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We explore the growth of large-scale magnetic fields in a shear flow, due to helicity
fluctuations with a finite correlation time, through a study of the Kraichnan–Moffatt
model of zero-mean stochastic fluctuations of the α parameter of dynamo theory.
We derive a linear integro-differential equation for the evolution of the large-scale
magnetic field, using the first-order smoothing approximation and the Galilean
invariance of the α-statistics. This enables construction of a model that is non-
perturbative in the shearing rate S and the α-correlation time τα. After a brief review
of the salient features of the exactly solvable white-noise limit, we consider the case
of small but non-zero τα. When the large-scale magnetic field varies slowly, the
evolution is governed by a partial differential equation. We present modal solutions
and conditions for the exponential growth rate of the large-scale magnetic field,
whose drivers are the Kraichnan diffusivity, Moffatt drift, shear and a non-zero
correlation time. Of particular interest is dynamo action when the α-fluctuations are
weak; i.e. when the Kraichnan diffusivity is positive. We show that in the absence of
Moffatt drift, shear does not give rise to growing solutions. But shear and Moffatt
drift acting together can drive large-scale dynamo action with growth rate γ ∝ |S|.
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1. Introduction
Magnetic fields are observed over a wide range of scales in various astrophysical

objects (see, e.g. Han 2017). Their origins could be the result of turbulent dynamo
processes which can lead to field generation on scales that are larger as well as smaller
than the outer scale of the underlying turbulence (see, e.g. Moffatt 1978; Parker 1979;
Krause & Rädler 1980; Zeldovich, Ruzmaikin & Sokolov 1983; Ruzmaikin, Shukurov
& Sokoloff 1988; Brandenburg & Subramanian 2005). Of particular interest here is
the subject of the large-scale dynamo (LSD), which may be studied in the framework
of mean-field theory (Steenbeck, Krause & Rädler 1966; Moffatt 1978; Krause &
Rädler 1980). The standard paradigm for LSD involves an α-effect which arises when
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the background turbulence possesses mean kinetic helicity, thus breaking the mirror
symmetry of turbulence (see, e.g. Brandenburg & Subramanian 2005). The problem
becomes more interesting and complicated when the usual α-effect is either absent or
subcritical for dynamo growth. Mean velocity shear appears to play a vital role for
LSD in such regimes of zero/subcritical α. As most astrophysical bodies also possess
mean differential rotation, it is natural to ask if large-scale magnetic fields could grow
in the presence of a background shear flow when α is a purely fluctuating quantity.

Early ideas of stochastically varying α with zero mean suggested that it causes
a decrement in turbulent diffusion (Kraichnan 1976; Moffatt 1978). A number of
subsequent studies then considered fluctuating α as an important ingredient for the
evolution of magnetic fields in objects, such as, the Sun (Silant’ev 2000; Proctor
2007), accretion disks (Vishniac & Brandenburg 1997), galaxies (Sokolov 1997;
Sur & Subramanian 2009). Numerical demonstration of the shear dynamo problem
(Brandenburg et al. 2008; Yousef et al. 2008a,b; Singh & Jingade 2015) where
large-scale magnetic fields were generated due to non-helically forced turbulence
in shear flows, and failure to understand these in terms of simple ideas involving
a shear–current effect (Kleeorin & Rogachevskii 2008; Rogachevskii & Kleeorin
2008; Sridhar & Subramanian 2009a,b; Sridhar & Singh 2010; Singh & Sridhar
2011; Kolekar, Subramanian & Sridhar 2012), brought the focus to a stochastic
α which could potentially lead to the dynamo action generically in shearing
systems (Heinemann, McWilliams & Schekochihin 2011; McWilliams 2012; Mitra
& Brandenburg 2012; Proctor 2012; Richardson & Proctor 2012; Sridhar & Singh
2014). There is still a need to verify the model predictions for the growth of the first
moment of the mean magnetic field in such systems by performing more simulations.

Squire & Bhattacharjee (2015a,b) recently proposed a new mechanism, called
the magnetic shear current effect, which leads to the generation of a large-scale
magnetic field due to the combined action of shear and small-scale magnetic
fluctuations, if these are sufficiently strong and are near equipartition levels of
turbulent motions. Such strong magnetic fluctuations are expected to be naturally
present due to small-scale dynamo (SSD) action in astrophysical plasmas, which
typically have large magnetic Reynolds number (Rm). This new effect thus raises
the interesting possibility of the excitation of LSD due to SSD in presence of shear,
and it challenges an understanding where SSD in high-Rm systems is thought to
weaken the LSD, which could survive only when SSD is suppressed due to shear
(Tobias & Cattaneo 2013; Pongkitiwanichakul et al. 2016; Nigro et al. 2017); but see
also Kolokolov, Lebedev & Sizov (2011) and Singh, Rogachevskii & Brandenburg
(2017) where it is found that the shear supports and even enhances the growth rate
of SSD. However, we are here more concerned with the excitation of a large-scale
shear dynamo, quite independent of any small-scale dynamo or strong magnetic
fluctuations, which are both absent in most numerical simulations that are relevant.
These simulations typically had Rm which were subcritical for SSD and the only
source of magnetic fluctuations was due to the tangling of large-scale magnetic fields
(Rogachevskii & Kleeorin 2007), and therefore these fluctuations could never be too
strong in the kinematic regime of LSD.

In the present paper we explore the possibility of large-scale dynamo action in
presence of background shear flow, due to an α that varies stochastically in space and
time, with vanishing mean. Here we generalize the earlier work by Sridhar & Singh
(2014), hereafter SS14, by including the full resistive term in determining the turbulent
electromotive force (EMF). Such an extension in the absence of shear was done in
Singh (2016). In § 2 we define our model by writing the dynamo equations in shearing
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coordinates. The integro-differential equation governing the evolution of the large-scale
magnetic field is derived under a first-order smoothing approximation (FOSA) in § 3.
This is non-perturbative in shearing rate S and the correlation time τα. Here we briefly
review the exactly solvable limit of white-noise α fluctuations. In § 4 we reduce the
evolution equation into a partial differential equation (PDE) for axisymmetric mean
magnetic fields, by assuming small but non-zero τα. The dispersion relation giving
the growth rate is then determined in § 5 where we present our results in different
parameter regimes. We then discuss our findings and conclude in § 6.

2. The model
Let us begin with the standard dynamo equation in the presence of a background

linear shear flow, V= SX1e2, where meso-scale magnetic field B evolves according to
(see, Moffatt 1978; Krause & Rädler 1980; Brandenburg & Subramanian 2005; Sridhar
& Singh 2014):(

∂

∂τ
+ SX1

∂

∂X2

)
B− SB1e2 =∇× [α(X, τ )B] + ηT∇

2B; ∇ ·B= 0. (2.1)

Here we follow the same notation as in Sridhar & Singh (2014) where the position
vector is denoted by X = (X1, X2, X3) with components given in a fixed orthonormal
frame (e1, e2, e3), and τ is the time variable. The shear rate, S, and total diffusivity, ηT ,
are treated as constant parameters, whereas α(X, τ ) provides a measure of meso-scale
kinetic helicity of turbulence. We recall that (2.1) governing the dynamics of a meso-
scale magnetic field is obtained by averaging over an ensemble of random velocity
fields, {v(X, τ )}, which are assumed to have zero-mean isotropic fluctuations, uniform
and constant kinetic energy density per unit mass and slow helicity fluctuations.

We employ here the double-averaging scheme (Kraichnan 1976; Moffatt 1983;
Sokolov 1997) under which α(X, τ ) itself is a random variable of space and time,
thus making (2.1) a stochastic partial differential equation. It is drawn from a
superensemble with zero mean, α(X, τ )= 0. It’s statistical properties are given below
in (2.11). Next, we separate the meso-scale field, B=B+ b, into large-scale, B, and
fluctuating, b, components, where the superensemble average of b vanishes, i.e. b= 0.
The governing equation for the large-scale magnetic field B can thus be obtained by
Reynolds averaging the (2.1) over the superensemble:(

∂

∂τ
+ SX1

∂

∂X2

)
B− SB1e2 =∇× E + ηT∇

2B, ∇ ·B= 0, (2.2)

where E = α(X, τ )b(X, τ ). (2.3)

In order to determine the mean electromotive force (EMF), we must solve for the
fluctuating field b, which evolves as:(

∂

∂τ
+ SX1

∂

∂X2

)
b− Sb1e2 =∇× [αB] +∇× [αb− αb] + ηT∇

2b,

∇ · b= 0, with initial condition b(X, 0)= 0.

 (2.4)

As (2.2) and (2.4) involve inhomogeneous terms, it is convenient to solve these in the
shearing coordinates (x, t) which are expressed in terms of the laboratory coordinates
(X, τ ) as (see, Sridhar & Subramanian 2009a; Sridhar & Singh 2010):

x1 = X1; x2 = X2 − S τ X1; x3 = X3; t= τ . (2.5a−d)
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The inverse transformation is:

X1 = x1; X2 = x2 + S t x1; X3 = x3; τ = t. (2.6a−d)

Now we can write equations (2.2)–(2.4) in terms of new fields that are functions of
x and t: H(x, t)=B(X, τ ); h(x, t)= b(X, τ ); a(x, t)= α(X, τ ); and E(x, t)= E(X, τ ).
Equations (2.2)–(2.4) then take the form (Sridhar & Singh 2014):

∂H
∂t
− SH1e2 =∇×E+ ηT∇

2H, ∇ ·H= 0, E= ah; (2.7a−c)

∂h
∂t
− Sh1e2 =∇× [aH] +∇× [ah− ah] + ηT∇

2h,

∇ · h= 0, with initial condition h(x, 0)= 0;

 (2.8)

where ∇=
∂

∂x
− e1St

∂

∂x2
is a time-dependent operator. (2.9)

We complete defining our model by specifying the statistics of the α fluctuations.
We follow the exact same approach as given in detail in Sridhar & Singh (2014) and
recall here only some key relevant points:

(i) Shear flows possess a natural symmetry known as Galilean invariance, relating
the measurements of correlation functions made by comoving observers whose
origins with respect to the laboratory frame translate with the same speed as that
of the linear shear flow (Sridhar & Subramanian 2009a,b).

(ii) Here we are more interested in time-stationary Galilean-invariant α statistics,
which can be expressed in the shearing frame as (see Sridhar & Singh (2014)
for a derivation):

a(x, t)a(x′, t′)= 2A
(
x− x′ + St′(x1 − x′1)e2

)
D(t− t′), with (2.10)

2
∫
∞

0
D(t) dt= 1, A(0)= ηα > 0. (2.11)

The correlation time for the α fluctuations is defined as,

τα = 2
∫
∞

0
dt tD(t). (2.12)

The intrinsic anisotropy of the α fluctuations is measured by the Moffatt drift
velocity,

VM =−

(
∂A(ξ)
∂ξ

)
ξ=0
=

∫
∞

0
α(X, τ )∇α(X, 0) dτ . (2.13)

In the above, we noted two properties of the spatial correlation function, A, namely
its value ηα and gradient VM at zero separation. But we can associate one or more
length scales relating to its variation in ξ -space. In the estimates made below we use
a single scale ` to denote this correlation length. The temporal correlation function, D
is characterized by a single correlation time, τα. Hence the basic constant parameters
of our model are (ηα,VM, `, τα).
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3. Evolution equation for the large-scale magnetic field
Here we derive a closed equation for the large-scale magnetic field by exploiting

the homogeneity of the problem in the sheared coordinates x by working with
its conjugate Fourier variable k. Let Q̃(k, t) =

∫
d3x exp (−ik · x)Q(x, t) be the

Fourier transform of any quantity Q(x, t), with similar definition in terms of
laboratory-frame coordinates, where K denotes the conjugate variable to X. Note
that the laboratory-frame wavevector K is time dependent and can be expressed in
terms of sheared wavevectors k as, K(k, t) = (k1 − Stk2, k2, k3); see (2.9). We need
to first solve for h̃(k, t) as a functional of ã(k, t) and H̃(k, t). This is in general a
complicated problem by itself, so for a first attempt we use the standard approach of
the first-order smoothing approximation (FOSA) wherein the term, ∇ × [ah− ah], is
dropped in (2.8). Analogous to (7.124) of Moffatt (1978), the condition for FOSA to
be valid is:

ηατα

`2
� 1, OR

ηα

ηT
�
ηTτα

`2
, (3.1a,b)

where we recall that ` is the correlation length of the α fluctuations. The first term
of these condition comes from the short correlation assumption by comparing ∂h/∂t
with ∇× [ah− ah]; ∂h/∂t is of the order O(h0/τα) and ∇× [ah− ah] is of the order
O(α0h0/`). For FOSA to be valid, α0h0/`� h0/τα. Using α2

0 ∼ ηα/τα (from (2.11)),
we can write the first condition in (3.1). Similarly, the second condition comes from
comparing ηT∇

2h with ∇ × [ah − ah] in (2.8); ηT∇
2h is of the order O(ηTh0/`

2),
and so, for FOSA to be valid, ηTh0/`

2
� α0h0/`, which yields the second condition

in (3.1) after rearranging and squaring the terms.
Then the fluctuating magnetic field evolves as:(

∂

∂t
− ηT∇

2

)
h− Sh1e2 =∇×M, (3.2)

where M(x, t) = a(x, t)H(x, t) is a source term for the fluctuating magnetic field,
and ∇ is the time-dependent operator defined in (2.9). The FOSA solution for the
fluctuating magnetic field in the Fourier space is given by (see appendix A for a
derivation),

h̃(k, t)=
∫ t

0
dt′ G̃ηT (k, t, t′)

{
iK(k, t′)× M̃(k, t′)+ e2S(t− t′)[iK(k, t′)× M̃(k, t′)]1

}
,

(3.3)
where the sheared Green’s function in Fourier space:

G̃ηT (k, t, t′)= exp
[
−ηT

(
k2(t− t′)− Sk1k2(t2

− t′2)+
S2

3
k2

2(t
3
− t′3)

)]
. (3.4)

This is derived in Sridhar & Singh (2010). It may be readily verified that (3.3) satisfies
both constraints, K · h̃= 0 and h̃(k, 0)= 0. By making use of (3.3), and time-stationary
Galilean-invariant statistics for the α fluctuations in Fourier space (see appendix B),
we obtain the following expression for the mean EMF in Fourier space, after some
straightforward algebra (see appendix C for a derivation):

Ẽ(k, t)= 2
∫ t

0
dt′D(t− t′)

{
Ũ(k, t, t′)× H̃(k, t′)+ e2S(t− t′)[Ũ(k, t, t′)× H̃(k, t′)]1

}
,

(3.5)
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where

Ũ(k, t, t′)=
∫

d3k′

(2π)3
G̃ηT (k− k′, t, t′)iK(k− k′, t′)Ã(K(k′, t′)), (3.6)

is a complex velocity field.
Fourier transforming (2.7), the equation governing the large-scale field is:

∂H̃
∂t
− SH̃1e2 = iK(k, t)× Ẽ− ηTK2(k, t)H̃, K(k, t) · H̃= 0. (3.7a,b)

Thus the set of (3.5)–(3.7) describes the evolution of the large-scale magnetic field,
H̃(k, t) in terms of a closed, linear integro-differential equation, where both shear
strength, S, and the α-correlation time, τα, are treated non-perturbatively. This is the
principal general result of this paper, but solving these in full generality is beyond the
scope of the present work, and we next pursue these equations analytically by making
useful approximations.

3.1. White-noise α fluctuations
It is useful to recall basic properties of an exactly solvable limit of δ-correlated-in-time
α fluctuations when the normalized correlation function DWN(t) = δ(t) which is the
Dirac delta function, giving τα = 0 from (2.12). Using this in (3.5) and (3.6), and
noting that G̃ηT (k− k′, t, t)= 1 from (3.4), we find the mean EMF:

ẼWN(k, t)= ŨWN(k, t)× H̃(k, t) with ŨWN(k, t)= iK(k, t)ηα +VM, (3.8)

where the α-diffusivity, ηα=A(0), is given in (2.11) and the Moffatt drift velocity VM

is defined in (2.13). The Kraichnan diffusivity, ηK , is defined as, ηK = ηT − ηα. Using
these in (3.7) leads to the solution for the large-scale magnetic field (see Sridhar &
Singh (2014) for more details):

H̃(k, t)= G̃(k, t)[H̃(k, 0)+ e2St H̃1(k, 0)], k · H̃(k, 0)= 0, (3.9a,b)

where

G̃(k, t) = exp
{
−

∫ t

0
dt′[ηKK2(k, t′)+ iVM ·K(k, t′)]

}
= exp{−ηK[k2t− Sk1k2t2

+ (S2/3)k2
2t3
] − i[(VM · k)t− (S/2)VM1k2t2

]}. (3.10)

This solution is identical to the one obtained in Sridhar & Singh (2014). Thus we
find that the inclusion of the turbulent diffusion term in determining the mean EMF
makes no difference for the dynamo solution in the white-noise limit. In agreement
with earlier findings (Kraichnan 1976; Moffatt 1978; Sridhar & Singh 2014), we see
from above that the α-diffusivity causes a reduction in the turbulent diffusion of the
fields, and if it is sufficiently strong, i.e. when ηK < 0, this can lead to an instability
giving growth of the large-scale magnetic field. Also, the Moffatt drift does not couple
to the dynamo growth/decay and contributes only to the phase.
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4. Axisymmetric large-scale dynamo equation with finite τα
We now turn to the principal aim of this work where we are more interested in

exploring the possibility of a large-scale dynamo even when the α fluctuations are
weak, i.e. when ηK > 0, by taking the memory effects into account. Assuming a small
but finite correlation time for α fluctuations, τα 6= 0, we reduce the general set of
(3.5)–(3.7) into a partial differential equation governing the dynamics of the large-
scale magnetic field which evolves over times much larger than τα. In this case, the
normalized time correlation function, D(t), is significant only for times t 6 τα and
it becomes negligible for larger times. The generalized mean EMF as given in (3.5)
involves a time integral which can be solved under the small τα approximation.

Since the limit limτα→0 Ẽ(k, t) = ẼWN(k, t), given by (3.8), is non-singular, we
proceed by making the following ansatz where, for small τα, the mean EMF can be
expanded in a power series in τα as:

Ẽ(k, t)= ẼWN(k, t)+ Ẽ
(1)
(k, t)+ Ẽ

(2)
(k, t)+ . . . (4.1)

where ẼWN(k, t)∼O(1) and Ẽ
(n)
(k, t)∼O(τ n

α ) for n > 1. Below we verify this ansatz

up to n= 1, for slowly varying magnetic fields. From (3.5) we determine Ẽ(k, t) to
first order in τα, for t� τα, by (i) changing the integration variable from t′ to s =
t− t′; (ii) setting the upper limit of the time integral to +∞, since D(s) is significant
only for times s6 τα as mentioned above, suggesting that only short times 06 s< τα
contribute appreciably to the integral in (3.5); and (iii) keeping the terms inside the { }
in the integrand of (3.5) up to only first order in s. To be able to expand in s, we need
to first express the (3.6) in the laboratory-frame wavevector K=K(k, t′)=K(k, t− s),
so that the Green’s function in (3.4) and therefore the complex velocity field Ũ in
(3.6) becomes time-translational symmetric.1

We first rewrite the mean EMF, given in (3.5), as

Ẽ(k, t)= 2
∫
∞

0
dsD(s)

{
Ũ(K, s)× H̃(k, t− s)+ e2Ss[Ũ(K, s)× H̃(k, t− s)]1

}
, (4.2)

where the complex velocity field, Ũ, is

Ũ(K, s)=
∫

d3K ′

(2π)3
G̃ηT (K−K′, s)i(K−K′)Ã(K′). (4.3)

Equation (4.3) is obtained by changing the integration variable in (3.6) to K′ =
K(k′, t′)= (k′1 − S(t− s)k′2, k′2, k′3) – which has unit Jacobian, giving d3k′ = d3K ′.

We make further simplification by considering only axisymmetric modes for which
k2= 0. Note that for the non-axisymmetric modes, K(k, t)= e1(k1− Stk2)+ e2k2+ e3k3

increases monotonically with time, increasing the wavenumber, which would
eventually decay by turbulent diffusivity. Therefore we focus our attention only
on axisymmetric modes, for which K(k, t− s)=K(k, t)= k= (k1, 0, k3).

Let us first work out Ũ(k, s) and H̃(k, t− s) correct up to O(s).

1Green’s function in (3.4) when expressed in the laboratory-frame wavevector becomes time-translational
symmetric, i.e. G̃ηT (k, t, t′)= G̃ηT (K(k, t′), t− t′, 0)= exp(−ηT {K2(t− t′)− SK1K2(t− t′)2 + (S2/3)K2

2 (t− t′)3}).
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(1) Ũ(k, s) to O(s) : Taylor expanding Ũ(k, s) gives,

Ũ(k, s)= Ũ(k, 0)+ s
∂Ũ
∂s

∣∣∣∣∣
s=0

+O(s2). (4.4)

where Ũ(k, 0)= ikηα +VM (from (3.8)), (4.5)

and
∂Ũ
∂s

∣∣∣∣∣
s=0

=−iηT

∫
d3K ′

(2π)3
(K−K′)2(K−K′)Ã(K′). (4.6)

Equation (4.6) is obtained by differentiating equation (4.3) with respect to s and taking
the limit s→ 0; note that K = k, since k2 = 0. Using the Fourier transform for Ã,
together with the properties of the δ-function, we get

∂Ũ
∂s

∣∣∣∣∣
s=0

= −iηT
{

k2(kA(ξ)+ i[∇A(ξ)])+ 2ik(k · [∇A(ξ)])

− k[∇2A(ξ)] − i[∇2
{∇A(ξ)}] − 2(k · ∇){∇A(ξ)}

}
ξ=0 . (4.7)

Equation (4.7) can be evaluated once we know the functional form for spatial
correlator A(ξ). Neglecting derivatives of A that are higher than the first order – see
Singh (2016) for detail – we have:

∂Ũ
∂s

∣∣∣∣∣
s=0

=−ηTk2(ikηα +VM)− 2ηT(k ·VM)k. (4.8)

Equation (4.5) and (4.8) together thus provide the function Ũ(k, s) correct up to O(s).

(2) H̃(k, t− s) to O(s) : We write as,

H̃(k, t− s)= H̃(k, t)− s
∂H̃(k, t)
∂t

+ · · · . (4.9)

where it is assumed that |H̃| � s|∂H̃/∂t| � s2
|∂2H̃/∂t2

|, etc. In (4.9), we need ∂H̃/∂t
only up to O(1) to find H̃(k, t− s) up to O(s). We write this by substituting (3.8) in
(3.7) and using ŨWN(k, t)= ŨWN(k)= ikηα +VM:

∂H̃
∂t

∣∣∣∣∣
O(1)

= SH̃1e2 + ik× ẼWN − ηTk2 H̃= SH̃1e2 − (ηKk2
+ ik ·VM)H̃. (4.10)

The time integral in (4.2) is then solved by using the definitions provided in (2.11)
and (2.12) when we substitute the expressions derived above for the terms in { } in
(4.2). We get, after straightforward algebra, the following expression for the mean
EMF, which is correct up to O(τα):

Ẽ(k, t) = ẼWN(k, t)+ τα{(ik · ŨWN)ẼWN − 2ηT(k ·VM)k× H̃}

+ Sτα{H̃1e2 × ŨWN + e2[ŨWN × H̃]1}. (4.11)
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This verifies the ansatz of (4.1) up to n= 1, as claimed. It is important to note that
the (4.11) is valid only for slowly varying large-scale magnetic fields. To lowest order
this condition can be explicitly stated as: |H̃| � τα|∂H̃/∂t|. To obtain the sufficient
condition for the validity of (4.11), use (4.10) for ∂H̃/∂t to get the following
conditions for three dimensionless quantities which need to be small:

|Sτα| � 1, |ηKk2τα| � 1, |kVMτα| � 1. (4.12a−c)

Since we have expanded EMF in small τα, it is only the first of the two FOSA
conditions in (3.1) that becomes relevant. This must be added to the above three
conditions for (4.11) to be valid. Using (4.11) in (3.7) we obtain:

∂H̃
∂t
= [SH̃1e2 + ηαk2H̃− i(k ·VM)H̃][1+ i(k ·VM)τα − ηαk2τα] − ηTk2H̃

+ 2iηTk2τα(k ·VM)H̃+ Sτα[VM2H̃3 − VM3H̃2 − iηαk3H̃2][−ik3e1 + ik1e3],

with k= (k1, 0, k3), and k1H̃1 + k3H̃3 = 0. (4.13)

Equation (4.13) is the linear partial differential equation obtained by reducing the
linear integro-differential equation (see (3.5)–(3.7)) under the condition of (4.12). It
describes the evolution of an axisymmetric, large-scale magnetic field over times that
are much larger than τα. It depends on (i) the diffusivity ηT ; (ii) properties of the
α correlation in terms of ηα, VM and τα; (iii) shear S. These must satisfy the three
conditions given in (4.12) and the first condition in (3.1) for the validity of (4.13).
We note here again that the set of (3.5)–(3.7) is non-perturbative in both S and τα,
whereas (4.13) is valid only when |Sτα| � 1.

5. Growth rate of modes when τα is non-zero
As usual in numerical works on the related subject (see, e.g. Brandenburg et al.

2008; Singh & Jingade 2015) where ‘horizontal’ (plane of shear; in this case the X1−

X2 plane) averages are performed to define the large-scale magnetic fields, it is useful
to consider one-dimensional propagating modes. This is equivalent to setting K1 and
K2 equal to zero. Here we only need to set k1=0 in (4.13). In this case the wavevector
k= (0, 0, k) points along the ‘vertical’ (±e3) direction, thus resulting in a uniform H̃3

which is of no interest for dynamo action. Hence we set H̃3 = 0, and take H̃(k, t)=
H̃1(k, t)e1 + H̃2(k, t)e2. Making these substitutions in (4.13) we find:

∂H̃
∂t
= [SH̃1e2 + ηαk2H̃− ikVM3H̃][1+ ikVM3τα − ηαk2τα] − ηTk2H̃

+ 2iηTτα(k3VM3)H̃+ S[ikVM3τα − ηαk2τα]H̃2e1. (5.1)

Seeking modal solutions of the form,

H̃(k, t)= [H̃01(k)e1 + H̃02(k)e2] exp (λt), (5.2)

and substituting this in (5.1) we get the following dispersion relation:

λ± = −ηKk2
− η2

αk4τα + (kVM3)
2τα + ikVM3[2(ηα + ηT)k2τα − 1]

± |S|
√
[ikVM3τα − ηαk2τα][1+ ikVM3τα − ηαk2τα]. (5.3)
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We are more interested in the growth rate γ = Re{λ}, as the dynamo action
corresponds to the case when γ > 0. From the dispersion relation (5.3) we have:

γ± =Re{λ±} =−ηKk2
− η2

αk4τα + (kVM3)
2τα ± |S|[χ 2

R + χ
2
I ]

1/4 cos (ψ/2),

where cos (ψ)=
χR

(χ 2
R + χ

2
I )

1/2
, cos(ψ/2)=

√
χR +

√
χ 2

R + χ
2
I

√
2(χ 2

R + χ
2
I )

1/4
,

χR = ηαk2τα(ηαk2τα − 1)− (kVM3τα)
2, χI =−kVM3τα(2ηαk2τα − 1).


(5.4)

Below, we make some comments about the growth rate derived above.

(i) The growth rate γ of the large-scale dynamo is linear in the shear rate |S|,
assuming that the parameters (ηK, ηα, VM3, τα) are all independent of S. This
linear scaling is observed in earlier numerical works (Brandenburg et al. 2008;
Yousef et al. 2008a,b; Singh & Jingade 2015).

(ii) For zero shear, the growth rate as given from (5.4) becomes identical to the one
derived in Singh (2016), where the generalization to the Kraichnan problem as
well as the possibility of Moffatt drift driven dynamos were explored in detail.

(iii) The last term involving shear in (5.4) is identical to the corresponding term in
the expression for the growth rate derived in Sridhar & Singh (2014), with an
important difference being that there the angle ψ was defined using the tangent
function, which introduces an error when either of the two, χR and χI , take
negative values. Here we correct this by explicitly writing cos (ψ/2) in terms
of χR and χI .

5.1. Dimensionless growth rate function
The growth rate function Γ is defined using dimensionless quantities,

Γ± = γ±τα; β = ηαk2τα; εS = Sτα; εK = ηKk2τα; εM = kVM3τα, (5.5a−e)

where β and εK measure the wavenumber of modal mean magnetic field in terms of
ηα and ηK , respectively. With the first condition of (3.1), β/k2

= ηατα � `2. These
parameters can vary as,

0 6 β� (k`)2; β + εK > 0; |εS| � 1; |εK| � 1; |εM| � 1. (5.6a−e)

The parameter β can be larger or smaller than unity depending on whether the
mean-field varies over scales smaller or larger than `, respectively. The second
condition comes from β + εK = ηTk2τα > 0, and last three constraints come from
(4.12). Multiplying the expression for γ± in (5.4) by τα, and denoting by Γ> (Γ<)
the larger (smaller) of Γ+ and Γ−, we get

Γ>
<
=−εK − β

2
+ ε2

M ±
|εS|
√

2

√
β(β − 1)− ε2

M +

√
[β(β − 1)+ ε2

M]
2 + ε2

M. (5.7)

Note that the radicand in (5.7) is greater than zero. In figure 1 we show the behaviour
of Γ as a function of β by keeping other parameters fixed. Below we list some
properties of the growth rate function as defined in (5.7).
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(a) (b)

FIGURE 1. The two roots, Γ> (solid) and Γ< (dashed), of the growth rate function defined
in (5.7) are shown as a function of β for εM = 0 (red; thick) and 0.3 (green; thin) with
|εS| = 0.5, where (a) and (b) correspond to weak (εK = 0.1) and strong (εK = −0.1)α
fluctuations, respectively.

(i) For fixed εK , β and εM, Γ> (Γ<) increases (decreases) monotonically with shear.
(ii) When εM is non-zero, then the radicand in (5.7) vanishes at β = 1/2, where the

two roots coincide; see green solid and dashed curves in figure 1. Both roots are
identical for 06 β 6 1 when εM = 0 and branch out for β > 1; see red solid and
dashed curves.

(iii) In the absence of the Moffatt drift, the necessary condition for dynamo action is
that the α fluctuations must be strong, i.e. εK < 0, regardless of the strength of
the shear parameter |εS| which should be kept smaller than unity in the present
model. The dynamo is then driven through the −εK term in (5.7) by the process
of negative diffusion first suggested by Kraichnan (1976).

(iv) Moffatt drift always contributes positively to the dynamo growth. Considering
the case of zero shear, we see from (5.7) that εM > ε

crit
M , with εcrit

M =
√
εK + β2,

can always facilitate LSD in both the weak and strong α fluctuation regimes, for
sufficiently low values of β such that εcrit

M � 1.
(v) The growth rate is always negative for β� 1 due to the −β2 term in (5.7), as

is also shown in figure 1.
(vi) The growth rate for β ≈ 0 i.e. largest scale possible is given for small values of

εM� 1 as,

Γ> '−εK +
|εS|
√

2
|εM|

1/2, (5.8)

which implies Moffatt drift couples strongly with shear and growth is possible
for weak α-fluctuations i.e. εK > 0 when |εS||εM|

1/2 >
√

2εK .

5.2. Growth rates as functions of the wavenumber
We henceforth consider only the dominant root Γ> and study its wavenumber
dependence. Following SS14, we first identify natural length and time scales whose
corresponding wavenumber and frequency are defined as,

kα = (ηατα)−1/2 > 0; σ = |ηK|k2
α, (5.9a,b)

https://doi.org/10.1017/S0022377818001174 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001174


12 N. Jingade, N. K. Singh and S. Sridhar

(a) (b)

FIGURE 2. Normalized growth rate γ>/σ as a function of |k/kα| for DM= 0.2. (a) and (b)
correspond to weak (Dα = 0.5) and strong (Dα = 1.5)α fluctuations respectively. Solid,
dashed, dash-dotted and dotted curves correspond to εS= 0.6, 0.4, 0.2 and 0, respectively.

where kα can be recognized as an inverse diffusion length due to α-diffusivity ηα.
Here |k|> kα and |k|< kα are called high and low wavenumbers, respectively. From
(5.5) and (5.9) we see that β = (k/kα)2. Since the parameters εK and εM involve
the wavenumber k in their definitions, we find it better to rewrite an expression for
Γ> using new dimensionless dynamo numbers, which are defined in terms of known
constants:

Dα =
ηα

ηT
, DM =

V2
M3τα

ηα
. (5.10a,b)

We first make use of (5.4)–(5.10) to express the growth rates as a function of
wavenumber and constant dynamo parameters in the weak and strong regimes of α-
fluctuations.

Weak α fluctuations: Here, ηα <ηT , i.e. Dα < 1 and |ηK| =+ηK = ηT − ηα, giving

γ>

σ
=−

(
k
kα

)2

+
Dα

1−Dα

[
−

(
k
kα

)4

+DM

(
k
kα

)2

+
|εS|
√

2

√
Ra(k)+Rb(k)

]
(5.11)

with Ra(k)=
(

k
kα

)2
[(

k
kα

)2

− 1

]
−DM

(
k
kα

)2

(5.12)

and Rb(k)=

{[( k
kα

)2

− 1

]
+DM

(
k
kα

)2
}2

+DM

(
k
kα

)2
1/2

. (5.13)

In figure 2(a) we show the wavenumber dependence of the normalized growth rate
γ>/σ for different choices of the shear parameter, at fixed Dα and DM, when the
α fluctuations are weak. Interestingly, the growth rate is positive for fairly small
wavenumbers, thus facilitating a truly large-scale dynamo, with a wavenumber cutoff
beyond which the growth rate turns negative. At much larger wavenumbers, The
growth rate varies as γ ∝ −k4 due to the ηT-correction in the present model. Shear
boosts the growth rates at all wavenumbers, and thus it can support the dynamo
action for sufficiently strong Moffatt drift.
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Strong α fluctuations: In this case, ηα >ηT , i.e. Dα > 1 and |ηK| =−ηK , giving

γ>

σ
=+

(
k
kα

)2

+
Dα

Dα − 1

[
−

(
k
kα

)4

+DM

(
k
kα

)2

+
|εS|
√

2

√
Ra(k)+Rb(k)

]
. (5.14)

Here the small wavenumbers grow as all the effects, Kraichnan diffusivity, Moffatt
drift and shear, contribute positively to the dynamo action; see figure 2(b). Similar to
the case of weak α fluctuations, the growth rate here too is a non-monotonic function
of k and it becomes negative for sufficiently large wavenumbers.

5.2.1. Dynamo action for zero Moffatt drift
This corresponds to the Kraichnan problem, extended to include a non-zero τα.

There are two cases to consider, the one in the absence of shear and the other when
shear is present.

1. Shear absent (only ηα and τα non-zero)
Using (5.11)–(5.14) by setting DM = 0 and |εS| = 0 the normalized growth rate can

be expressed as, for

Weak α fluctuations: when 0<ηα <ηT , i.e. Dα < 1,

γ

σ
=−

(
k
kα

)2

−
Dα

1−Dα

(
k
kα

)4

. (5.15)

Here, the growth is negative definite for all values of k and a monotonically
decreasing function of k. At large wavenumbers, it varies as γ ∝ −k4, a correction
due to finite τα and inclusion of a finite resistive term in the fluctuating field equation.
The first term in the (5.15) is due to Kraichnan diffusivity (compare it with (3.10)
by setting S= 0 and VM = 0).

Strong α fluctuations: when 0<ηT <ηα, i.e. Dα > 1,

γ

σ
=

(
k
kα

)2

−
Dα

Dα − 1

(
k
kα

)4

. (5.16)

In this regime, the growth rate is positive for a certain range of wavenumbers and it
becomes negative for large wavenumbers as mentioned above. In figure 3 we compare
our model (which has non-zero τα) with the original Kraichnan model – we see that a
non-zero τα introduces a high wavenumber cutoff in the case of strong α-fluctuations,
which agrees with the conclusions of Singh (2016).

2. The effect of shear
Using (5.7) we rewrite the growth rate function more explicitly as:

Γ> =−εK − β
2, when 0 6 β 6 1 (5.17)

Γ> =−εK − β
2
+ |εS|

√
β(β − 1), when β > 1. (5.18)

We note that the shear does not couple to the dynamo growth rate when β is smaller
than or equal to unity, or in other words, when |k|< kα.2 Since |εS|� 1, the dominant
term in (5.18) is −β2 for k> kα, which makes the growth rate negative definite. Thus,

2Compare equations (5.17) and (5.18) with equation (85) in SS14, where the authors had obtained the
contribution of shear for |k|< kα , due to the error in the angle evaluation in (5.4) which is corrected here.
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FIGURE 3. Normalized growth rate when Moffatt drift and shear are zero. Plotted as a
function of |k/kα|. Solid curve shows finite τα correction and dashed-dotted curve is for
the white-noise case.

for weak α fluctuations which have εK > 0, shear alone cannot drive a large-scale
dynamo at any wavenumber. Therefore, the necessary condition for dynamo action in
this case is that the α fluctuations must be strong. We now look at the properties of
growth rate as a function of wavenumber.
Weak α fluctuations: Here, ηα <ηT , i.e. Dα < 1 and |ηK| =+ηK = ηT − ηα, giving

γ>

σ
= −

(
k
kα

)2

−
Dα

1−Dα

(
k
kα

)4

, when 0< |k|< kα (5.19)

= −

(
k
kα

)2

+
Dα

1−Dα

−( k
kα

)4

+ |εS|

√√√√( k
kα

)2
[(

k
kα

)2

− 1

] ,
when |k|> kα. (5.20)

We can see from (5.19) that the growth rate is negative definite in the range 0< |k|<
kα, as inferred above. Dynamo action is not possible for |k| > kα for the following
reason. When |k| > kα, shear contributes to the growth rate (see (5.20)). Since the
model is valid for |εS| � 1, in order to increase the strength of that term we can
increase Dα (while keeping it less than unity), but this will also strengthen the second
term, which is ∝−k4, due to the finite ηT correction in the fluctuating field equation,
thereby killing dynamo action.
Strong α fluctuations: Here, ηT <ηα, i.e. Dα > 1 and |ηK| =−ηK = ηα − ηT , giving

γ>

σ
=

(
k
kα

)2

−
Dα

Dα − 1

(
k
kα

)4

, when 0< |k|< kα (5.21)

=

(
k
kα

)2

+
Dα

Dα − 1

−( k
kα

)4

+ |εS|

√√√√( k
kα

)2
[(

k
kα

)2

− 1

] ,
when |k|> |kα|. (5.22)
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(a) (b)

FIGURE 4. Normalized growth rate γ>/σ as a function of |k/kα| for |εS| = 0.3. (a,b)
Correspond to weak (Dα = 0.5) and strong (Dα = 1.8)α fluctuations, respectively. Solid
and dashed curves correspond to this work and SS14, respectively.

The growth rate γ becomes positive for a certain range of wavenumber depending
upon the strength of the α-fluctuations, eventually becoming negative at large
wavenumbers due to the −k4 term arising due to the finite ηT correction. This
behaviour is compared in figure 4 with Sridhar & Singh (2014); we can see that
there is good agreement at low wavenumbers whereas at large wavenumbers there is
a difference. The derivation of Sridhar & Singh (2014) had neglected the effect of
turbulent resistivity on the fluctuating component of the magnetic field, and they had
noted that this would lead to an overestimation of growth rates at large wavenumbers.
This is what we find in the present work: retaining this term makes the growth rate
negative at large wavenumbers and, for weak α-fluctuations, the behaviour is indeed
qualitatively different. Therefore, including the ηT term gives a bonafide large-scale
dynamo action by predicting the high wavenumber cutoff. Thus, in the absence
of Moffatt drift, the necessary condition for the large-scale dynamo when shear is
present is the same as the case when it is absent.

6. Conclusions
We have studied the effect of α fluctuations on the growth of large-scale magnetic

fields in a shearing background. Our derivation of the mean electromotive force is
based on the first-order smoothing approximation (FOSA), whose range of validity
is given in (3.1). These are such that FOSA is, in general, valid for all ‘weak’ α
fluctuations (ηα < ηT), which is the case of primary interest for dynamo action. We
have extended the analysis of Sridhar & Singh (2014) by including the effect of
the turbulent resistivity, ηT , on the fluctuating component of the magnetic field. We
derived the integro-differential equation for the large-scale magnetic field, which
is non-perturbative in shear strength, S, and the α-correlation time, τα, similar to
Sridhar & Singh (2014). For the exactly solvable case of white-noise α-fluctuations,
dynamo action is possible only when the α-fluctuations are strong; this is also
similar to Sridhar & Singh (2014). In order to explore dynamo action in the regime
of weak α-fluctuations it is necessary to consider a non-zero τα. Considering a
small but non-zero τα and a slowly varying large-scale magnetic field, we reduced
the integro-differential equation to a partial differential equation. We present an
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expression for the mean EMF, correct up to first order in τα. We also corrected an
error in Sridhar & Singh (2014) in the expression for the growth rate, γ . Our salient
conclusions are listed below:

(i) In the absence of Moffatt drift (i.e. VM = 0) the growth rate is independent of
shear when 0< |k|< kα, and there is no dynamo action for weak α-fluctuations
even when |k|> kα for moderately small shear (i.e. |εS| � 1) – see figure 4(a).

(ii) For dynamo action with weak α-fluctuations, it is necessary that VM 6= 0: Moffatt
drift couples strongly to shear and excites dynamo modes for |k|< kα – see item
(iv) in § 5.1 and figure 2.

We briefly comment on different approaches adopted in some related earlier works
involving α fluctuations in a shearing background. Heinemann et al. (2011) considered
tensorial α̂-fluctuations due to a quasi-two-dimensional velocity field, whose dynamics
is governed by the Navier–Stokes equation at low Reynolds number, where the
stochastic motions occur due to a Gaussian random forcing which is δ-correlated in
time. A double-averaging scheme was employed, first over the ‘horizontal’ (or xy)
coordinates, and second over the statistics of the forcing function. They found that
the first moment of the magnetic field does not grow, while there is a growth of
the mean-squared magnetic field. Note that the spatial fluctuations in α̂ were ignored
there, and the correlation time of only temporally fluctuating α̂ was assumed to be
the same as that of the velocity field. Mitra & Brandenburg (2012) also studied a
model with tensorial α̂ and allowed only temporal fluctuations which were further
restricted to be δ-correlated in time. When cross-correlations between different α̂
components were assumed to be zero, they found growing solutions for the second
moment of the mean magnetic field, but not for the first moment. However, when
cross-correlations were allowed, large enough shear promoted the growth of even the
mean magnetic field. Ignoring spatial structures and memory effects of the stochastic
α appear to be a serious limitation. We remedy this in the present investigation
where an essential generalization is made to explore new physical mechanisms
driving large-scale dynamos, but by focussing here on the scalar α fluctuations to
keep the analysis simple.

Thus, our model is a minimal extension of Kraichnan (1976) and Moffatt (1978),
where α is assumed to be a fluctuating pseudo-scalar field, and ηT is constant. We
have constructed a model of large-scale dynamo action with essential roles played by
the Moffatt drift and a non-zero correlation time. Hence our focus has been to keep
the tensorial structure of α as simple as possible, while exploring the effect of spatio-
temporal variations that are natural to turbulent flows. We note that our work is almost
completely complementary to Mitra & Brandenburg (2012), wherein α fluctuations are
tensorial but have very restrictive space–time properties: no spatial variation at all and
with a zero correlation time. Indeed non-zero correlation times and non-trivial spatial
statistics appear essential for dynamo action, as emphasized in item (2) above. We
note here that there seems to be some numerical evidence for pseudo-tensorial α and
tensorial ηT fluctuations (Brandenburg et al. 2008; Rheinhardt et al. 2014; Singh &
Jingade 2015). Our results, obtained for pseudo-scalar α, can be readily extended to
tensorial fields.

Our analytical results for the growth rates of modes relies on a perturbative
expansion in τα, which could also be generalized. Another important assumption is
the role of the shear in the statistics of the α fluctuations: these fluctuations have
been specified by a Galilean-invariant two-point correlation function in factored form
A(R)D(t), where R= x− x′ + St′(x1 − x′1)e2. Even though the functional form of A
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has dependence on shear through the argument R, to the first-order expansion in τα,
neither A(0) = ηα nor VM depends on shear explicitly. This is a limitation, since
we can expect a background shear flow to introduce anisotropy in the turbulent flow
which is the source of the fluctuations. Future modelling must seek to be guided by
numerical simulations that are designed to measure the statistics of α fluctuations.

Appendix A. Derivation of (3.3)
Fourier transforming (3.2), we obtain:(

∂

∂t
+ ηTK2

)
h̃− Sh̃1e2 = iK× M̃, K · h̃= 0, h̃(k, 0)= 0,

with K(k, t)= e1(k1 − Stk2)+ e2k2 + e3k3,

and M̃(k, t)=
1

(2π)3

∫
d3k′ã∗(k′, t) H̃(k+ k′, t).

 (A 1)

We integrate (A 1) component-wise to write the following solution, satisfying both
constraints, K · h̃= 0 and h̃(k, 0)= 0:

h̃(k, t) =
∫ t

0
dt′ G̃ηT (k, t, t′)[iK(k, t′)× M̃(k, t′)]

+ e2S
∫ t

0
dt′
∫ t′

0
dt′′ G̃ηT (k, t, t′′)[iK(k, t′′)× M̃(k, t′′)]1. (A 2)

Green’s function G̃ηT (k, t, t′) is given in (3.4), from where we can see a property that
G̃ηT (k, t, t′)× G̃ηT (k, t, t′′)= G̃ηT (k, t, t′′), which is used in getting (A 2). Reducing the
double time integral in (A 2) to a single time integral by using,∫ t

0
dt′
∫ t′

0
dt′′f (t′′)=

∫ t

0
dt′(t− t′)f (t′), (A 3)

we obtain the FOSA solution for the fluctuating magnetic field as given in (3.3).

Appendix B. Two-point α-correlator in Fourier space
Here we derive a general expression for time-stationary Galilean-invariant two-point

α-correlator in Fourier space, where (2.11) transforms to:

ã(k1, t)ã∗(k3, t′)=
∫

d3x1d3x3 exp (−ik1 · x1 + ik3 · x3)a(x1, t)a(x3, t′)

= 2D(t− t′)
∫

d3x1 d3x3 exp [−i(k1 · x1 − k3 · x3)]A(x1 − x3 + St′(x11 − x31)e2).

(B 1)

Using new integration variables, r= x1 − x3 and r′ = (x1 + x3)/2, we get

ã(k1, t)ã∗(k3, t′) = 2D(t− t′)
∫

d3r d3r′ exp
[
−i(k1 − k3) · r′ −

i
2
(k1 + k3) · r

]
×A(r+ St′r1e2)= 2D(t− t′)(2π)3δ(k1 − k3)

×

∫
d3r exp (−ik1 · r)A(r+ St′r1e2). (B 2)
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Another change of the integration variable to R= r+ St′r1e2 gives us a compact form
for the two-point correlator:

ã(k1, t)ã∗(k3, t′)= 2D(t− t′)(2π)3δ(k1 − k3) Ã(K(k1, t′)),

where Ã(K)=
∫

d3R exp (−iK ·R)A(R).

 (B 3)

Note that Ã(−K)= Ã∗(K) because A(R) is a real function and that the argument of
the complex spatial power spectrum Ã(K) is a time-dependent wavevector.

Appendix C. Derivation of (3.5) and (3.6)
We derive an expression for the mean EMF in Fourier space by using (3.3) as:

Ẽ(k, t)=
∫

d3x exp(−ik · x)E(x, t)=
∫

d3x exp (−ik · x) a(x, t)h(x, t)

=
1

(2π)3

∫
d3k′d3k′′δ(k′ + k′′ − k) ã(k′, t) h̃(k′′, t)

=
1

(2π)3

∫
d3k′ d3k′′δ(k′ + k′′ − k)

∫ t

0
dt′ G̃ηT (k

′′, t, t′)

×{[iK(k′′, t′)× ã(k′, t)M̃(k′′, t′)] + e2S(t− t′)[iK(k′′, t′)× ã(k′, t)M̃(k′′, t′)]1}.
(C 1)

This is given in terms of the quantity ã(k′, t)M̃(k′′, t′), which can be determined by
using the definition of M̃ from (A 1) and then using the time-stationary Galilean-
invariant expression for the two-point ã-correlator as given by (B 3). We get

ã(k′, t)M̃(k′′, t′) =
1

(2π)3

∫
d3k′′′ ã(k′, t)ã∗(k′′′, t′) H̃(k′′ + k′′′, t′)

= 2D(t− t′) Ã(K(k′, t′)) H̃(k′ + k′′, t′). (C 2)

Substituting (C 2) in (C 1) and solving the k′′-integral using the property of the δ-
function, we immediately find the expression for mean EMF as given in (3.5) in terms
of a generalized complex velocity vector Ũ defined by (3.6).
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