
Robotica (2025), 43, pp. 1548–1571
doi:10.1017/S0263574725000281

REVIEW ARTICLE

Comparative analysis of popular mobile robot roadmap
path-planning methods
Ben Beklisi Kwame Ayawli1 , John Kwao Dawson1, Esther Badu2, Irene Esinam Beklisi Ayawli3 and
Dawda Lamusah1

1Department of Computer Science, Sunyani Technical University, Sunyani, Ghana
2The ICT Directorate, Sunyani Technical University, Sunyani, Ghana
3Department of Pharmacy, Sunyani Technical University, Sunyani, Ghana
Corresponding author: Ben Beklisi Kwame Ayawli; Email: bbkayawli@yahoo.com

Received: 21 April 2024; Revised: 29 November 2024; Accepted: 4 February 2025; First published online: 10 March 2025

Keywords: voronoi diagram; rapidly exploring random trees; probabilistic roadmap; roadmap; mobile robot; path planning

Abstract
Global path planning using roadmap (RM) path-planning methods including Voronoi diagram (VD), rapidly explor-
ing random trees (RRT), and probabilistic roadmap (PRM) has gained popularity over the years in robotics. These
global path-planning methods are usually combined with other path-planning techniques to achieve collision-free
robot control to a specified destination. However, it is unclear which of these methods is the best choice to compute
the efficient path in terms of path length, computation time, path safety, and consistency of path computation. This
article reviewed and adopted a comparative research methodology to perform a comparative analysis to determine
the efficiency of these methods in terms of path optimality, safety, consistency, and computation time. A hundred
maps of different complexities with obstacle occupancy rates ranging from 50.95% to 78.42% were used to evaluate
the performance of the RM path-planning methods. Each method demonstrated unique strengths and limitations.
The study provides critical insights into their relative performance, highlighting application-specific recommen-
dations for selecting the most suitable RM method. These findings contribute to advancing robot path-planning
techniques by offering a detailed evaluation of widely adopted methods.

1. Introduction
Robotics as a branch of Artificial Intelligence aims to build embodied intelligence systems to perform
tasks in structured and unstructured environments [1]. Robot path planning, a crucial component of
robotics, includes choosing the best route for a robot to take from its current location to a specified
objective location while avoiding obstacles and abiding by a variety of limitations.

Research is advanced in achieving intelligent navigation and task performance of robots. Recent
advancements in robotic path planning have introduced various innovative approaches that address the
challenges of navigating complex environments. For example, the study of Boscariol et al. [2] focused
on developing and refining path-planning algorithms for special robotic operations, where robots are
deployed in complex environments requiring high precision, safety, and efficiency. Orozco-Rosas et al.
[3] also proposed Q-learning artificial potential field technique to address path-planning problem.

Various path-planning methods categorized into nature-inspired computation, conventional, and
hybrid methods were used by researchers to address path-planning problems [4]. The popular cate-
gory of global path-planning methods is roadmap (RM) path-planning methods including probabilistic
roadmap (PRM), rapidly exploring random trees (RRT), and Voronoi diagram (VD) [5, 6]. PRM is
particularly notable for its efficiency in exploring large configuration spaces by randomly sampling the
environment, as discussed by Santiago et al. [7]. RRT have gained popularity for their ability to quickly

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574725000281
https://orcid.org/0000-0002-1550-184X
mailto:bbkayawli@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1549

explore vast and unstructured spaces, making them ideal for real-time applications [8–13 ]. VD is a spa-
tial partitioning method used in robotics for efficient path planning, dividing space based on proximity
to predefined points, and enhancing navigation by complementing other techniques [14]. Another global
path-planning method apart from PRM, VD, and RRT is the visibility graph (VG) [5]. The VG technique
involves constructing a graph where nodes represent key positions (such as the start, goal, and obstacle
vertices), and edges connect nodes that have a direct line-of-sight, allowing for the computation of the
shortest path in environments with well-defined obstacles.

To provide efficient path-planning algorithms, most researchers explore hybrid methods. Some of
the popular proposed hybrid methods considered RM path-planning techniques including PRM, VD,
and RRT. For example, in ref. [5], VD was combined with morphological dilation to propose an algo-
rithm for mobile robot path planning in complex and dynamic environments. Also, an extreme learning
machine (ELM) was combined with improved RRT in ref. [15] to address path-planning problems.
Moreover, Qiao et al. [16] combine artificial potential field and PRM to address path-planning prob-
lems in complex environments. The integration of recent methodologies with these established RM
techniques underscores the ongoing evolution of path-planning strategies. Despite the popularity and
successes chucked by the integration of RM path-planning methods with others over the years com-
pared to other global path-planning methods, the challenge of achieving intelligent path planning in
complex environments persists [17, 18]. It remains a significant challenge to determine the appropriate
choice of RM path-planning methods to integrate with other methods to compute a safe and optimal
path with minimal computational time [4, 19–21].

To contribute to research in this area, this article reviewed and performed a comparative analysis
of the popular RM path-planning methods including PRM, RRT, and VD to assess the safety of the
computed path, path optimality, and the computation time in environments with different complexities
and obstacle occupancy rate.

The main contributions of this review paper are summarized as follows:

• To perform a comparative analysis of PRM, RRT, and VD RM path-planning methods in terms
of path length, computation time, and path safety.

• Demonstration of the stability of PRM, RRT, and VD path-planning methods across various
environmental complexities and obstacle densities.

• Identification of specific scenarios where each method excels, offering insights into the selection
of integration of appropriate path-planning methods for different applications.

• Proposal of future improvements for each method based on observed limitations.

The following sections of this article are organized to first provide an overview of the RM path-
planning methods (Section 2), followed by a detailed description of the methodology used in this study
(Section 3). The comparative analysis results are presented in Section 4, and the article concludes with
a discussion of the findings and suggestions for future work in Section 5.

2. Overview of RM path planning
Mobile robots operate in a workspace W made up of obstacles Wobs of different shapes. The rest of
the W is described as the free workspace Wfree. Robot navigation is expected in the Wfree. A RM can
be described as a set of edges and points such that for a given initial and goal position in Wfree, a path
can be connected. RM is made up of a set of paths between two given points in the W where the robot
can navigate without colliding with obstacles. Figure 1(a) and (b) shows samples of workspace with
obstacles, Start, and Goal positions. This collection of paths can be stored as a graph with vertices and
edges G(V , E) [22]. From each point on the RM, a goal point can be accessed and connected.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1550 Ben Beklisi Kwame Ayawli et al.

Algorithm 1. Dijkstra algorithm

Input: G(V , E), initial position s, goal position g
output: vertices and distance of the shortest path
1: Q= {} //nodes not visited
2: for each v ∈ G
3: dist[v]←∞ //current distance unknown
4: prev[v]←∅ //previous node visited
5: Q=Q∪ v
6: end for
7: dist[s]← 0; //distance from source to source
8: while Q �=∅

9: u←mindist(Q, dist[v]) //vertex with the minimum distance
10: Q=Q− u //remove u from the queue
11: For all uofv //for each neighbor of current node
12: p← dist[u]+ length(u, v);
13: if p < dist[v]
14: dist[v]← p; //shorter distance found
15: prev[v]← u; //vertices of shorter path
16: end if
17: end for
18: end while
19: return dist, prev;

Figure 1. (a) Configuration space with obstacles, start, and goal positions (b) Expected path for a
mobile robot in the configuration space.

There is, therefore, a path in RM ∈Wfree from Vstart ∈Wfree to some V ′ ∈Wfree, and there is a path from
some V ′′ ∈Wfree to Vgoal ∈Wfree. There exists a path in RM between v′ and v′′. RM path-planning involves
using algorithms to build RM in the Wfree of the workspace of the robot after which a path is computed
between the initial point of the robot to the goal point. Search algorithms including Dijkstra’s, theta∗,
D∗, and A∗ are then used to compute an efficient path from the initial position to the goal position using
the graph generated by the RM method. Given G(V , E) of the RM with the initial point s, and goal point
g, Algorithms 1 and 8 outline the Dijkstra’s and A∗ algorithms that could be used to generate the path
for RM path-planning methods, respectively.

RM path-planning methods can be classified into two namely: geometry-based and sampling-based
(SB) methods. These methods are discussed in the next sections.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1551

Figure 2. Visibility graph with the path from the start to the goal points.

3. Geometry-based roadmap path-planning methods
Geometry-based roadmap (GBRM) path-planning methods employ geometry computation techniques
to compute the vertex and edges of the RM based on the Wobsand Wfree of the workspace of the robot.
Other constraints are also considered in generating the RM to ensure the safety and quality of the RM.
The popular GBRM methods used by researchers over the years to address path-planning problems
include the VG [23] and the VD [24]. The most popular of these methods is the VD.

3.1. VG path-planning method
In a polygonal configuration space, a VG is used to generate points and edges in Wfree where connections
are made to join all visible points to form a RM. The initial and goal positions are included as points for
the connection [22]. Two points on a VG are connected, provided visibility can be established between
them. Considering two arbitrary data values (xi, yi) and (xj, yj) to have visibility between them, a con-
nection between these points can be established if any other data point (xk, yk) inserted between (xi, yi)
and (xj, yj) satisfy Eq. (1) [25].

yk < yj +
(
yi − yj

) xj − xk

xj − xi

(1)

Given point p, obstacles Wobs, and vi as the vertices of all the polygonal obstacles in the workspace
of the robot, we can obtain the visible vertices for the graph using Algorithm 2 provided in [26].
Algorithm 3 outlines the algorithm to build the VG RM after identifying the visible vertices using
Algorithm 2.

After the RM is generated, the path planner tries to obtain a path from the initial position to the goal
position on the RM. A sample VG with a path from the initial position to the goal is presented in Fig. 2.

VG has been used in path-planning research over the years to address various path-planning problems.
Li et al. [23] present a VG-based path-planning algorithm with quadtree representation that efficiently
reduces search space and computation time but faces challenges in maintaining accuracy in complex
environments due to the quadtree’s simplified representation. In ref. [27], the authors propose a long-
voyage route planning method for autonomous ships using a multiscale VG that successfully balances
computational efficiency and route safety over long distances but faces challenges in handling dynamic
environmental changes and integrating real-time data. The study by Blasi et al. [28] introduces a path-
planning approach with real-time collision avoidance using an essential VG, which effectively navigates
dynamic environments but faces challenges in keeping the graph updated and accurate in highly dynamic
settings. Also, in ref. [29], the authors proposed a VG-based path-planning method that effectively nav-
igates dynamic environments with moving obstacles, but it faces significant challenges in managing
computational overhead during real-time scenarios with frequent and unpredictable changes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1552 Ben Beklisi Kwame Ayawli et al.

Algorithm 2. Determining Visible vertices for the visibility graph

Input: Set of polygonal obstacles Wobs, point p in Wfree and vertices of obstacles vi

output: Set of visible vertices from p
1: Sort obstacles in the clockwise direction where half-line ρ from p to each vertex vi with the
2: positive x-axis. The vertices should be sorted in order of ascendency

Obtain Cobs edges e that intersect ρ and store in the balanced search tree τ in order.
3: V←∅;
4: for i← 1 to n
5: if visible(vi)
6: Add vi to V;
7: if e incident to vi and clockwise direction of the half-line from p to vi

8: Add e to τ ;
9: else
10: Delete e from τ ;
11: end if
12: end if
13: end for
14: return V;

Algorithm 3. Visibility graph roadmap

Input: A set of disjoint of polygonal obstacles Wobs, set of visible vertices vi

output: Visibility graph
1: E=∅;
2: V←∅;
3: For all v ∈ V
4: V← VisibleVertices(vi, Wobs);
5: for each vi ∈ V ′

6: E← (vi, vi+1);
7: end for
8: end for
9: return G(V , E);
10: Delete e from τ ;

The VG method requires the environment and the vertices of the obstacles to be well-defined. To
mimic the real environment for robot navigation, the environment and obstacles used in this study are
not well-defined. Hence, the VG was not included in the comparative analysis.

3.2 Voronoi diagram path-planning method
Another popular GBRM path-planning method considered by most researchers is the VD. VD was
named after Georgy Fedosievyeh Voronoy, a Russian mathematician who is believed to have first defined
VD. VD is also called Voronoi tessellation, Voronoi partition, Voronoi decomposition, Dirichlet tessel-
lation or Thiessen polygons [30]. The VD method is applicable in many fields of study especially in
science and technology [31, 32]. It has also been considered in path-planning research over the years [5,
24, 33].

In robot path planning, VD partitions the workspace of the robot into several regions whose edges
form a RM. Each Voronoi region is closer to its generating node than to any other generating node. Any
node in each region is closer to the generating obstacles than to any other obstacle [22]. The nearest

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1553

Algorithm 4. Voronoi diagram roadmap

Input: points in the plane S(n) where n≥ 1
output: Edges and vertices of the VD
1: Q= S(n); //Initialize the priority queue of points in the plane with all sites
2: L←the list of regions (labelled by sites) and boundaries (labelled by pair of sites) containing

convex and unbounded polygon with point p, Rp

3: while Q �=∅

4: p←min (Q);
5: if p is site
6: Find occurrence of region Rq on L containing p
7: Create bisector Bpq

8: Update L← Rq, C−pq,Rp,C+pq,Rq;
9: Delete from Q the vertex between then left and right boundary of Rq, if any exist
10: Insert into Q the vertex between C−pq and its neighbor to the left on L, if any and the vertex

between C+pq and its neighbor to the right if any
11v else
12: p← vertex of boundaries Cqr and Crs

13: Obtain the bisector Bqs

14: Update L←CqS =C−qsorC+qs;
15: Delete from Q any vertex between Cqr and its neighbors to the left and between Crsand its

neighbor to the right.
16: Insert any vertex between Cqs and its neighbors to the left or right into Q
17: Mark p as a vertex and as an endpoint of Bqr,Brs and Bqs

18: end if
19: end while

neighbor rule is used to obtain edges equidistant from the nodes. Considering a configuration space,
S with S={s1,s2,s3,. . .,si} nodes, d as the distances function, and N indicating a set of nodes in S, the
Voronoi region is made up of a set of nodes Ni in S with distances less or equal to the distances to other
nodes Nj where Ni �=Nj. The VD can, therefore, be computed using Eq. (2).

Vd = {sεS|d (x, Ni)≤ d
(
x, Nj

) ∀i �=j} (2)

The VD could be computed using Fortune’s VD algorithm given in Algorithm 4 [5]. In the algorithm,
L represents a sequence of regions and boundaries, and Q is a priority queue of nodes in the plane. Every
node is labeled as a site or as the vertex of a pair of boundaries of given regions. It should be noted that
elements of Q may not be unique. Details of the algorithm are given in ref. [5].

After the VD RM is generated, a search algorithm is used to compute a path from the initial position
to the goal. Figure 3 demonstrates a generated VD RM and a path connecting the start position to the
goal using the A∗ search algorithm.

Recently, VD has been combined with other techniques to propose path-planning methods. In ref.
[5], the authors propose a VD combined with computational geometry for mobile robot path plan-
ning in dynamic environments, achieving real-time adaptability, though the method struggles with
computational complexity in rapidly changing scenarios. Ayawli et al. [5] introduced a morphologi-
cal dilation VD RM algorithm for mobile robot path planning, aiming to enhance obstacle avoidance
and efficiency, with results showing improved path smoothness but challenges in handling highly clut-
tered environments. Also, in ref. [34], the author combines the VD with ant colony optimization for
autonomous mobile robot path planning, resulting in efficient and adaptive paths, but faces challenges
with convergence speed in complex environments. Kim et al. [35] presented a real-time path-planning

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1554 Ben Beklisi Kwame Ayawli et al.

Figure 3. Voronoi diagram roadmap with path from start to the goal using A∗ algorithm.

method for unmanned aerial vehicles (UAVs) using a compensated VD to improve navigation accu-
racy, achieving reliable obstacle avoidance but encountering difficulties in highly dynamic airspaces.
Moreover, Xu in ref. [36] proposed a Voronoi graph-based path inference method for unmanned mar-
itime vehicles, focusing on efficient navigation in maritime environments, with positive results in route
optimization but challenges in handling unpredictable maritime conditions. Additionally, Su et al., [37]
enhanced multi-UAV path planning using Voronoi-based obstacle modeling and Q-learning, achiev-
ing improved navigation in complex environments, though the method is challenged by the need for
extensive computational resources for real-time applications.

4. Sampling-based RM path-planning methods
In generating a RM using SB methods, random points are generated and sampled after which collision
detections are done to ensure that sample points are in the Wfree [38, 39]. Connected edges among these
points form the RM. Search algorithms are then applied to connect the initial and goal positions to obtain
the nodes for the path. SB methods have been employed successfully for robot path planning [40]. The
well-known SB path-planning methods are PRM [41] and RRT [42]. These methods are described as
possessing the ability to address trajectory-shaping problems of traditional path-planning methods in
complex environments [43] with SB methods. There is no need to consider approximations even in
complex systems [44]. PRM and RRT methods are discussed in the next sections.

4.1. Probabilistic RM path planning
PRM generates a RM of the environment by randomly sampling the space and connecting the samples
to form a graph. PRM path is computed by generating random points in Wfree of the workspace of the
robot and a collision-free path is computed to link the start and the goal positions [22, 45, 46]. Path
computation using PRM is made up of two stages: learning and query stages [41].

At the learning stage, the RM in the form of an undirected graph G(V , E) is constructed with V rep-
resenting the generated random nodes and E representing the edges of the connected nodes. Algorithm
5 outlines how the RM using the PRM method is computed [47]. Figure 4 demonstrates a sample RM
and path generated from point S to G using the PRM method.

At the query stage, a path is computed to connect the initial position of the robot and the goal posi-
tions based on the computed RM at the learning stage. Search algorithms including Dijkstrar’s and A∗
algorithms are mostly used to obtain the shortest path on the RMs. Algorithm 6 outlines how to construct
a path based on PRM using A∗ heuristic algorithm [47].

PRM is based on the assertion that a few numbers of points and a RM are enough to provide complete
connectivity in the Wfree by reducing the time of the path-planning process [47]. This makes the PRM
method simple to implement and supports fast path queries. PRM is also probabilistically complete such
that once there is a path on the RM, it can be computed. There are variants of PRM methods proposed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1555

Algorithm 5. PRM roadmap learning stage algorithm

Input: Configuration space with defined Wfree

output: PRM roadmap G(V , E)
1: Vertex V←{};
2: EdgeE←{};
3: loop
4: p←randomly select the useful configuration from Wfree

5: V← V ∪ {p};
6: Vp←A set of adjacent nodes p selected from V;
7: for all pnext ∈ Vp in order of increasingdistance(p, pnext)
8: if notconnected(p,pnext)

9: if pathfound(p,pnext)

10: E← E ∪ {(p, pnext)} //Add edge
11: end if
12: end if
13: end for
14: end loop

Figure 4. Road map and path from point S to G using PRM method.

over the years to improve its performance. Some of these variants include obstacle-based PRM [48],
Bridge Test PRM [49], Gaussian PRM [50], medial axis PRM [51], Lazy toggle PRM [52], T-PRM,
[53] Dancing PRM [54], and LD-PRM [55].

Recently, path-planning research using PRM combined with other techniques is becoming popular.
For instance, Singh [56] modified PRM using a decision-making strategy for optimizing unmanned
vehicle trajectories in unstructured environments, achieving time-efficient navigation but facing chal-
lenges related to unpredictable environmental complexity and dynamic obstacles. In ref. [57], Fan et
al. presented a hierarchical path planner that combines PRMs with deep deterministic policy gradients
to navigate unmanned ground vehicles with nonholonomic constraints, leading to enhanced navigation
accuracy but encountering difficulties in real-time adaptability. Also, in ref. [58], the authors integrated
belief space planning with PRMs to ensure reachability and consistency, offering a robust planning
framework but confronting the challenge of computational cost in high-dimensional belief spaces. In
ref. [59], an improved PRM method for robot path planning in narrow passages was presented, yielding
more efficient pathfinding but facing obstacles in balancing computational efficiency and optimality in
highly constrained environments.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1556 Ben Beklisi Kwame Ayawli et al.

Algorithm 6. PRM path computation at the query stage

Input: Roadmap using PRM method G(V , E)
output: PRM Path
1: Open←∅; //Path is empty
2: Closed←∅; //Nodes visited
3: Open←Open∪ ps; //Add the initial position to the path list
4: prev← ps;
5: g(ps)← 0;//cost from source to source
6: f (p)← h(ps, pg); //heuristic cost estimate
7: while Closed �=∅

8: p0←arg min
p∈V

f (p)

9: if p0 == pg

10: return RECONSTRUCT(prev, pg, Closed);
11: end if
12: Closed←Closed− p0; //Remove current node from list
13: Open←Open∪ {p0}; //Add current node to path node list
14: N←NEIGHBORS(p0); //Get the neighbors of p0

15: for all pnext ∈N
16: if pnext ∈Open
17: g← g[pnext]+ dist(p0, pnext);
18: end if
19: if pnext ∈Closed
20: Closed←Closed∪ {pnext};
21: else if
22: g≥ g[pnext];
23: continue;
24: end if
25: prev← pnext;
27: f [pnext]← g[pnext]+ h(pnext, pg);
28: returnprev, f ;
29: end for
30: Open← p;
31: end while

4.2. Rapidly exploring random trees path-planning method
RRT path-planning method is noted to be suitable for path planning in high-dimensional configuration
space, and it involves a random building of a tree from a given point termed as the root [38, 60]. The
tree grows with random samples from the root toward the unsearched Wfree, until the target or the given
maximum iteration limit is reached [61]. Two main stages are followed alternatively to grow the tree.
These include selection and propagation stages. During the selection stage, a sample, urand is generated
at random and the nearest sample, unear to urand is selected. The next stage is the propagation stage where
an edge is extended from the unear toward the urand. The ending point of the edge which is determined by
the distance threshold to the unear is added to the tree. The two stages are performed alternatively until
the goal or the maximum iteration limit is reached [38, 62]. Algorithm 8 shows how to generate the RRT
RM as given in ref. [63]. The growth of the tree could be computed to grow from two points towards
each other to connect a branch of one to the other. The growth process ends when there is a connection
between branches from each point. This type of RRT is termed as bidirectional RRT.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1557

Algorithm 7. RRT roadmap algorithm

Input: Configuration space with defined Wfree

output: RRT roadmap
1C T .Init(qinit); //Start the tree from the initial position (root)
2: for all k= 1toK; //Setting the iteration limit K
3: qrand← RandomConfig();
4: qnear← T . NearestNeighbor(qrand);
5: if qnew← T . Connect(qrand, qnear);
6: T . AddVertex(qnew);
7: T . AddEdge(qnear, qnew);
8: end if
9: end for
10: return T

Figure 5. Road map and path from point S to G using RRT.

Just like other RM methods, the generation of the tree forming the RM as indicated in Algorithm 7
is done at the learning stage. Other algorithms are applied at the query stage to obtain the path from the
initial position to the goal position. Figure 5 is a sample RM and path computed using the RRT method.

The RRT method is simple to implement. It is also probabilistic complete. However, it is believed to
produce suboptimal solutions with poor path quality [60].

RRT method is believed to be a fast path-planning method that performs efficiently in complex and
high-dimensional workspace [64, 65].

To improve the RRT method, variants of these methods were proposed. Some of these include RRT∗
[66], RRTx, TG-RRT∗ [67], RRT-A∗ [68], parallel RRT∗, RRT-Edge, Liveness-based RRT, Theta∗-RRT,
human-guided RRT∗, ORRT-A∗ [11], ELMs-improved RRT (ELM-IRRT) [15], continuum-RRT∗ [69],
and continuous bidirectional Quick-RRT∗ [70] planning methods. Each of these variants tried to address
a particular path-planning problem using RRT with other techniques.

Path-planning research involving the RRT algorithm is gaining attention. Yu in ref. [71] intro-
duced the RDT-RRT algorithm that combines real-time double-tree and rapidly exploring random tree
(RRT) methods for autonomous vehicle path planning. The proposed algorithm improved computa-
tional speed and efficiency, but faces challenges with complex dynamic environments. The Improved
Rapidly Exploring Random Trees Star (RRT∗) algorithm was presented by Wang and Zheng [72]. It
enhanced robot path planning by increasing exploration speed and solution quality, though it struggles
with high dimensionality. Also, in ref. [73], a hybrid RRT∗ algorithm was proposed by Ganesan et al for
mobile navigation. The method was good at merging SB methods with optimization for smoother path

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1558 Ben Beklisi Kwame Ayawli et al.

Algorithm 8. A star algorithm
Input: G(V , E), initial position s, goal position g
output: vertices and distance of the shortest path
1: S= {}; //nodes visited
2: Q= {}; //nodes not visited
3: prev←∅; //previous node visited
4: gCost←∞; //cost from start node to another node
5: gCost[s]← 0; //cost from source to source
6: fCost←∞; //cost from source to goal
7: fCost[s]← h(s, g); //heuristic cost estimate
8: while Q �=∅

9: v←mindist(Q, fCost); //current node is the node with the lowest cost
10: if v== goal
11: return path(prev, v);
12: end if
13: Q←Q− {v}; //remove current node from list
14: S← S ∪ {v}; /add current node to nodes visited
15: for all uofv //for each neighbor of current node
16: if u ∈ S
17: provgCost = gCost[v]+ dist(v, u);//provisional gCost
18: end if
19: if u /∈Q
20: Q←Q∪ {u};
21: else if provgCost ≥ gCost[u]
22: continue;
23: end if
24: prev[u]= u;
25: gCost[u]= provgCost;
26: fCost[u]= gCost[u]+ h(u, g);
27: return prev, fCost;
28: end for
29: end while

planning, but it is limited by environmental complexity. Moreover, the RRT-A∗ hybrid algorithm pre-
sented by Ayawli et al. [11] optimizes path planning in partially known environments for mobile robots,
achieving reduced computational time but facing obstacles in highly dynamic settings.

In summary, RM path-planning methods, including PRM, RRT, and VG, offer unique advantages
and challenges in navigating complex environments. Details of the advantages and challenges of each
of these methods are essential for making the appropriate integration of other modern methods. The
next section will describe the methodology employed to evaluate these methods, focusing on their
performance in various scenarios.

5. Methodology
This section describes the methodology used for the comparative analysis of PRM, RRT, and VD path-
planning methods.

A comparative research methodology was adopted in this research to determine the performance of
popular RM path-planning methods (VD, RRT, and PRM) in terms of path optimality, computation time,
path safety, and the stability of path computation. Therefore, the metrics considered for the comparison

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1559

include computed path length, path computation time, safety of the computed path, and the consistency
of path computation for each of the methods under consideration. An optimal path is achieved if a shorter
path is computed to enable a robot to reach its goal as fast as possible. The time required to compute
a path is very important and it is expected that a chosen path-planning method computes a path in the
shortest time to enable the robot to make the necessary decisions during navigation to avoid colliding
with obstacles or missing its goal. The safety of the computed path is also very important, hence its
consideration as a metric in the analysis. The safety of the computed path in this research is determined
by the distance between the computed path and obstacles. This is required to ensure that the systemic
and nonsystemic conditions of the robot during navigation do not negatively affect the safe navigation
of the robot. In as much as we require the shortest path and the shortest time, a computed path should
make the provision for a robot to navigate freely from its start point to the goal point without colliding
with obstacles considered during the global path computation despite the systemic and nonsystemic
challenges of the robot. Hence, the higher the average distance between the path and the obstacles, the
safer the computed path and vice versa.

Although VG, a geometric-based RM has also been used in the past for global path planning, it has
not been included in this comparison because VG requires that the dimensions (vertices) of obstacles
positions in the environment are known before path computation [32]. In real situations with multiple and
complex environments with obstacles with different shapes, it is difficult to determine the dimensions
of obstacle positions in the environment before global path computation. Hence, VG cannot be used in
a complex environment with different shapes and a higher occupancy rate of obstacles.

This research considers 100 maps of different complexities with obstacle occupancy rates ranging
from 50.95% to 78.42% to evaluate the performance of the RM path-planning methods. The obstacle
occupancy rates of the maps were obtained using Eq. (3)

OOrate =
(

obspx

mappx

)
∗ 100, (3)

where OOrate represents obstacle occupancy rate, obspx indicates the map obstacle pixels, and mappx =
the total pixel of the map represents the environment of the robot. Each of the maps considered was
500X500 pixels in size and was used in previous research work [5, 11].

A RM path-planning method usually relies on search algorithms to achieve efficient path computa-
tion. In this research, A∗ algorithm indicated in Algorithm 8 was used for each of the three methods for
the path computation.

To ensure fairness in the comparison, each of the three methods was implemented on the same plat-
form and datasets. Simulations were conducted on a machine with an Intel Core(TM) i7-7700HQ CPU
@ 2.80 GHz, 8 GB RAM, running Windows 10. The path-planning algorithms were implemented and
tested using MATLAB R2018b.

Unlike VD and RRT methods, PRM requires the initialization of nodes to be used for the path com-
putation. It is believed that the higher the number of nodes, the better the path length to be obtained but
the computation time increases. To ensure fairness in the comparison, the computed average nodes of
VD and RRT were used for computing the path as indicated in Eq. (4).

PRMn = VDn + RRTn

2
, (4)

where PRMn represents the nodes to be used by the PRM method for the path computation. VDn and
RRTn represent the nodes used by the VD and the RRT in the path computation, respectively.

The methodology outlined provides a robust framework for evaluating the selected RM path-
planning methods. The next section presents the results of the evaluation, highlighting key differences
in performance among PRM, RRT, and VG.

Table I demonstrates the performance of VD, RRT, and PRM in terms of the average nodes (aNode)
used for the path computation, average path length (aLength) obtained, average computation time

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1560 Ben Beklisi Kwame Ayawli et al.

Table I. Results of path computation performance of VD, RRT, and PRM of
10 trials each of 100 different maps.

Trials Method aNode aLength aTime p–o Distance
1 VD 1491 503.9087 57.009 15.2401

RRT 100 528.7141 0.1806 1.4562
PRM 796 490.9773 19.1926 4.968

2 VD 1491 503.9087 56.89 15.2401
RRT 100 536.3141 0.1516 1.4488
PRM 796 491.7518 19.1699 5.052

3 VD 1491 503.9087 56.7105 15.2401
RRT 98 528.8236 0.1343 1.1597
PRM 795 491.3648 19.0378 4.4513

4 VD 1491 503.9087 56.763 15.2401
RRT 97 526.2076 0.1439 1.719
PRM 794 492.0318 19.1842 4.5217

5 VD 1491 503.9087 57.1313 15.2401
RRT 102 539.1652 0.1572 1.5294
PRM 797 492.0633 19.3196 5.1045

6 VD 1491 503.9087 56.9904 15.2401
RRT 101 536.4024 0.1572 1.3558
PRM 796 490.8728 19.2221 5.3659

7 VD 1491 503.9087 56.7078 15.2401
RRT 100 534.3364 0.1537 1.0579
PRM 796 491.5721 19.1773 5.0958

8 VD 1491 503.9087 57.0134 15.2401
RRT 101 535.7263 0.1527 1.2844
PRM 796 491.9498 19.2442 4.6622

9 VD 1491 503.9087 56.6632 15.2401
RRT 97 524.2242 0.1471 1.6503
PRM 794 491.0625 19.1065 5.0132

10 VD 1491 503.9087 57.0898 15.2401
RRT 99 525.9661 0.149 1.2914
PRM 795 490.9949 19.2214 4.786

(aTime), and the average path–obstacle (p–o) distance for each trial of the 100 maps used in the
simulation.

6. Results analysis
This section presents the results of our comparative analysis, based on the methodology described in
Section 6. The findings provide insights into the relative strengths and weaknesses of PRM, RRT, and
VG in different environments.

The experiments were performed on 100 maps of varying complexities. To validate the consistency
of the results, each simulation was run ten times. The metrics used for the comparison included path
length, computation time, and path safety, measured as the path–obstacle (p–o) distance.

Figures 6–10 present the results of the computed path for VD, RRT, and PRM. Figure 6 shows
computed path lengths of VD, RRT, and PRM in a map with an occupancy rate of 55%. PRM obtained
the shortest path length of 542.76 in 9.9 s while RRT obtained the longest path length of 618 in 0.2 s. It

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1561

Table II. A summary of path computation performance of VD, RRT, and PRM.

Method Node pLength pLength% Time Time% p–o dist p–dist %
VD 1491 503.91 33 56.90 74.6 15.24 70.75
RRT 99 531.59 34.8 0.15 0.2 1.40 6.50
PRM 795 491.46 32.2 19.19 25.2 4.90 22.75

Figure 6. Generated path in an environment with an occupancy rate of 55% with VD obtaining path
length of 562, RRT 618.36, and PRM 542.76.

can be noted that, though RRT obtained the longest path, it used the shortest time in its path computation.
In Fig. 7, the shortest path length of 461.44 was computed by PRM in 13.89 s while RRT computed the
longest path length of 518.91 in 0.1 s. Among the three methods, RRT computed its path in the shortest
time. Figure 8 demonstrates the shortest path length of 485.57 computed by the VD in the longest time
of 65.77 s while RRT recorded the longest path of 537.97 in the shortest path of 0.11 s. Figures 9 and
10 illustrate the shortest path length computed by PRM with path lengths of 500.81 and 440.63 in 31.64
and 30.71 s, respectively. RRT obtained the shortest computation time of 0.11 s but recorded the longest
path length of 479.9 in Fig. 10. In Fig. 9, VD recorded the longest path length of 514.41.

The following observations can be derived from Table I.

• PRM obtained the shortest average path lengths of 490.98, 491.75, 491.36, 492.03, 492.06,
490.87, 491.57, 491.95, 491.06, and 490.99 for each of the 10 trials, respectively. RRT recorded
the longest path lengths ranging from 524.22 to 536.31 for each of the trials.

• Concerning performance in computation time, RRT obtained the shortest computation time rang-
ing from 0.13 to 0.18 s for each of the trials. Though the VD method performed better compared
to RRT in terms of path length computation, it recorded the longest computation time ranging
from 56.66 to 57.13 s.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1562 Ben Beklisi Kwame Ayawli et al.

Figure 7. Generated path in an environment with an occupancy rate of 42.9% with VD obtaining path
length of 471.11, RRT 518.91, and PRM 461.44.

Figure 8. Generated path in an environment with an occupancy rate of 43.2% with VD obtaining path
length of 485.57, RRT 537.97, and PRM 488.21.

• p-o distance determines the safety of the computed path and vice versa. In Table II, VD recorded
a stable and the highest p–o distance value of 15.24 for each trial. However, RRT recorded the
lowest distance ranging from 1.05 to 1.72 for each of the trials.

Figure 11 illustrates the path lengths obtained by VD, RRT, and PRM for each map and the 1000 trials.
It can be deduced that PRM demonstrated the best performance in terms of shortest path computation,
while RRT demonstrated the worst performance of the three methods.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1563

Figure 9. Generated path in an environment with an occupancy rate of 33.8% with VD obtaining path
length of 514.41, RRT 512.12, and PRM 500.81.

Figure 10. Generated path in an environment with an occupancy rate of 44.9% with VD obtaining path
length of 453.12, RRT 479.9, and PRM 440.63.

Figure 12 shows the computation time recorded by VD, RRT, and PRM for each map and each trial.
Figure 13 demonstrates the expanded chart to reveal the detailed computation time obtained by RRT for
each of the trials as shown in Fig. 12. Results demonstrate the best performance of RRT recording less
than 2.5 s for each of the trials on each map. However, VD obtained the highest computation time, with
some recording computation time of more than 100 s.

Detailed p–o distances to determine the safety of the computed path is shown in Fig. 14. It can be
observed that VD recorded the highest and most consistent p–o distance for each of the maps and trials.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1564 Ben Beklisi Kwame Ayawli et al.

Figure 11. Detailed path length obtained by VD, RRT, and PRM for each of the 1000 trials.

Figure 12. Computation time by VD, RRT, and PRM for each of the 1000 trials.

The lowest p–o distance value was recorded by the RRT method. It could be noted that while the p–o
distance of VD was consistent, RRT and PRM were inconsistent.

To determine the stability in path computation of VD, RRT, and PRM, the standard deviation of the
computed path lengths and computation times for the ten trials for each of the 100 maps were computed
for comparison. The standard deviation of the computed path lengths is demonstrated in Fig. 15. It
can be observed that while the variation of path computation remains 0 for VD demonstrating its path

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1565

Figure 13. Expanded chart showing the computation time by RRT for each of the 1000 trials.

Figure 14. Average p–o distance of VD, RRT, and PRM for each trial.

computation consistency, RRT and PRM have varied values demonstrating their inconsistencies in path
computation. The method with the highest instability on path length computation was RRT. In terms
of variations in computation time, Fig. 16 demonstrates RRT to be the most consistent while VD is
the most inconsistent. The standard deviation of path computation time demonstrated in Fig. 16 shows
that VD obtained the highest computation time variation indicating time instability in path computation
while RRT showed the highest stability in its computation time.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1566 Ben Beklisi Kwame Ayawli et al.

Figure 15. Path length computation variation of VD, RRT, and PRM.

Figure 16. Computation time variation of VD, RRT, and PRM.

In summary, Table II demonstrates PRM to be the most efficient RM planning method in terms of path
length computation by recording the overall average value of 491.46 (32.2%). The worst performance
among the three methods was RRT which recorded a path length of 531.59 (34.8%). RRT recorded the
best overall average computation time of 0.15 (0.2%). However, VD obtained the worst overall average
computation time of 56.9 (74.6%). Regarding path safety, VD recorded the best overall average p–o
distance of 15.24 (70.75%) while RRT recorded the worst p–o distance of 1.40 (6.50%).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1567

Table III. The advantages and disadvantages of PRM, RRT, and VD methods.

Method Advantages Disadvantages
PRM Shortest path length, effective in varied

environments
Inconsistent path computation time, fixed
node initialization

RRT Fast computation time, adaptable to dynamic
environments

Poor path safety, longest path length

VD Highest path safety, stable performance Long computation

Table IV. The concise tradeoffs associated with PRM, RRT, and VD path planning methods.

Criterion PRM RRT VD
Path length Shortest paths but

inconsistent
Longest paths due to
random exploration

Moderate paths, more
consistent than RRT

Computation
time

Moderate, varies with
environment complexity

Fastest, ideal for real-time
applications

Longest due to exhaustive
search

Path safety Moderate depends on node
placement

Lowest paths often near
obstacles

Highest consistently avoids
obstacles

Stability Dependent on environment
and node distribution

High in time, low in path
quality

Stable in safety, less so in
computation time

Scalability Scales well but may need
tuning

Highly scalable, especially
in large spaces

Less scalable demands
high computation

Best
application

Efficient paths where
predictability is less critical

Real-time navigation with
speed priority

Safety-critical scenarios,
for example, avoiding
collisions

The results show that the PRM method consistently computes the shortest paths, which is crucial
for applications where path efficiency is paramount, such as autonomous delivery robots navigating
complex urban environments. However, the variation in PRM’s computation time suggests that it may
not be suitable for time-sensitive operations where predictability and consistency are critical.

On the other hand, the RRT method, despite generating longer paths, excels in computation speed.
This makes it highly suitable for applications requiring real-time decision-making, such as UAVs
performing dynamic obstacle avoidance in rapidly changing environments. However, its lower safety
margin indicates a potential risk in high-stakes scenarios, such as search and rescue operations in
disaster-stricken areas, where collision avoidance is critical.

The VD method, which consistently produces the safest paths, demonstrates its utility in environ-
ments where safety is the primary concern. For instance, industrial robots operating in close proximity
to humans could benefit from VD’s higher p–o distance, ensuring safer operations even in densely
populated or cluttered spaces.

After analyzing the performance of PRM, RRT, and VD across different environments, Table III
summarizes the key advantages and disadvantages of each method. The concise tradeoffs associated
with PRM, RRT, and VD methods using the criteria; path length, computation time, path safety, stability,
scalability, and best application are illustrated in Table IV. This comparative overview highlights the
strengths and weaknesses of each approach, providing a clear perspective on their suitability for various
robotic path-planning scenarios.

Table IV provides a concise overview of the tradeoffs associated with each path-planning method.
As shown, PRM is most effective in scenarios where path length efficiency is crucial, though it requires
careful consideration of node initialization to ensure consistent results. RRT is distinguished by its rapid
computation time, making it ideal for real-time applications, albeit at the expense of path safety. VD,
while slower, excels in ensuring path safety, making it the preferred choice for environments where

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1568 Ben Beklisi Kwame Ayawli et al.

avoiding collisions is the top priority. These insights are critical for selecting the most appropriate path-
planning method based on the specific requirements of a given application.

The comparative analysis reveals that each path-planning method has distinct advantages and lim-
itations depending on the application context. PRM is ideal for scenarios requiring efficient path
optimization but may falter in time-critical tasks. RRT’s strength lies in its rapid computation, making it
suitable for dynamic and unpredictable environments, though its path safety is a concern. VD provides
the safest paths, which is crucial for applications where minimizing risk is essential, albeit at the cost
of longer computation times. Using the VD method, the effects of systematic and nonsystematic noise
of the robot would be minimal and would also avoid local minimal challenges. These findings highlight
the importance of selecting the appropriate path-planning algorithm based on the specific needs of the
application, whether it be speed, safety, or path efficiency.

The results of this comparative analysis align with recent advancements in the field of path planning,
particularly regarding the tradeoffs between computation time, path optimality, and safety. For exam-
ple, the findings on RRT’s rapid exploration but suboptimal paths are consistent with the work of Xiao
et al. [12], who noted similar challenges with standard RRT and addressed them using heuristic opti-
mizations. Similarly, the path safety observed in VD aligns with the improvements proposed by Ayawli
et al. [5], whose enhanced VD algorithm focused on increasing clearance from obstacles in densely
cluttered environments. While the integration of machine learning techniques such as Learning from
Demonstration (LfD) with PRM in refs. [15, 74] shows potential for improving adaptability in dynamic
environments, our analysis of the baseline PRM method highlights its limitations in computational effi-
ciency in such scenarios. These comparisons demonstrate the continued relevance of PRM, RRT, and
VD in contemporary path-planning applications, while also suggesting areas where further enhancement
is necessary.

7. Conclusions
This article presents a comprehensive comparative analysis of popular RM path-planning methods,
including VD, RRT, and PRM, to evaluate their performance in global path planning. Key metrics con-
sidered in the evaluation include path length, computation time, path safety, and consistency of path
computation.

The results demonstrate that PRM excels in computing the shortest path length, although its per-
formance is hindered by the need for fixed node initialization and inconsistency in path length and
computation time. RRT stands out as the fastest method for path computation, making it ideal for time-
critical applications like mobile robots and UAVs, but it performs poorly in path safety. VD, despite
having the longest computation time, is the most reliable for ensuring safe and consistent paths, making
it suitable for applications where safety is paramount.

Each method has its limitations, underscoring the need for further improvements. Future research
should focus on addressing PRM’s fixed node initialization challenge by developing adaptive node gen-
eration algorithms, enhancing RRT’s path safety and length without compromising speed, and reducing
VD’s computation time to make it more competitive. If these challenges are resolved, VD could emerge
as the most efficient method due to its superior path safety and consistency. This study provides practical
guidance for selecting RM methods based on application-specific priorities in robotics path planning.

Author contributions. All authors contributed equally to this article.

Financial support. No financial support.

Conflicts of interest. The authors declare no conflicts of interest exist.

Ethical approval. Not applicable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1569

References
[1] P. J. Bentley, Artificial Intelligence and Robotics: Ten Short Lessons (Johns Hopkins University Press, Baltimore, 2020).

doi:10.1353/book.99599.
[2] P. Boscariol, A. Gasparetto and L. Scalera, “Path Planning for Special Robotic Operations,” In: Robot Design.

Mechanisms and Machine Science (G. Carbone and M. A. Laribi, eds.), vol. 123 (Springer, Cham, 2023).
doi:10.1007/978-3-031-11128-0_4.

[3] U. Orozco-Rosas, K.Picos, J.J. Pantrigo, A. S. Montemayor and A. Cuesta-Infante, “Mobile robot path planning using
a QAPF learning algorithm for known and unknown environments,” IEEE Access 10, 84648–84663 (2022). doi:
10.1109/ACCESS.2022.3197628.

[4] B. B. K. Ayawli, R. Chellali, A. Y. Appiah and F. Kyeremeh, “An overview of nature-inspired, conventional, and hybrid
methods of autonomous vehicle path planning,” J. Adv. Transp. 2018, 1–27 (2018). doi: 10.1155/2018/8269698.

[5] B. B. K. Ayawli, A. Y. Appiah, IK. Nti, F. Kyeremeh and E. I. Ayawli, “Path planning for mobile robots using morphological
dilation voronoi diagram roadmap algorithm,” Sci. Afr. 12, e00745 (2021). doi: 10.1016/j.sciaf.2021.e00745.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Rob. Res. 30(7), 846–894
(2011). doi: 10.1177/0278364911406761.

[7] R. M. C. Santiago, A. L. de Ocampo, A. T. Ubando, A. A. Bandala and E. P. Dadios, “Path planning for Mobile Robots Using
Genetic Algorithm and Probabilistic Roadmap,” In: IEEE 9th International Conference on Humanoid Nanotechnology,
Information Technology, Communication and Control, Environment and Management (HNICEM), Manila (2017), pp. 1–5.
doi: 10.1109/HNICEM.2017.8269498.

[8] W. G. Aguilar and S. G. Morales, “3D environment mapping using the kinect V2 and path planning based on RRT
algorithms,” Electronics 5(4), 70 (2016). doi: 10.3390/electronics5040070.

[9] A. de Santana Correia, S. Kamarry, L. Molina, E.Á.N. Carvalho and E. O. Freire, “Wheeled Mobile Robotics From
Fundamentals Towards Autonomous Systems,” In: Latin American Robotics Symposium (LARS) and Brazilian Symposium
on Robotics (SBR), Curitiba (2017) pp.1–6. doi: 10.1109/SBR-LARS-R.2017.8215282.

[10] Y. Tusi and H. Y. Chung, “Using ABC and RRT Algorithms to Improve Mobile Robot Path Planning with Danger Degree,”
In: 5th International Conference on Future Generation Communication Technologies (FGCT), Luton (2016) pp. 21–26. doi:
10.1109/FGCT.2016.7605068.

[11] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah and F. Kyeremeh, “Optimized RRT-A∗ path planning method for mobile
robots in partially known environment,” Inf. Technol. Control 48(2), 179–194 (2019). doi: 10.5755/j01.itc.48.2.21390.

[12] G. Xiao, L. Zhang, T. Wu, Y. Han, Y. Ding and C. Han, “FBi-RRT: A path planning algorithm for manipulators with heuristic
node expansion,” Robotica 42(3), 644–659 (2024). doi: 10.1017/S0263574723001674.

[13] S. Katiyar and A. Dutta, “Dynamic path planning over CG-Space of 10DOF Rover with static and randomly moving obstacles
using RRT∗ rewiring,” Robotica 4(8), 2610–2629 (2022). doi: 10.1017/S0263574721001843.

[14] K. Katona, H. A. Neamah and P. Korondi, “Obstacle avoidance and path planning methods for autonomous navigation of
mobile robot,” Ah S Sens. 24(11), 3573 (2024).

[15] Z. Meng, S. Li, Y. Zhang and Y. Sun, “Path planning for robots in preform weaving based on learning from demonstration,”
Robotica 42(4), 1153–1171 (2024). doi: 10.1017/S0263574724000146.

[16] L. Qiao, X. Luo and Q. Luo, “An optimized probabilistic roadmap algorithm for path planning of mobile robots in complex
environments with narrow channels,” Ah S Sens. 22(22), 8983 (2022). doi: 10.3390/s22228983.

[17] B. Tao and J. H. Kim, “Mobile robot path planning based on bi-population particle swarm optimization with random
perturbation strategy,” J. King Saud Univ.-Comput. Inf. Sci. 36(2), 101974 (2024). doi: 10.1016/j.jksuci.2024.101974.

[18] M. R. Rezaee, N. A. W. A. Hamid, M. Hussin and Z. A. Zukarnain, “Comprehensive review of drones colli-
sion avoidance schemes: Challenges and open issues,” IEEE Trans. Intell. Transp. 25(7), 6397–6426 (2024). doi:
10.1109/TITS.2024.3375893.

[19] J. Qi, H. Yang and H. Sun, “MOD-RRT∗: A sampling-based algorithm for robot path planning in dynamic environment,”
IEEE Trans. Indust. Electron 68(8), 7244–7251 (2020). doi: 10.1109/TIE.2020.2998740.

[20] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi and I. Ahmedy, “RRT hybrid a semi-dual-tree RRT-based motion planner,” IEEE
Access 8, 18658–18668 (2020). doi: 10.1109/ACCESS.2020.2968471.

[21] A. Francis, A. Faust, H. L. Chiang, J. Hsu, J. C. Kew, M. Fiser and T. E. Lee, “Long-range indoor navigation with PRM-RL,”
IEEE Trans. Rob. 1-20(4), 1115–1134 (2020). doi: 10.1109/TRO.2020.2975428.

[22] G. Klančer, A. Zdešar, S. Blažič and I. Skrjanc, Wheeled Mobile Robotics From Fundamentals Towards Autonomous Systems
(Elsivier Inc (Heinemann, Butterworth, 2017) pp. 161–206.

[23] W. Lee, G. H. Choi and T. W. Kim, “Visibility graph-based path-planning algorithm with quadtree representation,” Appl.
Ocean Res. 117, 102887 (2021). doi: 10.1016/j.apor.2021.102887.

[24] M. Candeloro, A. M. Lekkas and A. J. Sørensen, “A Voronoi-diagram-based dynamic path-planning system for underactu-
ated marine vessels,” Control Eng. Pract. 61, 41–54 (2017). doi: 10.1016/j.conengprac.2017.01.007.

[25] L. Lacasa, B. F.Ballesteros, J. Luque and J. C. Nuno, “From time series to complex networks: The visibility GRAPH,” Proc.
Natl. Acad. Sci. 105(13), 4972–4975 (2008). doi: 10.1073/pnas.0709247105.

[26] D. B. Mark, C. Otfried, V. K. Marc and O. Mark. Computational Geometry Algorithms and Applications”, 3rd ed. (Springer,
Berlin, Heidelberg, 2008).

[27] G. Wu, I. Atilla, T. Tahsin, M. Terziev and L. Wang, “Long-voyage route planning method based on multi-scale visibility
graph for autonomous ships,” Ocean Eng. 219, 108242 (2021). doi: 10.1016/j.oceaneng.2020.108242.

[28] L. Blasi, E. D’Amato, M. Mattei and I. Notaro, “Path planning and real-time collision avoidance based on the essential
visibility graph,” Appl. Sci. 10(16), 5613 (2020). doi: 10.3390/app10165613.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1353/book.99599
https://doi.org/10.1007/978-3-031-11128-0_4
https://doi.org/10.1109/ACCESS.2022.3197628
https://doi.org/10.1155/2018/8269698
https://doi.org/10.1016/j.sciaf.2021.e00745
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/HNICEM.2017.8269498
https://doi.org/10.3390/electronics5040070
https://doi.org/10.1109/SBR-LARS-R.2017.8215282
https://doi.org/10.1109/FGCT.2016.7605068
https://doi.org/10.5755/j01.itc.48.2.21390
https://doi.org/10.1017/S0263574723001674
https://doi.org/10.1017/S0263574721001843
https://doi.org/10.1017/S0263574724000146
https://doi.org/10.3390/s22228983
https://doi.org/10.1016/j.jksuci.2024.101974
https://doi.org/10.1109/TITS.2024.3375893
https://doi.org/10.1109/TIE.2020.2998740
https://doi.org/10.1109/ACCESS.2020.2968471
https://doi.org/10.1109/TRO.2020.2975428
https://doi.org/10.1016/j.apor.2021.102887
https://doi.org/10.1016/j.conengprac.2017.01.007
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1016/j.oceaneng.2020.108242
https://doi.org/10.3390/app10165613
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


1570 Ben Beklisi Kwame Ayawli et al.

[29] H. Kaluder, M. Brezak and I. Petrović, “A Visibility Graph-based Method for Path Planning in Dynamic Environments,”
In: Proceedings of the 34th International Convention MIPRO (2011) pp. 717–721.

[30] H. Moulinec, “A simple and fast algorithm for computing discrete Voronoi, Johnson-Mehl or Laguerre diagrams of points,”
Adv. Eng. Softw. 170, 103150 (2022).

[31] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous
UAV,” Aerospace Sci. Technol. 16(1), 47–55 (2012).

[32] M. Bełej and M. Figurska, “3D modeling of discontinuity in the spatial distribution of apartment prices using voronoi
diagrams,” Remote Sens-BASEL 12(2), 229 (2020).

[33] X. Sun, K. Ishida, K. Makino, K. Shibayama and H. Terada, “Development of the Quad-SCARA platform and its collision
avoidance based on Buffered Voronoi Cell,” Robotica 41(12), 3687–3701 (2023). doi: 10.1017/S0263574723001236.

[34] A. Tuncer, “Path planning of autonomous mobile robots based on Voronoi diagram and ant colony optimization,” J.
Innovative Eng. Natural Sci. 4(1), 138–146 (2024).

[35] M. J. Kim, T. Y. Kang and C. K. Ryoo, “Path planning for unmanned aerial vehicles based on compensated voronoi diagram,”
Int. J. Aeronaut. Space Sci. 26(1), 235–244 (2025).

[36] X. Xu, “Path inference based on voronoi graph for unmanned maritime vehicles,” Rob. Auton. Syst. 173, 104616 (2024).
[37] W. Su, M. Gao, X. Gao and Z. Xuan, “Enhanced multi-UAV path planning in complex environments with voronoi-based

obstacle modelling and Q-learning,” Int. J. Aerospace Eng. 2024(1), 5114696 (2024).
[38] B. Li and B. Chen, “An adaptive rapidly-exploring random tree,” IEEE/CAA J. Autom. Sin. 9(2), 283–294 (2021).
[39] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,” Int. J. Rob. Res. 20(5), 278–400 (2001).
[40] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart and J. Nieto, “An efficient sampling-based method for online

informative path planning in unknown environments,” IEEE Rob. Autom. Lett. 5(2), 1500–1507 (2020).
[41] Z. Xu, D. Deng and K. Shimada, “Autonomous UAV exploration of dynamic environments via incremental sampling and

probabilistic roadmap,” IEEE Rob. Autom. Lett. 6(2), 2729–2736 (2021).
[42] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query sampling-based motion planning with quick

replanning,” Int. J. Rob. Res. 35(7), 797–822 (2016). doi: 10.1177/0278364915594679.
[43] P. Pharpatara, B. Hérissé, R. Pepy and Y. Bestaoui, “Sampling-based path planning: A new tool for missile guidance,” IFAC

Proc. 46(19), 131–136 (2013).
[44] R. Pepy, A. Lambert and H. Mounier, “Reducing navigation errors by planning with realistic vehicle model,” IEEE Intell.

Veh., 300–307 (2006).
[45] X. Zheng, J. Cao, B. Zhang, Y. Zhang, W. Chen, Y. Dai and J. Zhao, “Path planning of PRM based on artificial potential

field in radiation environments,” Ann. Nucl. Energy 208, 110776 (2024).
[46] M. Novosad, R. Penicka and V. Vonasek, “CTOPPRM: Clustering topological PRM for planning multiple distinct paths in

3D environments,” IEEE Rob. Autom. Lett. 8(11), 7336–7343 (2023).
[47] J. Velagic, D. Delimustafic and D. Osmankovic, “Mobile Robot Navigation System Based on Probabilistic Road Map (PRM)

with Halton Sampling of Configuration Space,” In: IEEE, 23rd International Symposium on Industrial Electronics (ISIE),
Istanbul (2014) pp. 1227–1232.

[48] S. Alarabi, C. Luo and M. Santora, “A PRM Approach to Path Planning with Obstacle Avoidance of an Autonomous Robot,”
In: 8th International Conference on Automation, Robotics and Applications (ICARA) (2022) pp. 76–80.

[49] D. Hsu, T. Jiang, J. Reif and Z. Sun, “The Bridge Test for Sampling Narrow Passages with Probabilistic Roadmap Planners,”
In: IEEE International Conference on Robotics and Automation (Cat. no. 03CH37422), vol. 3 (IEEE, 2003) pp. 4420–4426.

[50] Y. T. Lin, “The Gaussian PRM Sampling for Dynamic Configuration Spaces,” In: IEEE 9th International Conference on
Control, Automation, Robotics and Vision (IEEE, 2006) pp. 1–5.

[51] F. F. Arias, B. Ichter, A. Faust and N. M. Amato, “Avoidance Critical Probabilistic Roadmaps for Motion Planning in
Dynamic Environments,” In: IEEE International Conference on Robotics and Automation (ICRA) (2021) pp. 10264–10270.

[52] J. Denny, K. Shi and M. Amato, “Lazy Toggle PRM: A Single-Query Approach to Motion Planning,” In: IEEE International
Conference on Robotics and Automation (2013) pp. 2407–2414.

[53] M. Hüppi, L. Bartolomei, R. Mascaro and M. Chli, “T-PRM: Temporal Probabilistic Roadmap for Path Planning in Dynamic
Environments,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2022) pp. 10320–10327.

[54] D. Kim, Y. Kwon and S. E. Yoon, “Dancing PRM: Simultaneous Planning of Sampling and Optimization with Configuration
Free Space Approximation,” In: IEEE International Conference on Robotics and Automation (ICRA) (2018) pp. 7071–7078.

[55] W. Khaksar, T. S. Hong, M. Khaksar and O. Motlagh, “A low dispersion probabilistic roadmaps (LD-PRM) algorithm for
fast and efficient sampling-based motion planning,” Int. J. Adv. Rob. Syst. 10(11), 397 (2013).

[56] R. Singh, “Trajectory optimization with hybrid probabilistic roadmap approach to achieve time efficient navigation of
unmanned vehicles in unstructured environment,” Robotic Intell. Autom. 44(1), 164–189 (2024).

[57] J. Fan, X. Zhang, K. Zheng, Y. Zou and N. Zhou, “Hierarchical path planner combining probabilistic roadmap and deep
deterministic policy gradient for unmanned ground vehicles with non-holonomic constraints,” J. Frankl. Inst. 361(8), 106821
(2024).

[58] D. Zheng, J. Ridderhof, Z. Zhang, P. Tsiotras and A. Agha-Mohammadi, “CS-BRM: A probabilistic roadMap for consistent
belief space planning with reachability guarantees,” IEEE Trans. Rob. 40, 1630–1649 (2024).

[59] Y. Huang, H. Wang, L. Han and Y. Xu, “Robot path planning in narrow passages based on improved PRM method,” Intell.
Serv. Rob. 1-12(3), 609–620 (2024).

[60] D. Devaurs, T. Siméon and J. Cortés, “Cortés “Optimal path planning in complex cost spaces with sampling-based
algorithms,” IEEE Trans. Autom. Sci. Eng. 13(2), 415–424 (2016).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574723001236
https://doi.org/10.1177/0278364915594679
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core


Robotica 1571

[61] M. G. Mohanan and A. A. Salgoankar, “Survey of robotic motion planning in dynamic environments,” Rob. Auton. Syst.
100, 171–185 (2018).

[62] M. S. Branicky, M. M. Curtiss, J. Levine and S. Morgan, “Sampling-based planning, control and verification of hybrid
systems,” IEE P-CONTR Theory Appl. 153(5), 575–590 (2006).

[63] A. Yershova, L. Jaillet, T. Siméon and S. M. LaValle, “Dynamic-Domain RRTs: Efficient Exploration by Controlling the
Sampling Domain,” In: Proceedings of the 2005 IEEE International conference on Robotics and Automation (2005) pp.
3856–3861.

[64] R. Heβ, T. Lindeholz, D. Eck and K. Schilling, “RRTCAP∗ - RRT∗ controller and planner - simultaneous motion and
planning,” IFAC-PapersOnLine 48(10), 52–57 (2015).

[65] L. Yang, Z. Wei-guo, S. Jing-ping and L. Guang-wen, “A Path Planning Method Based on Improved RRT,” In: IEEE
Chinese Guidance, Navigation and Control Conference, Yantai (2014) pp. 564–567.

[66] J. Li, S. Liu, B. Zhang and X. Zhao, “RT-A∗ Motion Planning Algorithm for Non-Holonomic Mobile Robot,” In:
Proceedings of the SICE Annual Conference, Sapporo (2014) pp. 1833–1838. doi: 10.1109/SICE.2014.6935304.

[67] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, Y. Ayaz, M. S. Muhammad, O. Hasan and M. Ra, “Triangular Geometry Based
Optimal Motion Planning Using RRT∗-Motion Planner,” In: IEEE 13th International Workshop on Advanced Motion
Control (AMC) (2014) pp. 380–385.

[68] J. Li, S. Liu, B. Zhang and X. Zhao, “RRT-A∗ Motion Planning Algorithm for Non-Holonomic Mobile Robot,” In:
Proceedings of the SICE Annual Conference (SICE) (IEEE, 2014) pp. 1833–1838.

[69] G. Gao, D. Li, K. Liu, Y. Ge and C. Song, “A study on path-planning algorithm for a multi-section continuum robot in
confined multi-obstacle environments,” Robotica 1-24(10), 3324–3347 (2024). doi: 10.1017/S0263574724001383.

[70] L. Ye, J. Li and P. Li, “Improving path planning for mobile robots in complex orchard environments: The continuous
bidirectional Quick-RRT∗ algorithm,” Front. Plant Sci. 15, 1337638 (2024).

[71] J. Yu, C. Chen, A. Arab, J. Yi, X. Pei and X. Guo, “RDT-RRT: Real-time double-tree rapidly-exploring random tree path
planning for autonomous vehicles,” Exp. Syst. Appl. 240, 122510 (2024).

[72] J. Wang and E. Zheng, “Path planning of a mobile robot based on the improved rapidly exploring random trees star
algorithm,” Electronics 13(12), 2340 (2024).

[73] S. Ganesan, B. Ramalingam and M. R. Elara, “A hybrid sampling-based RRT∗ path planning algorithm for autonomous
mobile robot navigation,” Exp. Syst. Appl. (258), 125206 (2024). doi: 10.1016/j.eswa.2024.125206.

[74] Y. Wang, W. Li and Y. Liang, “A trajectory optimisation-based incremental learning strategy for learning from demonstra-
tion,” Appl. Sci. 14(11), 4943 (2024).

Cite this article: B. B. K. Ayawli, J. K. Dawson, E. Badu, I. E. B. Ayawli and D. Lamusah (2025). “Comparative analysis of
popular mobile robot roadmap path-planning methods”, Robotica 43, 1548–1571. https://doi.org/10.1017/S0263574725000281

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574725000281
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 21:38:58, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1109/SICE.2014.6935304
https://doi.org/10.1017/S0263574724001383
https://doi.org/10.1016/j.eswa.2024.125206
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574725000281
https://www.cambridge.org/core

	Comparative analysis of popular mobile robot roadmap path-planning methods
	Introduction
	Overview of RM path planning
	Geometry-based roadmap path-planning methods
	VG path-planning method
	Voronoi diagram path-planning method

	Sampling-based RM path-planning methods
	Probabilistic RM path planning
	Rapidly exploring random trees path-planning method

	Methodology
	6. Results analysis
	Conclusions


