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Abstract

Let Γ be a G-vertex-transitive graph and let (u, v) be an arc of Γ. It is known that if the local action GΓ(v)
v

(the permutation group induced by Gv on Γ(v)) is permutation isomorphic to the dihedral group of degree
four, then either |Guv| is ‘small’ with respect to the order of Γ or Γ is one of a family of well-understood
graphs. In this paper, we generalise this result to a wider class of local actions.
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1. Introduction

All graphs considered in this paper are finite and simple. A graph Γ is said to be G-
vertex-transitive if G is a subgroup of Aut(Γ) acting transitively on the vertex set V(Γ)
of Γ. Similarly, Γ is said to be G-arc-transitive if G acts transitively on the arc set A(Γ)
of Γ. (An arc is an ordered pair of adjacent vertices.) When G = Aut(Γ), the prefix G
in the above notation is sometimes omitted.

A very early and important result concerning arc-transitive graphs is the beautiful
theorem of Tutte [5, 6] that, in a connected 3-valent arc-transitive graph, the order of
an arc-stabiliser divides 16. To consider generalisations of this result, a very fruitful
concept is that of local action, which we now define.

D 1.1. Let L be a permutation group, let Γ be a connected G-vertex-transitive
graph and let GΓ(v)

v denote the permutation group induced by the action of Gv on
the neighbourhood Γ(v) of a vertex v. Then (Γ,G) is said to be locally-L if GΓ(v)

v is
permutation isomorphic to L. More generally, if P is a permutation group property,
then (Γ,G) will be called locally-P provided that GΓ(v)

v possesses the property P.

Note that, if Γ has valency d, then the permutation group GΓ(v)
v has degree d and,

up to permutation isomorphism, does not depend on the choice of v. In [7], the author
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introduced the following notion: a transitive permutation group L is called graph-
restrictive if there exists a constant c(L) such that, for every locally-L pair (Γ,G) and
an arc (u, v) of Γ, the inequality |Guv| ≤ c(L) holds.

This definition makes it possible to give succinct formulations of many results and
questions. For example, Tutte’s theorem can be restated as follows: the symmetric
group S3 in its natural action on three points is graph-restrictive and the constant c(S3)
can be chosen to be 16. The problem of determining which transitive permutation
groups are graph-restrictive was also raised in [7]. A survey of the state of this problem
can be found in [2].

If L is a transitive permutation group that is not graph-restrictive then, by definition,
there exist locally-L pairs (Γ,G) with |Guv| arbitrarily large. In this case, the best that
we can hope for is to obtain an upper bound on the order of Guv in terms of the order
of Γ.

The smallest transitive permutation group (either by degree or by order) which is
not graph-restrictive is D4, the dihedral group of degree four. The locally-D4 case
was thoroughly investigated in [3], where it was shown that there exists a sublinear
function f such that, if (Γ,G) is a locally-D4 pair, then |Guv| ≤ f (|V(Γ)|), unless Γ is
one of a family of well-understood graphs. Our goal in this paper is to generalise these
results to a wider class of local actions, which we now define.

D 1.2. Let p be a prime. A transitive permutation group L on Ω is weakly p-
subregular if there exist x, y ∈Ω such that |Lx| = p and xL ∪ yL = Ω, where L = 〈Lx, Ly〉

and xL (respectively, yL) denotes the orbit of x (respectively, y) under L.

This definition generalises the notion of a p-subregular permutation group, which
is the case when L = L (see [7, Definition 1.1]). Weakly p-subregular permutation
groups are graph-restrictive if and only if they are p-subregular. (This follows from [2,
Theorem 4 and Corollary 11].)

Some easy examples of weakly p-subregular permutation groups which are not
graph-restrictive are dihedral groups of even degree and Zp wr Z2 in its natural action
on Zp × Z2. There are also some nonsoluble examples, such as S5 acting on its 5-cycles
by conjugation. Our main goal in this paper is to prove the following theorem.

T A. Let (Γ,G) be a locally-L pair and let (u, v) be an arc of Γ. If L is weakly
p-subregular for some prime p then either:

(1) |Guv| ≤ |A(Γ)|3; or
(2) L is permutation isomorphic to Zp wr Z2 and Γ � C(p, r, s) for some r ≥ 3 and

1 ≤ s ≤ r − 1.

We now define the graphs C(p, r, s) which appear in Theorem A. These were first
studied by Praeger and Xu [4]. Let p be a prime and let r and s be positive integers with
r ≥ 3 and 1 ≤ s ≤ r − 1. Let C(p, r, 1) be the lexicographic product Cr[pK1] of a cycle
of length r and an edgeless graph on p vertices. In other words, V(C(p, r, 1)) = Zr × Zp

with (i, u) being adjacent to ( j, v) if and only if i − j ∈ {−1, 1}. A path in C(p, r, 1) is
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called traversing if it contains at most one vertex from {y} × Zp for each y ∈ Zr. For
s ≥ 2, let C(p, r, s) be the graph with vertices being the traversing paths in C(p, r, 1)
of length s − 1 and with two such (s − 1)-paths being adjacent in C(p, r, s) if and only
if their union is a traversing path in C(p, r, 1) of length s. Clearly, C(p, r, s) is a
connected 2p-valent graph with rps vertices.

There is an obvious action of the wreath product H = Zp wr Dr as a group of
automorphisms of C(p, r, 1) which induces a faithful arc-transitive action on C(p, r, s)
for s ≤ r − 1. It is easily seen that, in this case, the local action is Zp wr Z2 in its natural
action on Zp × Z2, which is weakly p-subregular. Note that |H| = 2rpr and hence the
order of the stabiliser of an arc of C(p, r, s) in H is pr−s−1. Thus, if p and s are
fixed, then the order of the stabiliser in H of an arc of C(p, r, s) grows exponentially
with r and hence exponentially with the number of arcs of C(p, r, s). This behaviour
contrasts sharply with the polynomial upper bound which is the other possibility in the
conclusion of Theorem A.

2. Proof of Theorem A

In the course of the proof, we will need the following result of Glauberman.

T 2.1 [1, Theorem 1]. Let P be a subgroup of a finite group G, let g ∈G, and
let P ∩ Pg be a normal subgroup of prime index p in Pg. Let n be a positive integer,
and let G̃ = 〈P, Pg, . . . , Pgn

〉. Assume that:

(1) g normalises no nonidentity normal subgroup of P; and
(2) P ∩ Z(G̃) = 1.

Then |P| = pt for some positive integer t for which t ≤ 3n and t , 3n − 1. Moreover, if
n = 2, p = 2 and t = 6, then P contains a nonidentity normal subgroup of G̃.

We now note a few elementary facts about weakly p-subregular permutation groups.
Let L be a permutation group on Ω. Let p be a prime and suppose that L is weakly
p-subregular as witnessed by x and y. Let L = 〈Lx, Ly〉. As xL ∪ yL = Ω, the group L
contains all point-stabilisers of L and hence L is normal in L. Since Lx and Ly both have
order p, Lxy is normal in both of them and hence Lxy is normal in L. Since Ω = xL ∪ yL,
it follows that Lxy = 1 and Lx , Ly. We are now ready to prove the following theorem
about locally weakly p-subregular pairs.

T 2.2. Let p be a prime, let (Γ,G) be a locally weakly p-subregular pair and
let (u, v) be an arc of Γ. Then either |Guv| ≤ |A(Γ)|3 or G contains an abelian normal
subgroup intersecting Guv nontrivially.

P. Fix a vertex v of Γ. By definition, there exist u, w ∈ Γ(v) such that |GΓ(v)
uv | = p

and Γ(v) = uX ∪ wX , where X = 〈GΓ(v)
uv ,GΓ(v)

vw 〉. By the notes preceding this theorem, X is
normal in GΓ(v)

v , GΓ(v)
uvw is normal and of index p in both GΓ(v)

uv and GΓ(v)
vw , and GΓ(v)

uv ,GΓ(v)
vw .

The fact that L is transitive implies that Γ is G-arc-transitive and hence there exists
g ∈G such that (u, v)g = (v, w). Let P = Guv and X = 〈P, Pg〉 = 〈Guv,Gvw〉. Both P and
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Pg contain the kernel of the action of Gv on Γv. It follows from the previous paragraph
that X is normal in Gv, that Γ(v) = uX ∪ wX , that P ∩ Pg is normal and of index p in
both P and Pg, and that P , Pg.

For any vertex α ∈ V(Γ), there exists f ∈G such that v f = α. Let X[α] = X f . Note
that since X is normal in Gv, X[α] only depends on α and not on the choice of f .
Moreover, X[α] is a normal subgroup of Gα. Finally, let G∗ = 〈g, P〉. We prove the
theorem by a sequence of claims.

Claim 1. G∗ is vertex-transitive.
First, note that G∗ = 〈g, X〉. For i ∈ Z, let vi = vgi

and let Xi = Xgi
= X[vi]. Note that

(v−1, v0, v1) = (u, v, w) and hence Γ(vi) = vXi
i−1 ∪ vXi

i+1 for any i ∈ Z. Let X∗ = 〈Xi | i ∈ Z〉
and let S = v〈g〉 = {vi | i ∈ Z}. Note that X∗ ≤G∗, hence it suffices to show that S X∗ =

V(Γ).
Suppose, for a contradiction, that there exists a vertex not in S X∗ and choose one

with minimum distance to S . Call this vertex α and let (p0 = α, . . . , pn−1, pn = vi) be
a shortest path from α to a vertex of S . Since Γ(vi) = vXi

i−1 ∪ vXi
i+1, it follows that there

exists σ ∈ Xi ≤ X∗ such that pσn−1 ∈ {vi−1, vi+1} ⊆ S . Since α is not in S X∗ , neither is ασ,
but ασ is closer to S than α is, which is a contradiction.

Claim 2. g normalises no nonidentity normal subgroup of P.
Any normal subgroup N of P that is normalised by g must be normalised by

〈g, P〉 = G∗ which is vertex-transitive. Since N fixes v, it must fix every vertex and
hence be trivial.

For i ≥ 0, let Hi = 〈P, Pg, . . . , Pgi
〉. Let n be the smallest integer such that Hn =

Hn+1.

Claim 3. Hn is normal in G.
First, note that (Hn)g ≤ Hn+1 = Hn and hence g normalises Hn. Recall that P , Pg,

which implies that n ≥ 1 and Hn = 〈X, Xg, . . . , Xgn−1
〉. Since Hn is normalised by

〈g, P〉 = G∗ which is vertex-transitive, it follows that Hn = 〈X[α] | α ∈ V(Γ)〉. Since
X = X[v] is normal in Gv, it follows that 〈X[α] | α ∈ V(Γ)〉 is normal in G.

Let N be the normal closure of P ∩ Z(Hn) in G. Since Hn is normal in G, so is
Z(Hn). It follows that N ≤ Z(Hn) and hence N is abelian. If N , 1, then N ∩ P , 1 and
N is the required normal subgroup of G intersecting Guv nontrivially.

We may thus assume that N = 1 and hence P ∩ Z(Hn) = 1. As we noted earlier,
P ∩ Pg is normal of index p in both P and Pg. We can use Theorem 2.1 with G̃ = Hn

to conclude that |P| = pt for some t ≤ 3n. In particular, P is a p-group.

Claim 4. |Hn| ≥ pn|P|.
Let i ∈ {1, . . . , n}. If Pgi

is a subgroup of Hi−1, then Hi−1 = Hi, contradicting the
minimality of n. It follows that Pgi

is a subgroup of Hi but not of Hi−1. Since P is a
p-group, so is Pgi

and hence |Hi| ≥ p|Hi−1|. The claim then follows by induction.
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Since |Guv||A(Γ)| = |G| ≥ |Hn| ≥ pn|P|, it follows that |A(Γ)| ≥ pn ≥ pt/3, concluding
the proof. �

One of the reasons why Theorem 2.2 is interesting is that the condition of
admitting an abelian normal subgroup which intersects an arc-stabiliser nontrivially is
surprisingly strong. In fact, as we will see in the rest of this section, in the weakly
p-subregular case it is enough to completely determine the structure of GΓ(v)

v (see
Lemma 2.4) and almost completely determine the graph! We first show some of the
‘local’ consequences of this condition in general.

L 2.3. Let L be a transitive permutation group, let (Γ,G) be a locally-L pair,
let (u, v) be an arc of Γ and suppose that G contains an abelian normal subgroup
intersecting Guv nontrivially. Then, L contains an abelian normal subgroup which is
not semiregular.

P. Suppose, for a contradiction, that each abelian normal subgroup of L is
semiregular and let N be an abelian normal subgroup of G with Nuv , 1. Since N
is an abelian normal subgroup of G, Nv is an abelian normal subgroup of Gv and hence
NΓ(v)

v is an abelian normal subgroup of GΓ(v)
v � L. It follows that NΓ(v)

v is semiregular
and hence Nuv fixes Γ(v). It follows that fixing an arc in N fixes all adjacent arcs and,
by connectedness, that Nuv = 1, which is a contradiction. �

In view of Theorem 2.2 and Lemma 2.3, it is natural to study weakly p-subregular
permutation groups which admit an abelian normal subgroup which is not semiregular.

L 2.4. Let p be a prime and let L be a weakly p-subregular permutation group. If
L contains an abelian normal subgroup which is not semiregular, then L is permutation
isomorphic to Zp wr Z2.

P. Let Ω be the set on which L is a permutation group. By definition, there exist
x, y ∈Ω such that |Lx| = p and xL ∪ yL = Ω, where L = 〈Lx, Ly〉. Let N be an abelian
normal subgroup of L which is not semiregular. Since N is normal and not semiregular,
Nx and Ny must be nontrivial. Since |Lx| = |Ly| = p is prime, it follows that Nx = Lx and
Ny = Ly and therefore L ≤ N. Finally, since N is abelian and not semiregular, it is not
transitive and hence L = N.

Since N is abelian, and Lx , Ly, it follows that N = Lx × Ly � Z
2
p. Since L is

transitive, there exists h ∈ L such that xh = y. Write Lx = 〈a〉 and Ly = 〈b〉. Since
(Lx)h = Ly, we have that ah = b and, since N has index 2 in L, it follows that h2 is
contained in N which is abelian and hence yh = x and bh = a and, in particular, h does
not commute with either a or b.

We now show that there exists an involution in L \ N. If h2 = 1, then we are done.
Otherwise, h2 has order p. If p is odd, then hp is an involution in L \ N. If p = 2, then
h2 = ab and it is easy to check that ha is an involution in L \ N.

Let h′ be an involution in L \ N. Clearly, ah′ = ah = b and bh′ = a. This shows that,
as an abstract group, L is isomorphic to Zp wr Z2. Finally, note that Ω = xN ∪ yN =

xLy ∪ yLx , while h′ interchanges xLy and yLx , which concludes the proof. �
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Lemma 2.4 will allow us to use the following theorem of Praeger and Xu.

T 2.5 [4, Theorem 1]. Let p be a prime and let Γ be a 2p-valent G-
arc-transitive graph such that G has an abelian normal p-subgroup which is not
semiregular on the vertices of Γ. Then Γ � C(p, r, s) for some r ≥ 3 and 1 ≤ s ≤ r − 1.

We are now ready to prove Theorem A, which we restate for convenience.

T A. Let (Γ,G) be a locally-L pair and let (u, v) be an arc of Γ. If L is weakly
p-subregular for some prime p then either:

(1) |Guv| ≤ |A(Γ)|3; or
(2) L is permutation isomorphic to Zp wr Z2 and Γ � C(p, r, s) for some r ≥ 3 and

1 ≤ s ≤ r − 1.

P. By Theorem 2.2, we may assume that G contains an abelian normal
subgroup N intersecting Guv nontrivially. By Lemma 2.3, this implies that L contains
an abelian normal subgroup which is not semiregular. By Lemma 2.4, it follows that
L is permutation isomorphic to Zp wr Z2. In particular, L has degree 2p and hence Γ is
2p-valent.

Since L is weakly p-subregular, we have that |GΓ(v)
uv | = p and hence Guv is a p-group.

Let M be the group generated by the elements of order p in N. This is an elementary
abelian p-group which is characteristic in N and hence normal in G. Since Guv is a p-
group, it follows that there is an element of order p in Nuv and hence Muv , 1. Finally,
by Theorem 2.5, it follows that Γ � C(p, r, s) for some r ≥ 3 and 1 ≤ s ≤ r − 1. �

3. Further work

The two main tools in the proof of Theorem A are Theorems 2.2 and 2.5 [4,
Theorem 1]. It seems quite likely that the conclusion of Theorem 2.2 holds under
a much weaker hypothesis, especially if we are willing to replace the constant 3 in
the exponent by a different constant. For example, we make the following conjecture,
which would generalise Theorem 2.2.

C 3.1. For any k, there exists a constant dk such that, if Γ is k-valent and
G-arc-transitive, and the arc-stabiliser Guv is soluble, then either |Guv| ≤ |A(Γ)|dk or G
contains an elementary abelian normal p-subgroup intersecting Guv nontrivially.

Note that the solubility of Guv can be checked locally. Indeed, it is not hard to see
that Guv is soluble if and only if GΓ(v)

uv is. A missing piece of the puzzle seems to be our
lack of a generalisation of Theorem 2.5. We thus pose the following question.

Q 3.2. What can be said about a G-arc-transitive graph Γ such that G has an
abelian normal p-subgroup which is not semiregular on the arcs of Γ?
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