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Abstract

Background. Individuals with a first episode of psychosis (FEP) show rapid weight gain during
the first months of treatment, which is associated with a reduction in general physical health.
Although genetics is assumed to be a significant contributor to weight gain, its exact role is
unknown.
Methods.We assembled a population-based FEP cohort of 381 individuals that was split into a
Training (n= 224) set and aValidation (n= 157) set to calculate the polygenic risk score (PRS) in
a two-step process. In parallel, we obtained reference genome-wide association studies for body
mass index (BMI) and schizophrenia (SCZ) to examine the pleiotropic landscape between the
two traits. BMI PRSs were added to linear models that included sociodemographic and clinical
variables to predict BMI increase (ΔBMI) in the Validation set.
Results. The results confirmed considerable shared genetic susceptibility for the two traits
involving 449 near-independent genomic loci. The inclusion of BMI PRSs significantly
improved the prediction of ΔBMI at 12 months after the onset of antipsychotic treatment by
49.4% compared to a clinical model. In addition, we demonstrated that the PRS containing
pleiotropic information between BMI and SCZ predicted ΔBMI better at 3 (12.2%) and
12 months (53.2%).
Conclusions. We prove for the first time that genetic factors play a key role in determining
ΔBMI during the FEP. This finding has important clinical implications for the early identifi-
cation of individuals most vulnerable to weight gain and highlights the importance of examining
genetic pleiotropy in the context of medically important comorbidities for predicting future
outcomes.

Introduction

Schizophrenia (SCZ) is a severe disorder with a large burden of morbidity and societal impact. It
has a heritability of ~80%, much of which is attributable to common risk alleles [1]. Patients with
SCZ often have a large number of comorbid medical conditions during their lifespan [2, 3]. In
fact, people with SCZhave a highermortality rate than the general population, corresponding to a
10–20 year reduction in life expectancy, predominantly due to cardiovascular disease [4, 5].

Antipsychotic (AP) drugs can help reduce the intensity and frequency of psychotic symptoms;
however, most of them are obesogenic [6]. There are differences in the weight gain caused by AP
drugs, with olanzapine and clozapine presenting a higher risk [7]. Obesity is a modifiable risk
factor that reduces the quality of life [8], adherence to treatment [9], and is associated with many
adverse health-related outcomes, including cardiovascular disease [10, 11]. The risk of obesity in
patients with SCZ is more than four times higher than in the general population [12]. In fact, the
first year after the initiation of AP treatment is a critical period in which up to 60–80% of the total
weight gain occurs [13, 14]. Among all factors studied, rapid initial weight gain, AP drug,
pretreatment body mass index (BMI), and sex are the best predictors of weight gain and
associated metabolic abnormalities [15–17]. However, substantial differences in susceptibility
between individuals under AP treatment suggest that weight gain may be partially explained by a
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mixture of environmental effects and genetic background
[18–20]. In support of this view, the heritability of weight gain in
monozygotic twins with SCZ has been estimated to be 0.6–0.8 [21]
and a few genetic loci have been associated with AP-induced weight
gain by genome-wide association studies (GWAS) [22, 23]. More-
over, given its strong polygenic component, SCZ shows extensive
genetic overlap with other mental disorders [24, 25], and also with
other nonpsychiatric traits [26–28]. In particular, studies have
reported a negative overall genetic correlation between BMI and
SCZ, which results from a mixture of variants with concordant and
discordant effects [28–30].

There is a substantial genetic vulnerability to BMI trajectories in
the general population [31, 32]; however, it remains to be estab-
lished whether prediction models, including the polygenic risk
score (PRS) for BMI (PRSBMI), are clinically useful for populations
with psychiatric disorders. In this study, we aimed to determine
whether common genetic variants for BMI confer a risk of BMI
increase at treatment initiation in patients with first episode of
psychosis (FEP), and to investigate the role of shared and private
BMI variants in BMI increase (ΔBMI). To our knowledge, this is the
first study to confirm the role of genetics in FEP-associated weight
gain, with a significant contribution of shared variants between the
two traits, highlighting their relevance and applicability. This infor-
mation can be used to identify individuals with an increased risk at
the very early stages of the disease.

Methods

Study design

This study includes individuals with a FEP initially enrolled in the
Cantabria Program for Early Intervention in Psychosis (PAFIP,
Spain) between 2001 and 2018 [33]. Patients fulfilling inclusion
criteria (Supplementary Material) were assigned to three con-
secutive phases of the PAFIP (PAFIP I, II, and III), including
randomized, flexible-dose, and open-label clinical trials and fol-
lowed up for 12 months. During this period, AP doses were
adjusted at the treating psychiatrist’s discretion to target the
lowest effective dose [34]. Similarly, AP treatment could be
switched based on the observed effectiveness and the patient’s
tolerance. For further analysis, the diagnosis was categorized into
Schizophrenia, Schizoaffective disorder, Schizophreniform dis-
order, Brief psychotic disorder, and not otherwise specified
psychosis. Written informed consent was obtained from all sub-
jects. The Clinical Research Ethics Committee of Cantabria
approved the research protocol.

Patients were evaluated for research purposes at three consecu-
tive time points: at baseline, and at 3- and 12-month follow-ups
(after the initiation of AP treatment). Sociodemographic charac-
teristics were recorded at baseline (Table 1), while clinical and
anthropometric measures were obtained at each time point.
Pharmacological treatment prescribed and chlorpromazine equiva-
lents [35] were also recorded at each time point. Patients were
grouped based on the primary active drug (Table 2).

Samples and genotyping

For the present study, the PAFIP sample (n= 381) was divided into
two independent patient datasets. Each of these datasets had been
genotyped with a different platform. The first dataset (from now on
Training set) included 224 patients and was used to determine the
p-value threshold for PRSs, while a second sample (from now on

Validation set) included 157 patients and was used for replication.
In both datasets, DNA was extracted from peripheral lymphocytes,
and genotyping was performed using the Affymetrix 6.0 platform
(Training set) and the Illumina Infinium PsychArray (Validation
set), respectively. Standard quality-control procedures [36] were
performed with PLINK 1.9 [37], resulting in 6,910,431 SNPs in the
Training set and 6,552,380 SNPs in the Validation set
(Supplementary Material). Only those individuals with valid BMI
measures were included (Supplementary Table S1). Finally, a PCA
was performed on the resulting individuals and the top 10 PCs were
kept for further analysis.

Pleiotropy analyses with GWAS data

GWAS summary statistics on BMI were obtained from Pulit et al.
[38], which comprised association analyses of a total of 806,834
European individuals. For SCZ, we obtained GWAS data on 67,390
patients and 94,015 controls, with 80% being of European ancestry
[1] (Supplementary Table S2). GWAS summary statistics were
referenced to 9,546,816 SNPs generated from the 1,000 Genomes
Project (1KGP). SNPs that were nonbiallelic, without rsIDs, dupli-
cated, or with strand-ambiguous alleles were removed. We also
filtered out SNPs with INFO scores < 0.9, those mapping to the
extended major histocompatibility complex (MHC, chr6:
25,119,106–33,854,733), SNPs located on chromosomes X, Y, and
mitochondria, and SNPs with sample sizes 5 standard deviations
away from themean. Finally, a common set of 1,949,409 SNPs were
kept in the two datasets. ORs and betas were transformed into z-
scores.

We used pleioFDR [25] to identify genetic loci jointly associated
with the two phenotypes, as previously described [27]
(Supplementary Material). SNPs jointly associated with BMI and
SCZ (conj. FDR < 0.05) were mapped to genes with ANNOVAR
[39]. Genelists were submitted to KOBAS-I [40] to check for
enrichment in biological categories and diseases; and to the GEN-
E2FUNC option implemented in FUMA to check for tissue enrich-
ment [41]. All protein-coding genes were used as background and
the Benjamini–Hochberg (BH)method was used for false discovery
rate (FDR) correction.

To obtain the widest representation of the SNPs in the pleio-
tropic loci between SCZ and BMI, SNPs that were in r2 > 0.1,
distance < 250 kb, and MAF > 0.001 with each independent SNPs
at conj. FDR < 0.05 were recovered with PLINK v1.9 from the CEU
population of the 1 kG project. After this process, all the obtained
SNPs were classified as pleiotropic SNPs. Nonpleiotropic SNPs
were defined as all the SNPs in the original BMI GWAS that were
not considered in any pleiotropic locus.

PRS estimation

PRSice 2.3.1.e was used to implement a pipeline in PRS creation
[42], using a two-step procedure as previously developed
[43]. This avoids sample overlap between the Training and Val-
idation sets and prevents test statistic inflation. First, PRSs were
calibrated in the Training set using the GWAS on BMI [38] as base
data. Scores were calculated formultiple p-threshold cutoffs (from
5e-08 to 1 with increments of 5e-05) using r2 = 0.1, 250-kb
window, SNPs with INFO > 0.9, and excluding the MHC. Then,
the optimal p-value (poptimal) threshold was determined as the one
with the highest prediction for each phenotype. Sex, age, and the
10 first PCs were included as covariates (when evaluating ΔBMI,
BMI0 was also included as a covariate). Second, SNPs below each
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Table 2. Number of participants in each treatment category at baseline and after 3 and 12 months of follow-up.

Baseline t = 3 months t = 12 months

Drug Training Validation Training Validation Training Validation

Aripiprazole 101 (45.1%) 11 (7%) 81 (38%) 9 (5.8%) 81 (38.6%) 9 (6.3%)

Clozapine — — 3 (1.4%) — 10 (4.8%) 2 (1.4%)

Trifluoperazine — — 1 (0.5%) — — —

Haloperidol — 34 (21.7%) — 31 (20.1%) — 17 (11.9%)

Olanzapine 1 (0.4%) 42 (26.8%) 13 (6.1%) 45 (29.2%)) 24 (11.4%) 46 (32.2%)

Paliperidone — — 3 (1.4%) — 12 (5.7%) —

Quetiapine 34 (21.7%) 15 (9.6%) 14 (6.6%) 12 (7.8%) 13 (6.2%) 18 (12.6%)

Risperidone 49 (21.9%) 43 (27.4%) 71 (33.3%) 49 (31.8%) 54 (25.7%) 44 (30.8%)

Ziprasidone 39 (24.8%) 12 (7.6%) 27 (12.7%) 8 (5.2%) 15 (7.1%) 7 (4.9%)

Amisulpride — — — — 1 (0.5%) —

Total 224 157 213 154 210 143

Table 1. Sociodemographic and clinical characteristics of the sample at baseline.

Total (n = 381) Training set (n = 224) Validation set (n = 157) Statistical difference
N (%) N (%) N (%) Pearson Chi-squared test

Sex (females) 165 (43.3) 98 (43.8) 67 (42.7) p = 0.91*

Diabetes 7 (4.2) 7 (4.9) 0 p = 0.65*

Metabolic syndrome 14 (4.7) 11 (5.7) 3 (2.9) p = 0.42*

Drug Naïve 354 (92.9) 202 (90.2) 152 (96.8) p = 0.02*

Tobacco 211 (55.4) 121 (54) 90 (57.3) p = 0.59*

Cannabis 153 (40.2) 85 (37.9) 68 (43.3) p = 0.34*

Alcohol 192 (50.5) 101 (45.1) 91 (58.3) p = 0.01*

Antidepressants 7 (1.8) 6 (2.7) 1 (0.6) p = 0.28*

Stabilizers 1 (0.3) 1 (0.4) 0 p = 1*

Diagnose after 6-months

Schizophrenia 188 (49.3) 96 (42.9) 92 (58.6) p = 0.02

Schizophreniform disorder 115 (30.2) 73 (32.6) 42 (26.7)

Brief psychotic disorder 43 (11.3) 32 (14.3) 11 (7)

Unspecified psychosis 28 (7.3) 19 (8.5) 9 (5.7)

Schizoaffective disorder 5 (1.3) 2 (0.9) 3 (2)

Delusional disorder 2 (0.5) 2 (0.9) 0

Mean � SD Mean � SD Mean � SD Wilcoxon rank sum test

Age at admission, years 29.5 � 9.3 30.7 � 10.2 27.8 � 7.6 p = 0.03

Weeks previous treatment 1.5 � 1.6 1.4 � 1.6 1.8 � 1.7 p = 0.44

DUI, months 21.9 � 37.2 16.7 � 31.4 29 � 43.1 p = 1.6e-04

DUP, months 13.3 � 29.4 12.5 � 31 14.4 � 27 p = 0.04

HOMA baseline 2.2 � 2.3 2.5 � 2.7 1.7 � 1.4 p = 1e-03

Weight 66.2 � 13.6 65.6 � 14 67.1 � 13.1 p = 0.12

BMI 23.2 � 3.8 23 � 4 23.4 � 3.5 p = 0.12

ΔBMI3 6.4 � 7.6 6 � 7.3 7 � 8 p = 0.21

ΔBMI12 13.9 � 12.1 13.6 � 11.9 14.3 � 12.4 p = 0.59

Abbreviations: DUI, duration of untreated illness; DUP, duration of untreated psychosis.*Pearson’s Chi-squared test with Yates’ continuity correction.
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obtained poptimal threshold were identified and carried forward for
PRS computation in individuals of the Validation set.

Statistical analyses

First, Mann–Whitney and Kruskal–Wallis tests were used to assess
differences in ΔBMI at 12 months (ΔBMI12) based on clinical
characteristics, use of antidepressants, and the AP drug described.
Chi-squared tests were performed to evaluate differences between
the Training and Validation sets.

To elucidate whether the PRSBMI were associated with the BMI
in our dataset we carried out multiple linear regressions in the
Validation set. We designed our analysis in three phases, first, we
constructed linear models with the observed BMI12, ΔBMI3, and
ΔBMI12 as the dependent variables, which combined only clinical
and demographic variables. These models were referred to as
Clinical models. They included as independent variables the 10 first
PCs (to adjust for population stratification), sex, age, AP dose and
the type of AP drug (at the corresponding time point), the diagno-
sis, tobacco smoking, and cannabis use. When the ΔBMI were
evaluated, BMI0 was also included as a covariable. We also per-
formed Clinical models with the whole dataset to determine each
variable’s contribution in the BMI. Second, to examine the predict-
ive ability of including genetic factors in the Validation set, the
PRSBMI values obtained were subsequently incorporated into the
previousmodels. Thus, we produced a series of absolute riskmodels
with the observed BMI (or ΔBMI) as the dependent variable, and
the covariates in the Clinical model plus the PRSBMI as independent
variables, named PRS models. Third, we divided the genome-wide
significant SNPs (p < 5e-08) from the BMI GWAS into pleiotropic
and nonpleiotropic, using information from the pleioFDR analysis,
to build additional PRS models which independently included
PRS derived from pleiotropic (PRSpleio) and nonpleiotropic
(PRSnonpleio) loci. In these cases, only SNPs that belonged to each
category were included. Finally, we used the ANOVA() function to
compare whether PRS models were significantly different from the
Clinical models. All the analyses were performed in R 3.6.0 [44].

Since all the BMI measures were highly interrelated, a Bonfer-
roni correction was considered too restrictive for the linear regres-
sionmodels. Instead, the alpha level was corrected by estimating the
effective number of tests [45]. In our study, the resulting signifi-
cance threshold was set at p = 0.027.

Results

Characteristics of the whole dataset

A total of 381 patients were included in the entire dataset. Among
them, 188 (49.3%) were diagnosed with schizophrenia, 115 (30.2%)
with schizophreniform disorder, 43 (11.3%) with brief psychotic
disorder, 28 (7.4%) with not otherwise specified psychosis, 5 (1.3%)
with schizoaffective disorder, and 2 (0.5%) with delusional disorder
(Table 1). At the end of the study, 89.2% of the patients had all BMI
measures. None of the participants was initially treated with clo-
zapine, which is indicated in treatment-resistant SCZ [46] (Table 2).
A total of 354 patients (92.9%)wereAP-naïve. The other 27 patients
(7.1%) had been treated with AP prior to their inclusion in the
study, although during a short period of time (mean 10.4 days, SD:
11.2 days; median 5 days; range: 1–42 days).

In the dataset, the mean ΔBMI3 and ΔBMI12 were 6.4 and
13.9%, respectively (Supplementary Figure S1). Most of the indi-
viduals displayed a positive ΔBMI12 (n = 312, 91.8%), while

25 individuals (7.4%) showed a negativeΔBMI12, and 3 individuals
(<0.1%) had the same BMI0 and BMI12. In total, 108 patients in the
Training set (48.2%) and 94 in the Validation set (59.9%) remained
with the sameAPdrug during the study (Supplementary Figure S2).
Both ΔBMI3 and ΔBMI12 were negatively correlated with BMI0
(p= 5.56e-10 and p= 7.07e-07) and positively correlated with each
other (Supplementary Figure S3). In the whole sample, all APs were
associated, on average, with a positive ΔBMI (Supplementary
Figure S4). There were differences in ΔBMI12 between AP drugs
among the individuals that did not switch AP drug during the study
period (p = 1.9e-03), being olanzapine associated with a higher
ΔBMI12. There were also differences in tobacco smokers versus
nonsmokers (p = 0.01) and in cannabis users versus nonusers
(p = 2.5e-03). However, ΔBMI12 was not associated with diabetes,
metabolic syndrome, alcohol use, being AP drug naïve, or not
having been prescribed antidepressants and mood stabilizers at
baseline (Supplementary Figure S5). To reduce the number of
variables in the models, only significant factors were incorporated
into the subsequent prediction models.

Pleiotropy between SCZ and BMI

A total of 486 independent SNPs belonging to 449 near-
independent genomic loci (r2 < 0.1) were identified as being jointly
associated with SCZ and BMI at conj. FDR < 0.05 (Figure 1A,B and
Supplementary Table S3). Among them, 169 independent SNPs
(35%) showed concordant relationships, where the alleles that
confer risk for SCZ, also increase BMI. In addition, 317 independent
SNPs (65%) showed discordant links, in which the allele that
increased SCZ-risk, had a BMI reduction effect (Figure 1C). This
represented an approximate twofold ratio between discordant
(antagonistic) and concordant (agonistic) pleiotropic variants that
were conserved across significance thresholds (Supplementary Fig
ure S6). Neither of the two groups of variants differed in their effect
sizes in SCZ (p = 0.45) or BMI (p = 0.17), and nor in their minor
allele frequency (p = 0.72).

The set of SNPs shared between SCZ and BMI included 9,262
SNPs corresponding to 889 genes in total, enriched in Alcoholism
(FDR = 5,15e-15), DNA methylation (FDR = 4,99e-14), DNA
damage (FDR = 7,52e-13), cAMP signaling pathway
(FDR= 2,45e-09), axon guidance (FDR= 1,06e-07), dopaminergic
synapse (FDR = 2,99e-05), insulin resistance (FDR = 6,57e-03),
and nervous system diseases (FDR = 7,58e-05), among others
(Supplementary Table S4 and Supplementary Figure S7). These
genes were differentially regulated in the brain; and were especially
up-regulated in the frontal cortex, anterior cingulate cortex, puta-
men, amygdala, nucleus accumbens, and hippocampus
(Supplementary Figure S8). A complete list of pathways enriched
in both agonistic and antagonistic loci can be found in
Supplementary Tables S5 and S6.

Risk models for BMI and ΔBMI

First, the Clinical models for BMI12 and ΔBMI12 were evaluated in
the entire dataset. Variables associated with a higher BMI12 were
male sex (p = 7.4e-05), being on haloperidol (p = 1.6e-04), olanza-
pine (p = 6.1e-03), risperidone (p = 6.8e-03), and quetiapine
treatment (p = 0.03), and not consuming cannabis (p = 0.01,
Supplementary Table S7). Among them, the major contributors
to BMI12 were sex (4.5%), AP treatment (9.1%) and not being a
cannabis user (1.7%, Figure 2A). On the other hand, variables
associated with higher ΔBMI12 were reduced age (p = 0.01), low
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BMI0 (p = 2.4e-04), and AP treatment with paliperidone (p = 8.2e-
03) and clozapine (p = 8.8e-03) at the 3-month follow-up
(Supplementary Table S7). BMI0 contributed 3.8% to the total
variance of ΔBMI12, AP treatment 8%, and age 1.8% (Figure 2B).
WhenΔBMI3 was included, it was the major contributor, account-
ing for 27.1% of ΔBMI12 variance (Figure 2C).

To assess the performance of adding PRS in predicting BMI, the
whole dataset was split into a Training set and a Validation set. The
poptimal was brought forward to calculate PRSBMI in the Validation
set and the scores were included into the PRS models for compari-
son against the Clinical models. For BMI12 the poptimal was estab-
lished at 0.15 (Supplementary Table S8). The inclusion of the
PRSBMI improved the Clinical model for BMI12 by 76% (p = 7.7e-
04, Adj. R2CLIN = 0.10, Adj. R2

PRS = 0.18, Figure 3 and
Supplementary Table S9).

Next, we studied the inclusion of PRSBMI for predicting ΔBMI3
and ΔBMI12. The poptimal thresholds in the Training set were
estimated at 2.2e-03 and 0.13, respectively (Supplementary Table

S8). The percentage increase in the PRS models was 69.4% in
ΔBMI12 (p = 0.02, Adj. R2CLIN = 0.05; Adj. R2PRS = 0.08), but not
significant inΔBMI3 (p=0.39,Adj.R2CLIN=0.18;Adj.R2

PRS=0.18,
Supplementary Table S10).

Given the large extent of genetic pleiotropy between SCZ and
BMI, we investigated whether these variants played a specific role
in determining BMI and ΔBMI in our cohort. We obtained two
PRSs based on pleiotropic (PRSpleio) and nonpleiotropic SNPs
(PRSnonpleio, Supplementary Figure S9). The PRSpleio was not a
significant predictor in determining absolute BMI12 (p = 0.26), as
confirmed by the comparison of the PRS model including the
PRSpleio (Adj. R2

Pleio = 0.11) compared to the Clinical model
(Adj. R2

CLIN = 0.10, Figure 3). Instead, the PRSnonpleio showed
an improvement in BMI12 higher than that of PRSBMI: 110.6%
(Adj. R2

Nonpleio = 0.22, p = 5.3e-05). In contrast, including
PRSpleio improved the ΔBMI12 model by 98% (p = 0.01, Adj.
R2

CLIN = 0.05, Adj. R2
Pleio = 0.10, Figure 3), as well as the

ΔBMI3 model by 12.2% (p = 0.04, Adj. R2
CLIN = 0.18, Adj.

Figure 1. Pleiotropic variants between SCZ and BMI. (A) Manhattan plot showing independent (r2 < 0.1) loci associated with both SCZ and BMI, as defined by conjunction false
discovery rates (conj. FDR) after excluding SNPs in the MHC region. The dashed black line represents the conj. FDR threshold of 0.05. (B) Conditional Q–Q plots of nominal versus
empirical (�log10) p-values (corrected for inflation) of BMI as a function of significance with SCZ, at the level of p < 10�1 (red line), p < 10�2 (yellow line), and p < 10�3 (purple line),
respectively. The blue line indicates the standard enrichment of BMI including all SNPs, irrespective of their association with the secondary trait. The gray dashed line indicates the
null distribution of p-values. (C) Pleiotropy plot for independent SNPs with conj. FDR < 0.05 (n = 486) between SCZ and BMI. The conj. FDR values and the direction of the effects
(z-scores) of the minor alleles are plotted for BMI (x-axis) against SCZ (y-axis). Graph regions whose effects are consistent with a positive correlation between the two traits are
shaded in yellow. (C) The ratio between discordant and concordant pleiotropic variants across different conj. FDR thresholds.
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R2
Pleio = 0.20), indicating the role of the pleiotropic variants in

weight increase. PRSnonpleio was not relevant for predicting
ΔBMI3 (p = 0.28); however, it significantly improved ΔBMI12
by 93.9% (p = 0.01, Adj. R2

Nonpleio = 0.10). Finally, we classified

the pleiotropic variants into agonistic and antagonistic to con-
struct both agonistic PRSs (PRSago) and antagonistic PRSs
(PRSantag). In predicting both ΔBMI3 and ΔBMI12, the PRSantag
outperformed the PRSago (Supplementary Figure S10).

Figure 2. ΔBMI variance explained in the whole dataset. Bar plots showing the variance explained by each covariate in the Clinical models for (A) BMI12, (B)ΔBMI12, and (C)ΔBMI12
including ΔBMI3 in the model. AP, antipsychotic drug; CPZ, equivalent doses of chlorpromazine. *p-value < 0.05; **p-value < 0.01; ***p–value < 0.001.

Figure 3. Clinical versus PRS models in BMI. Barplots showing the Adj. R2 in BMI by the Clinical model (CLIN) and the PRS models computed using all SNPs from BMI GWAS (PRSBMI),
pleiotropic SNPs (PRSPleio), and nonpleiotropic SNPs (PRSNonpleio) in the Validation dataset (n = 157). The barplot shows predictions of BMI12, ΔBMI3, and ΔBMI12 in the x-axis.
Covariates included in the Clinical model were the first 10 PC, age, sex, AP drug prescribed, chlorpromazine equivalent doses, diagnose, tobacco smoking, and cannabis use. Each
PRS model was compared to the performance of the corresponding Clinical model. Asterisks represent significantly improved models compared to the Clinical models (ANOVA).
*p-value < 0.05; ***p–value < 0.001.
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Discussion

Understanding the genetic vulnerability associated with increased
BMI can be used to predict the risk of ΔBMI prior to treatment
initiation so that personalized risk-based treatments can be imple-
mented. In this study, we demonstrate for the first time, the
replicable effects of a PRSBMI in predicting ΔBMI in FEP, with a
prominent role of variants shared between SCZ and BMI.

In our study, BMI0 was inversely associated with ΔBMI3 and
ΔBMI12, indicating that individuals with lower BMI0 were more
likely to have higher ΔBMI during the first year of treatment [47],
which is in line with a previous study on an extended FEP cohort
[48]. In the analyses of patients who did not switch AP, greater BMI
gain was observed in patients treated with atypical AP, in accord-
ance with previous studies [49, 50]. However, the effects varied
greatly within medications, and interactions with underlying indi-
vidual characteristics and genetic factors may be relevant [51].

Previous studies have proposed that the weight gain in psychosis
is associated with the altered expression of genes related to both
obesity and BMI [52], which suggests that there is a genetic overlap
between these two medical conditions. Here, we confirm and
extend with further data the shared genetic architecture between
BMI and SCZ, involving pathways such as alcoholism (alcohol use
disorder), DNA damage, DNAmethylation, insulin resistance, and
dopaminergic and glutamatergic synapses [28], which are promis-
ing mechanisms for understanding weight gain in FEP. Alcohol
intake can be a contributing factor to weight gain, probably by
effects on central neurotransmitter systems to increase appetite
[53], however, it has to be highlighted that alcohol use disorder
was among the exclusion criteria for entering the PAFIP program.
Specific DNAmethylation signatures have beenwidely described to
play a role in obesity and weight loss in humans [54–56]. There is
also evidence pointing to the relevance of the glutamatergic system
as a promising strategy to treat obesity [57]. In addition, weight gain
associated with clozapine may be linked to antagonism of the
histaminergic H1 receptors, increasing the risk of insulin resistance
and type 2 diabetes [58]. The pleiotropic variants between the two
traits belong to genes that are up-regulated in the frontal and
anterior cingulate cortices, the putamen, amygdala, nucleus accum-
bens, and hippocampus, which suggests that these areas play a
relevant role in weight increase associated with SCZ. For instance,
dopamine has been considered to be the target responsible for the
efficacy of AP and also to be involved in feeding behavior, and the
accumbens is considered to be the brain area with an increased
release of dopamine [59]. In fact, nucleus accumbens microstruc-
ture can be used to predict weight increase in children [60]. Simi-
larly, hippocampus size has been discovered to be a predictor for
change in BMI in FEP [61].

A recent study in FEP found no association between psycho-
pathological PRS with metabolic progression, including BMI
[62]. However, in the present study, we demonstrate the role of
underlying genetics in both BMI and ΔBMI in FEP patients.
Including PRSBMI ostensibly improved the prediction of BMI at
12 months of treatment. This is not surprising, as the role of
genetics in BMI in the general population is already known [31];
however, this is the first time it is also validated in FEP individuals
under AP treatment. Notably, we report for the first time, that the
inclusion of PRSBMI also improved the prediction of mid-term
ΔBMI, which may have important consequences in identifying
FEP patients at high risk for weight gain. Strikingly, including
PRSpleio improved both risk models of ΔBMI12 and ΔBMI3,
although containing a much lower number of SNPs. Remarkably,
ΔBMI12 was strongly predicted by ΔBMI3 (explaining almost 30%

of its variance). This result emphasizes that clinicians should focus
on the early weeks of treatment to prevent long-term weight gain
[63], also reinforcing the benefits of including pleiotropy informa-
tion for early detection of BMI increase in FEP. In contrast, the
genetic architecture of BMI not sharedwith SCZ (PRSnopleio) played
a pivotal role in controlling BMI. Our results are in line with recent
data showing that incorporating pleiotropic information improves
prediction by capturing biological mechanisms shared between
traits [64, 65]. Moreover, opening the door to applying it to the
study of comorbidity between a priori independent traits. Our
results also indicate that antagonistic variants (those that have
opposite directions between BMI and SCZ) play a greater role in
ΔBMI. However, it could be simply a matter of statistical power as
more SNPs were recovered in this category.

This study has one main strength: it is based on independent
longitudinal and prospective cohorts of well-characterized drug-
naïve FEP patients in which different types of AP medication were
considered. However, our work has some limitations; first, we could
not control for well-known factors that contribute to BMI changes,
such as diet and physical activity [66, 67]. Secondly, the interpret-
ation of the results could also be skewed by the fact that FEP
patients often switch AP treatment during follow-up, and are
sometimes treated with a secondary AP, which have a possible
impact on BMI [68]. It is noteworthy that the two datasets do not
have the same distribution of AP treatments. Although this may
imply a bias when the results between AP drugs are compared, it
also reinforces the role of genetics inΔBMI given its replicability in
sets of individuals with different treatments. Also, the fact that
GWAS of SCZ contained a 20% non-European sample may have
slightly biased the calculation of pleiotropic regions and, in turn, the
pleiotropic PRS. Finally, the predictive power we obtain with a
small population (N < 200) is relatively low (Adj. R2 ~ 0.1–0.2),
but is fully comparable to that of other studies with much larger
cohorts [32, 69–71]. Further research with larger cohorts and
including populations of non-European ancestry is needed to better
understand this relationship and to develop effective interventions
to address the issue of weight gain in people with FEP.

In summary, our findings highlight that genetics is an important
factor in determining the BMI trajectory in patients with FEP,
paving the way for its inclusion in the clinical routine in order to
identify individuals at higher risk, and to optimize individualized
prevention programs to improve patients’ quality of life. In turn,
our results lay the groundwork for addressing the prediction of
comorbid trajectories in other diseases using a similar approach.
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