SETS 
AND GRAPHS AND THE FIXED-CLIQUE PROPERTY 

JOHN GINSBURG 

ABSTRACT. We give a unified treatment of several fixed-point type theorems by 
using the concept of dismantlability, extended from ordered sets to arbitrary graphs. 
For a graph G and a vertex x of G we let NQ{X) denote the set of neighbours of x in G. 
We say that x is a subdominant vertex of G if there is a vertex y of G, distinct from x, 
such that NQ(X)L){X} C Nc(y)U{y}. If G has n vertices we say that G is dismantlable if 
the vertices of G can be listed as x\, xi, • • •, Xj,..., xn such that, for all i = 1,2,..., n— 1, 
xi is a subdominant vertex of the graph Gj = G — {XJ : j < /} . 

Theorem. Let G be a graph. Let Clique(G) denote the set of all non-empty cliques in 
G. Then G is dismantlable if, and only if (Clique(G), Ç) is a dismantlable ordered set. 

Corollaries of this result include known fixed-point type theorems for homomorphisms 
of trees, and for order reversing functions on dismantlable ordered sets, as well as the 
following. 

Corollary. Let G be a connected, triangulated graph. Then for any homomorphism 
f:G—> G there is a non-empty clique K in G such thatf[K] = K. 

1. Introduction. The concept of dismantlability for ordered sets, introduced by 
I. Rival in [11], has proven to be a very useful and interesting idea in the study of ordered 
sets, particularly in connection with the fixed-point property. Since the original proof of 
the fixed-point property for dismantlable ordered sets in [11], a great deal of significant 
work in this area has utilized the concept of dismantlability. In particular, we cite the 
work of K. Baclawski and A. Bjorner in [2], and J. Walker's paper [12]. These papers 
have provided much of the motivation for the present work. 

Our intention in this paper is to use the extended notion of dismantlability for undi­
rected graphs to unify several known fixed-point type theorems, including the result in 
[2] concerning order-reversing functions on dismantlable ordered sets, and the result in 
[8] on homomorphisms of trees. The notion of dismantlability for graphs has been em­
ployed in [9] to characterize the so-called "cop-win" graphs in connection with a natural 
vertex to vertex pursuit game, and in the work in [1] on bridged graphs. 

We will now set forth the basic definitions and notation to be employed in the sequel. 
In this paper all graphs and ordered sets are assumed to be finite, and by the term graph, 
we mean a simple, undirected graph without loops. 
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Let (P, <) be an ordered set. For elements x, y of P, we say that y covers x in P if 
x < y and there is no element z of P for which x < z < y. In this case, x is called a lower 
cover of y in P, and y is called an w/?/?er cov^r of x in P. As in [11], an element a of P 
is said to be an irreducible element of P if either a has exactly one upper cover in P or 
a has exactly one lower cover in P. P is said to be dismantlable if the elements of P can 
be listed as x\, X2,.. •, *«, (where n = |P|), such that, for all / = 1,2,..., n — 1, xt is an 
irreducible element of the ordered set P — {XJ : j < i}. 

Let P and g be ordered sets and let/: P —> g be a function. Recall that/ is said to be 
order-preserving if, for all x,y in P, x < y implies/(x) < /(y); order-reversing if x < y 
implies/(x) >/(y), and comparability-pre serving if, for all x,y in P, x < y implies that 
e i ther / (x)</(y)or / (x)>/(y) . 

Let G be a graph. We may also denote G by writing G = (V, £), where V is the set of 
vertices of G and E is the set of edges of G. If x is a vertex of G we let JVG(X) = {v E V : v 
is adjacent to x in G}. This set will also be denoted by N(x) when the graph G is clear 
from context. As usual, a subset K of V is called a c//gwe in G if x is adjacent to y for 
all x,y in AT. We let Clique(G) denote the set of all non-empty cliques in G. Clique(G) is 
regarded as an ordered set under set inclusion Ç. Recall that a vertex a of G is called a 
universal vertex of G if a is adjacent to all other vertices of G, that is if Nc(a) = V — {a}. 
And recall that a vertex a of G is called a simplicial vertex of G if the set Nc(a) is a clique 
in G. 

As in [9], we now extend the concepts of irreducible element and dismantlability 
to graphs. Since the definition is closely related to the so-called vicinal pre-order on 
graphs, also called the domination pre-order (see [6]), we have chosen to use the term 
"subdominant" in place of "irreducible". A vertex a in a graph G is called a subdominant 
vertex of G if there is a vertex b in G, distinct from a, such that {a}UNcia) Ç {b}UNc(b). 
In this case we will say that b dominates a, or that a is dominated by b. This means that 
a is adjacent to b and every vertex of G which is adjacent to a is also adjacent to b. A 
graph G is said to dismantlable if the vertices of G can be listed as x\, X2,.. •, Jtn, (where 
/? = | V|), such that, for all / = 1,2,..., n — 1, xt: is a subdominant vertex of the induced 
subgraph V — {XJ : j < /}. 

For an ordered set (P, <), we will let Comp(P) denote the comparability graph of P. 
This is the graph whose vertex set is P, and in which two vertices x,y of P are adjacent 
if x and y are comparable in P (that is, if either x < y or y < x). 

Let G and H be graphs and let/: G —> H be a function./ is called a homomorphism 
if, for all vertices x, y of G, if JC and y are adjacent in G, then either fix) = fiy) or fix) is 
adjacent to fiy) in //. 

Finally, we recall that an ordered set P has the fixed-point property if every order-
preserving function/: P -^ P has a fixed-point (that is, there is an element x E P such 
that/(x) = JC.) 

The genesis of this paper, and for much of the recent work concerning dismantlability, 
is I. Rival's result that if P is a dismantlable ordered set, then P has the fixed point 
property. ([11]) While an obvious extension to graphs would be to consider fixed vertices 
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of homomorphisms of a graph to itself, a somewhat modified version of this idea will be 
more useful here, namely fixed cliques of homomorphisms of a graph to itself. We will 
say that a graph G has the fixed-clique property if for every homomorphism/: G —» G 
there is a non-empty clique K in G such that/|X] = K. (Such a clique K will be called a 
fixed clique for/). 

The work in this paper will revolve around our generalization of Rival's theorem to 
graphs, namely, that every dismantlable graph has the fixed-clique property. Our proof of 
this result, (in the next section), and the fact that other fixed-point type theorems can be 
deduced from it (including some known results established by entirely different meth­
ods), come about by relating the graph G and the ordered set (Clique(G), ç ) . These 
matters will be discussed in the next section. For the moment, let us consider a natu­
ral question concerning the two notions of dismantlability for ordered sets and graphs, 
as applied to an ordered set P and its comparability graph Comp(P). One would expect 
the two notions to be equivalent (if we have generalized the definition to graphs in a 
sensible way). This is in fact true, and will be noted explicitly in the following section, 
but it does not follow immediately from the definitions of dismantlability. It is obvious 
that, if j is the unique upper cover (or unique lower cover) of x in an ordered set P, then 
{x} U N(x) Ç {y} U N(y) in the comparability graph of P, since the latter simply means 
that any element of P which is comparable to x is also comparable to y. In this case x is 
a subdominant vertex of Comp(P). These remarks clearly show that, if P is a disman­
tlable ordered set, then Comp(P) is a dismantlable graph. The converse is not quite as 
obvious—the point being that it is possible, for elements x, y in an ordered set P, that ev­
ery element of P which is comparable to x is also comparable to y, even though neither 
of the two elements covers the other. Now, if x and y are two such elements, we have 
either x < y or y < x. Let us suppose that x < y. There is an element x\ in P such that 
x < x\ < y and y covers x\. It is clear that y is the unique upper cover of x\ in P, and 
hence x\ is an irreducible element of P. However this observation is still not sufficient to 
enable us to deduce that P is dismantlable when the graph Comp(P) is. We will return to 
this point in the next section, where we will complete the proof that the two notions are 
in fact equivalent. 

2. The equivalence of the dismantlability of G and Clique(G). Let G = ( V, E) be 
a graph. Let C\, C2,.. . , Q , . . . be a listing of all the cliques in G, in order of decreasing 
cardinality. That is, if C; and Cj are any two cliques in G for which \Q\ < |C7|, then 
/ > j . Such a listing is, of course, not unique. Suppose we have chosen such a listing. It 
will be useful in describing the order in which we delete the elements of Clique(G) in 
discussing dismantlability below. 

Before we approach the main result of this section, there are two useful observations 
to make. First, note that, if x and y are vertices of G such that x is dominated by y in G, 
then for every clique A' in G which contains x, K U {y} is also a clique. And secondly, 
suppose that G is dismantlable, and that;ci, X2,..., xn is a sequence which witnesses this. 
Then we note that x\ is a subdominant vertex of G, and that the induced subgraph V—{x\} 
is also dismantlable. 
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Suppose P is an ordered set and that Q C P. We will say that P can be dismantled to 
Q if there is a sequence of elements x\, JC2,..., x^ in P such that, for all/ = 1,2,..., &, JC/ 
is irreducible in P — {XJ : 7 < /}, and Q = P — {xi : i = 1,2,...,/:}. 

LEMMA 2.1. Le£ G be a graph and let a be a subdominant vertex of G. Then the 
ordered set Clique(G) can be dismantled to Clique(G — {a}). 

PROOF. Let b be a vertex in G which dominates a. We will first show how to succes­
sively delete all the cliques in G which contain a but do not contain b, and then we will 
successively delete all the cliques in G which contain both a and b. What will remain, of 
course, is Clique(G — {a}). We let u denote the largest cardinality of a clique in G. 

Let K\ be the first clique in the given listing which contains a but not b. We claim 
that K\ is irreducible in Clique(G). Indeed, K\ U {b} is the unique upper cover of K\ 
in Clique(G): if L is a clique which properly contains K\ and does not contain b, then 
L would precede K\ in the list, contrary to the choice K\. We will delete #1 first in dis­
mantling Clique(G). As this argument shows, all cliques in G which contain a and not /?, 
and having the same cardinality as K\, are irreducible in Clique(G), and they can all be 
deleted one after another, in the order they appear in the list, in dismantling Clique(G). 
We now argue inductively. Suppose m is an integer, and that we have already deleted all 
cliques in G containing a but not b whose cardinalities are > u — m. 

Let %n = {K e Clique(G) : a G K and b £ K and \K\ >u-m}. Let K be any clique 
in G which contains a and not b and such that \K\ = u — (m + 1), and let L be any set of 
cliques such that K ^ L and such that \L\ = cu — (m +1 ) for all L 6 L. We claim that K is 
irreducible in Clique(G) — (%n U £). Indeed, the above argument shows that K U {b} is 
the unique upper cover of K in Clique(G) — (!%, U L). Therefore, we can further delete, 
one after another, in the order that they appear in the original listing, all the cliques which 
contain a and not b and which have size u — (m + 1). Repeating this procedure for all m, 
we see that Clique(G) can be dismantled to Clique(G) — JÏ, where A = \Jm %n is the set 
of all cliques in G which contain a but not b. Now let *B = {K € Clique(G) : a E K and 
b E K}, and for each integer n > 2, let % = {K 6 (B : \K\ < n}. We will now show 
that Clique(G) — A can be dismantled to Clique(G) — (A U *B) by showing that, for any 
n > 2, if K is any clique in G containing both a and b with |^ | = n, and if CT is any set 
of cliques such that K fi T and such that \L\ = n for all L £ T, then K is irreducible 
in Clique(G) — (A U %, U T). Indeed, in this case it is clear that K — {a} is the unique 
lower cover of K in Clique(G) — {A U ^ U <T)\ any clique properly contained in K and 
which contains a has either been deleted in A (if it doesn't contain b), or in ^ (if it does). 
Therefore we can delete, one by one, in order of increasing cardinality, the cliques in $ 
from Clique(G) - A, thereby dismantling to Clique(G) -(AU(B) = Clique(G - {a}). 
This completes the proof of the lemma. • 

We will find it convenient to separate the proofs of the two directions in our main 
result into two lemmas. 

LEMMA 2.2. Let G be a graph. If G is dismantlable, then Clique(G) is a dismantlable 
ordered set. 
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PROOF. We argue by induction on the number of vertices of G. For | V\ = 1, the 
result is trivial. If x\,X2i... ,xn is a sequence which witnesses the the dismantlability of 
G, then, as remarked above, x\ is a subdominant vertex of G, and G — {x\} is disman-
tlable. Lemma 2.1 shows that Clique(G) can be dismantled to Clique(G — {x\}). The 
induction hypothesis then implies that Clique(G — {x\}) is dismantlable, which implies 
that Clique(G) itself is dismantlable. • 

LEMMA 2.3. Let G be a graph. /fClique(G) is a dismantlable ordered set, then G is 
dismantlable. 

PROOF. Our proof is by induction on the number of vertices of G, the result being 
trivial if | V\ = 1. 

Let K\,K2,...,Kj,...,Krbea. listing of all the non-empty cliques in G such that, for 
all i < r, K( is irreducible in Clique(G) — {Kj : j < i}. We will refer to this ordering of 
the cliques as "the order in which the cliques are deleted". We say that Ki was "deleted 
at stage f. 

We first show that G contains a subdominant vertex. 
Let {a} be the first singleton clique which was deleted. Since singletons are minimal 

elements of Clique(G), at the stage when {a} was deleted, {a} must have had a unique 
upper cover, say Ca, among the elements of Clique(G) which had not yet been deleted. 
Thus {a} C Ca. Let b be a vertex in Ca—{a}. Because Ca is a clique, a and b are adjacent 
in G. We will show that b dominates a in G. First we establish the following. 

CLAIM. If K is any clique in G such that \K\ > 1, with a E K and b £ K, then 
K was deleted before {a}. If this were not the case, let K be witness. Then, among the 
cliques which had not yet been deleted when {a} was, there is one, call it K\, for which 
{a} C K\ Ç K, and such that K\ covers {a} (among the cliques which had not been 
deleted). But, since K\ ^ Ca, this contradicts the fact that {a} had a unique upper cover 
at that stage. This proves the claim. 

Now we show that b dominates a in G. For the sake of contradiction, assume not. 
Then there is a vertex c in G which is adjacent to a but which is not adjacent to b. Now, 
consider the clique {a, c}. By the claim, this clique was deleted before {a}. Let L be the 
last clique which contains {a, c} and which was deleted before {a}. At the stage when L 
was deleted, no singleton had yet been deleted, and so there is, for each element x E L, 
a clique Mx such that {x} Ç Mx C L, and such that Mx is a lower cover of L among 
the cliques which had not been deleted at the stage when L was. If it were the case that 
Mx = My for all x, y in L, then, denoting any of these sets by M, it would follow that 
M contained all the elements of L, contrary to the fact that M is a proper subset of L. 
Therefore L did not have a unique lower cover at the stage when it was deleted—L must 
have had a unique upper cover, call it L\, at that stage. It follows that c E L\ and hence 
that b ^ Li, since b and c are not adjacent. Therefore, by the claim, L\ must be deleted 
before {a}. But since L\ is deleted after L, this contradicts the fact that L is the last 
clique containing {a, c} to be deleted before {a}. Therefore b dominates a as we wished 
to show. 
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Knowing that G has a subdominant vertex a, the dismantlability of G will clearly fol­
low from the dismantlability of G — {a}. This follows from the induction hypothesis, 
once we observe that the dismantlability of the ordered set Clique(G) implies the dis­
mantlability of Clique(G — {a}). This latter implication follows easily from Lemma 5 
of [5]: a retract of a dismantlable ordered set is itself dismantlable. Clearly the func­
tion r: Clique(G) —• Clique(G - {a}) defined by r(K) = K if a fi K and r(K) = 
(K — {a}) U {b} if a e K, is a retraction. This completes the proof of Lemma 2.3. • 

We have now established the implications in both directions of the following theorem. 

THEOREM 2.4. Let G be a graph. Then G is dismantlable if, and only if, Clique(G) 
is a dismantlable ordered set. 

We can now also easily establish the equivalence of the dismantlability of an ordered 
set P and the dismantlability of the comparability graph Comp(P) of P. 

COROLLARY 2.5. Let P be an ordered set. Then P is dismantlable if, and only if, 
Comp(P) is a dismantlable graph. 

PROOF. AS discussed in the introduction, only the "if" requires proof. Let G = 
Comp(P) and suppose G is dismantlable. Then G has a subdominant vertex, and as noted 
in the introduction, this implies that P has an irreducible element, say a. The dismantla­
bility of P would follow from that of P—{a}, which we can infer by induction as follows: 
As the proof of Lemma 2.3 above shows, Clique(G — {a}) is a retract of Clique(G). So, if 
G is dismantlable, then, by Theorem 2.4, so is Clique(G), and hence so is Clique(G—{a}) 
by Lemma 5 (on retractions) of [5]. Applying Theorem 2.4 again, we see that G — {a} 
is dismantlable. But clearly G — {a} = Comp(P — {a}). m 

3. The fixed-clique property and some applications. Our applications of Theo­
rem 2.4 derive from I. Rival's fixed-point theorem: IfP is a dismantlable ordered set then 
P has the fixed-point property (Corollary 2 of [11]). Since any homomorphism/: G —• G 
from a graph G to itself gives rise to the order preserving function K —+ f[K] from 
Clique(G) to itself, we obtain the following. 

COROLLARY 3.1. Let G be a dismantlable graph. Then for any homomorphism 
f.G —• G there is a non-empty clique K in G such thatf[K] — K. 

As we will see, Corollary 3.1 can be used to infer some well-known fixed-point type 
theorems which were established by entirely different means. First, let us describe some 
classes of graphs which are dismantlable: 

(i) (Comparability graphs of) dismantlable ordered sets: These have been extensively 
studied. Many interesting sufficient conditions for an ordered set to be dismantlable have 
been found. We cite [2] and [11] in this regard. 

(ii) Graphs which have a universal vertex: Clearly if a is a universal vertex in G then 
every other vertex of G is dominated by a and so G is dismantlable. 

(iii) Trees: If a is a vertex of degree 1 in a graph G then a is a subdominant vertex of 
G. Hence any tree is dismantlable. 
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(iv) Connected triangulated graphs: This class of graphs includes the class in (iii). 
Recall that a graph G is said to be triangulated if every cycle in G of length greater than 3 
has a chord. A well-known theorem of G. A. Dirac [4] asserts that any triangulated graph 
which is not a clique contains two non-adjacent simplicial vertices. Now, it is clear that, 
in any graph G, if a is a non-isolated simplicial vertex of G, then a is a subdominant 
vertex of G. Indeed, if a is simplicial, we have {a} U N(a) Ç {/?} U N(b) for any vertex 
b which is adjacent to a. Therefore, if G is a connected, triangulated graph with at least 
two vertices, Dirac's theorem implies there is a subdominant vertex a in G such that 
G — {a} is a connected, triangulated graph. This easily implies G is dismantlable by 
induction. This fact has been generalized from triangulated graphs to bridged graphs 
in [1]. As in [1], a graph G is said to be bridged if every cycle C in G of length > 3 
contains two vertices whose distance in G is less than their distance on C. Anstee and 
Farber show in [1] that every connected bridged graph is dismantlable (and, conversely, 
that a dismantlable graph which contains no induced cycles of length 4 or 5 is bridged). 

In addition to the graphs included in the above four classes, it is easy to construct 
examples of dismantlable graphs which are in none of these classes. One such example 
is in Figure 1. In this graph, for / > 1, vertex / is a subdominant vertex in the subgraph 
consisting of all vertices < /, and so these vertices can be deleted in order from largest 
to smallest. 

We will now describe several consequences of Corollary 3.1. Of these, Corol­
lary 3.2(ii) was established (among many significant results) in [2] using homological 
methods applied to ordered sets. The actual result in [2], (see Theorem 2.1 and Corol­
lary 2.8 in [2]) is somewhat stronger: every order-reversing function from a dismantlable 
ordered set to itself either interchanges a pair of comparable elements or has a unique 
fixed-point. The uniqueness of the fixed-point does not follow directly from our applica­
tion of Corollary 3.1. We note that the homological methods in [2] have been extended 
in [3] to apply to comparability-preserving maps on an ordered set. 

The result in Corollary 3.2(iii) is found in 6.19 of [8], and is also established by a 
completely different argument than the one used here. It is, of course, also a special case 
of Corollary 3.2(iv). 

COROLLARY 3.2. (i) Let P be a dismantlable ordered set and letf: P —» P be any 
comparability-preserving function. Then there is a non-empty chain C in P such that 

flQ = C. 
(ii) Let P be a dismantlable ordered set and let f:P —» P be an order-reversing 

function. Then either there is an element x € P such thatfix) = x, or there is a pair of 
elements x, y in P with x < y such thatf(x) = y andfiy) = x. ([2]) 

(iii) Let T be a tree and letf: T —• T be any homomorphism. Then eitherf has a 
fixed-point orf interchanges two adjacent vertices of T. ([8]) 

(iv) Let G be any connected, triangulated graph, (or, more generally, any connected 
bridged graph), and let f: G —> G be any homomorphism. Then there is a non-empty 
clique K in G such that f[K] = K. Therefore either f has a fixed point, or there is a 
vertex x E G such thatf(x) is adjacent to x in G. 
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PROOF. Since cliques in the comparability graph of an ordered set are just chains, 
(i) follows directly from Corollary 3.1. We can deduce (ii) from (i) as follows. Iff is an 
order reversing function as in (ii) then, by (i) there is a non-empty chain C in P which is 
mapped onto itself by/ . If \C\ = 1 this gives a fixed-point. If \C\ > 1 then the largest 
and smallest elements of C must be interchanged since/ is order-reversing. 

Since, as remarked above, trees are dismantlable, (iii) follows directly from Corol­
lary 3.1 since, in a tree, any clique has at most two elements. Similarly, (iv) follows from 
the results referred to above, which imply that a graph with the given properties is dis­
mantlable. Note that iff[K] = K and if x is any vertex of K, then x and/(x) both lie in K 
and hence are either equal or adjacent. • 

FIGURE 1. A DISMANTLABLE GRAPH 

It is interesting to note recent work by A. Quilliot in [10] related to the above re­
sults. The condition that, for every homomorphism/ on G, there is either a fixed vertex 
x o r a vertex x for which x is adjacent to/(x), follows from the condition that every 
homomorphism has a non-empty fixed clique, as we noted above in verifying Corol­
lary 3.2(iv). This former condition has been shown to hold in [10] for a class of (fi­
nite) connected graphs called Helly graphs. (As in [10] a graph G is called a Helly 
graph if the collection of balls {Br(x) : x G V, r > 0} has the Helly property, where 
Br(x) = {v E V : d(x, v) < r}.) It is further shown in [10] that every finite Helly graph G 
contains a clique which is invariant under every automorphism of G. (These results are 
found in Theorems 1 and 2 in [10].) 

We conclude with a remark concerning triangulated graphs. As described in [7], it 
follows directly from Dime's theorem that every triangulated graph G has a perfect elim­
ination scheme: there is a listing x\,X2,...,xn of all the vertices of G such that, for all 
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/, Xi is a simplicial vertex of the induced subgraph V/ = {XJ : j > /} . Note the similar­
ity between this and the definition of dismantlability. The latter requires that the set of 
neighbours of Xj in V; has a universal vertex, whereas in a perfect elimination scheme, 
the set of neighbours of X{ in V/ must be a clique. 
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