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When a water wave group encounters a floating body, it forces the body into motion; this
motion radiates waves that modify the wave group. This study considers a floating body in
the form of a two-dimensional (2-D) rectangular block constrained to heaving motion. The
focus is on how the 2-D block modifies infragravity (IG) waves, a type of nonlinear low-
frequency wave in the wave group. The IG waves transmitted beyond the block comprise
two types: (i) bound IG waves generated by nonlinear interactions of first-order carrier
waves, and (ii) free IG waves released due to discontinuities in flow potential created by
the block. A systematic parameter sweep reveals that, when heaving motion is allowed, the
transmitted IG waves differ significantly from those of stationary blocks. In some cases,
heaving motion enables attenuation of the total transmitted IG waves, while stationary
blocks cannot achieve similar effects. Only small-sized blocks are considered; they are
‘small’ compared with the IG wavelengths. The findings are relevant to dual-purpose wave
energy converters designed for energy generation and coastal protection, floating breakwa-
ters and other small-sized floating structures such as ships and some icebergs: the heaving
motion of these objects may modify IG waves, thereby influencing harbour resonance,
near-shore currents, beach erosion, wave forcing on ice shelves and coastal inundation.
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1. Introduction

1.1. Background and motivation
Infragravity waves (IG waves), as oceanic surface waves, are generally of small steepness
(e.g. Ardhuin, Rawat & Aucan 2014), yet they can be impactful (Bertin et al. 2018).
Their periods (approximately 30–300 s) are much greater than dominant wind-generated
surface gravity waves, enabling them to resonantly excite harbours, thus disrupt maritime
operations (Bowers 1977; Mei & Agnon 1989; Wu & Liu 1990) and affect large ships
(Agnon, Choi & Mei 1988), whose natural periods are commensurate with those of IG
waves. The IG waves also influence coastal processes, including beach morphodynamics
and coastal flooding events (§ 4, Bertin et al. 2018). In addition, IG waves play roles in
ice shelf disintegration (e.g. Bennetts, Liang & Pitt 2022), thereby indirectly affecting
sea level and climate dynamics. Because of these, controlling IG waves is sometimes
necessary.

A canonical model for studying IG waves is nonlinear interactions between two
monochromatic carrier waves of slightly different frequencies (Longuet-Higgins &
Stewart 1962; Mei, Stiassnie & Yue 2005). The carrier waves are assumed to travel in
the same direction, forming a wave group with group speed Cg . Let the frequencies of the
carrier waves be f1 and f2, then the associated IG wave frequency is | f1 − f2|. The speed
of such an IG wave is Cg , as if it is ‘bound’ to the carrier wave group. For this reason, it is
named in the literature as a bound IG wave, or phase-locked IG wave; see the red curve in
figure 1 for an example.

It is well known from early studies (e.g. Longuet-Higgins & Stewart 1962) that the
amplitude of the bound IG wave is related to the product of the amplitudes of carrier
waves (see 4.3). When the carrier waves are altered by an obstacle, so are the bound
IG waves (e.g. Liu & Iskandarani 1991). However, attenuation of bound IG waves does
not ensure reduction of total IG waves, because a change of bound IG waves creates a
discontinuity in the IG wave’s flow potential, and to rectify the discontinuity, free IG
waves are required (e.g. Agnon & Mei 1985; Mei & Agnon 1989; Wu & Liu 1990; Liu &
Iskandarani 1991; Bertin et al. 2018). The resulting total IG wave (free plus bound IG
waves) is not necessarily smaller than the incident bound IG waves. A well-known added
complication is that the free IG waves travel at the phase velocity appropriate to waves
satisfying the linear solution, which is generally faster than bound IG waves. These lead to
spatial modulation of the total IG wave amplitude, i.e. oscillations in the total IG wave
amplitude on the lee side of an obstacle, which is well established for some types of
obstacles (e.g. Massel 1983; Agnon & Mei 1985; Li et al. 2021) although not for the
heaving blocks to be investigated in this work.

Despite these complications, some means of IG wave control have been developed.
Some ideas require permanent and significant maritime infrastructure, e.g. fixed
breakwaters that block a broad spectrum of the wave energy (McComb, Johnson &
Beamsley 2009), or Bragg-scattering bathymetry (Gao et al. 2021). Smaller structures,
whose characteristic dimensions are much less than the wavelength of IG waves, are
usually optimised for interacting with linear carrier waves, but not IG waves. Typical
examples of such small structures include wave energy converters (WECs, e.g. Falnes &
Kurniawan 2020), and many prototype WECs are heaving resonators (e.g. Westcott et al.
2024). A recent study (Sergiienko et al. 2024) explored, experimentally, whether such
heaving resonators can also modify IG waves. It was observed that the total IG wave
amplitudes are reduced in the lee of arrays of WECs. The WECs used by Sergiienko
et al. (2024) are quasi-infinite rows of oscillating water columns (OWCs), represented
by straight surface-piercing cylindrical pipes with open ends immersed in the water.
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Figure 1. (a) Surface elevation of a typical nonlinear wave group discussed in this paper. The wave group
is constituted by the four components shown in (b–d). They are: (b) first-order (linear) carrier wave group
containing two linear waves with f1 = 0.617 Hz, f2 = 1.1 f1 and A1 = A2 = 0.04 m; (c) second-order low-
frequency bound waves (i.e. IG waves), (d) second-order high-frequency bound waves and (e) a ‘set-down’
(i.e. a depression of the mean free surface; the ‘set-down’ in this case is nearly zero). Water depth h =1 m.

The radius of these OWCs is much smaller than both the IG and carrier waves, and their
natural frequencies are tuned to the carrier wave frequencies.

1.2. Motivation and scope
Motivated by the experimental results in Sergiienko et al. (2024), the current study
discusses the effects of small-sized heaving bodies on IG waves analytically, intending
to provide a phenomenological, qualitative explanation of the IG wave reduction by
OWCs. The heaving bodies in this paper are represented by two-dimensional (2-D)
floating rectangular blocks allowed to heave. Although the cylindrical OWC arrays used
in Sergiienko et al. (2024) are by no means rectangular blocks, they share similarities:
(i) the up-and-down motion of the water in the OWCs is akin to the heaving motion of a
rigid ‘piston’ (e.g. Sheng, Alcorn & Lewis 2014); (ii) when the spacing between OWCs is
small enough, as it is the case in Sergiienko et al. (2024), the wave field around the OWC
rows is quasi-two-dimensional, akin to the behaviour of waves around 2-D rectangular
blocks. ‘Quasi-two-dimensional’ means the wave’s propagating modes have no variation
on the spanwise direction (Srokosz 1980; Falnes & Budal 1982). The current study can
also be related to other objects, such as other types of WECs, floating breakwaters, ships
and icebergs (concerning their heaving motions).

Similar to Sergiienko et al. (2024) and all papers to be reviewed in this section, the
present study assumes that the incident wave field only consists of carrier wave groups
and associated bound IG waves, i.e. there exist no incident (pre-existing) free IG waves
from a distant source. This scenario is relevant to harbours and coasts where the unwanted
free IG waves are released locally when the incident carrier wave groups interact with
local bathymetry features (Elgar et al. 1992) such as reef platforms (McComb et al. 2009).
For these cases, interventions, such as the WECs proposed by Sergiienko et al. (2024), can
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be placed upwave of the bathymetry features to modify the incident wave field before it
interacts with the bathymetry features. If the IG wave field is dominated by significant free
IG waves originating from a distant location, the small devices are unlikely to be effective.

Also similar to Sergiienko et al. (2024), in this work, the natural frequency of the 2-D
block’s heaving motion will be tuned to be close to the carrier waves’ frequencies, which
are an order of magnitude higher than the IG wave’s frequencies. This allows the size of
the blocks to be much smaller than the IG wavelength.

A wide range of parameters will be explored; this is an improvement over Sergiienko
et al. (2024), which studied only a few cases due to the restriction of the wave flume: a
more systematic experimental study involving IG waves is time consuming and resource
demanding: longer wave flumes and longer setting times between experiments are needed
if longer IG waves are to be studied.

1.3. Methodology and paper structure
The analytical method used in this paper is an extension of some past studies. Agnon &
Mei (1985) and Agnon et al. (1988) used a multiple-scale method to analyse second-order
sway (‘slow drift’) motion of floating blocks, such as large ships, caused by IG waves.
Their focus was primarily on the force caused by IG waves, not on IG wave reduction
as in the present work; moreover, heaving was not discussed. Using a reduced version
of the methods in Agnon & Mei (1985), a 2-D stationary plate suspended in the water
is considered by Liu & Iskandarani (1991), who focused on IG wave attenuation. They
discovered that, although the bound IG waves are reduced when the incident carrier waves
are reduced, free IG waves are released at the devices, offsetting the bound IG wave
reduction, indicating the stationary plates discussed in the paper are not suitable devices
for total IG wave reduction. Two key assumptions are invoked by Liu & Iskandarani
(1991): (i) the plate’s characteristic length is much smaller than the IG waves, enabling
the Froude–Krylov-like assumption (e.g. McCormick 2009, § 11.3) for treating IG waves,
such that the pressure field of the IG wave is not affected by the presence of a small-sized
object; and (ii) the IG wave potential remains constant across the plate.

Subsequent studies that cite Liu & Iskandarani (1991) are mostly concerned with linear
waves, rather than nonlinearly generated IG waves. However, four papers focus on IG
waves using the method of Liu & Iskandarani (1991). These include those who studied
fixed vertical thin barriers (Losada, Losada & Roldán 1993), those who studied fixed
submerged porous plates (Neves et al. 2000a) and those who studied fixed semi-infinite
breakwaters (Neves et al. 2000b). In these studies, device motion was not analysed,
and the conclusions are similar to Liu & Iskandarani (1991): undesirable free IG waves
will be released when the bound IG waves are reduced at the device. Finally, Hossain,
Kioka & Kitano (2001) studied stationary 2-D rectangular blocks (in the context of floating
breakwaters) and relaxed the assumption (ii) in Liu & Iskandarani (1991). The main
finding was, again, that free IG waves will be released whilst the bound IG waves are
attenuated.

The current work removes the constraint that the device is fixed (stationary), by allowing
heaving motion. Such an undertaking does not change the basic mathematical paradigm,
but it requires new algebraic details concerning device motion, and yields qualitatively new
results that resolve the abovementioned lament vis-à-vis the release of free IG waves when
bound IG waves are reduced, hence providing insights into the total IG wave reduction
observed by Sergiienko et al. (2024).

The present paper is organised as follows. In § 2, governing equations and an overview
of solution types are presented. Section 3 discusses a 2-D floating rectangular heaving
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block interacting with the two linear carrier waves by the eigenfunction expansion method
(e.g. Linton & McIver 2001). This is followed by § 4, where bound IG waves are calculated
from carrier wave groups, using a known approach based on a multiple-scale analysis. The
algebraic details for the heaving cases will differ from the diffraction-only cases studied
by Hossain et al. (2001). With bound IG waves specified, free IG waves are calculated
in § 5 with the approach in Liu & Iskandarani (1991). Resolving free waves results in a
second-order wave potential underneath the block; this wave potential forces the block
to a ‘slow’ heaving motion, which radiates additional free IG waves. Such additional
free IG waves contribute to IG wave modification, see § 6. Some examples related to
laboratory conditions are then presented. A sweep over the parameter space is carried
out for diffraction-only blocks in § 7. Although these were already studied by Hossain
et al. (2001), in this study, the parameter range is wider, and the focus is placed on all
types of IG waves (bound, free and total) instead of only on the free IG waves. Examples
of heaving blocks are then discussed in § 8. The main new finding is that some blocks
can significantly reduce the total IG waves for all locations in the lee of the block, a feat
not possible with diffraction-only blocks. The relationship between IG wave reduction
and the linear resonant frequencies of the blocks will be discussed. In § 9, the roles of
viscous damping are discussed informally, via an empirical damping term (McCormick
2009). Section 9 further discusses other modulation ratios, as well as an example using
parameters related to coastal engineering. Section 9 also presents concluding remarks.
Appendix A discusses scaling in perturbation expansion; Appendices B and C provide
details on linear diffraction and radiation problems. Appendices D, E and F contain details
of lengthy expressions needed in the main text. Appendix G explains why bound IG waves
can sometimes be amplified by heaving blocks.

2. Governing equations and an overview of solutions

2.1. Governing equations and boundary conditions
The assumption of inviscid, irrotational flow is standard for the problem of IG wave
interaction with structures (e.g. Agnon et al. 1988). Under this assumption, let Φ be a
scalar flow potential for water waves (Mei et al. 2005); it relates to flow velocity u via

u = ∇Φ = ∂Φ

∂x
i + ∂Φ

∂z
k, (2.1)

where y-independency is assumed; x and z are spatial variables, i and k are unit vectors
along x- and z-axes, respectively, and Φ is governed by the Laplace equation in the fluid
domain

∂2Φ

∂x2 + ∂2Φ

∂z2 = 0. (2.2)

For the water wave problem, a free surface exists. Let η denote the free-surface elevation;
to O(η2), the two free-surface boundary conditions on z = 0 are (Mei et al. 2005, § 13.2.1)

−gη=
(
∂Φ

∂t
+ η

∂2Φ

∂t∂z
+ η2

2
∂

∂t

∂2Φ

∂z2

)
+ 1

2

(
u2 + η

∂u2

∂z

)∣∣∣∣
z=0

, (2.3)

(
∂2Φ

∂t2 + g
∂Φ

∂z

)
+ η

[
∂

∂z

(
∂2Φ

∂t2 + g
∂Φ

∂z

)]
+ η2

2

[
∂2

∂z2

(
∂2Φ

∂t2 + g
∂Φ

∂z

)]

+ ∂u2

∂t
+ η

∂2u2

∂t∂z
+ 1

2
u · ∇u2 = 0

∣∣∣∣
z=0

, (2.4)
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where g ≈ 9.81 m/s2 is the gravitational acceleration, t is a time variable. For a sea of
depth h with a flat bottom, the bottom boundary condition is the no-penetration condition

∂Φ

∂z
= 0

∣∣∣∣
z=−h

. (2.5)

Define a small book-keeping parameter related to wave steepness

ε≡ k0,1 A1 � 1, (2.6)

where k0,1 is the progressive wavenumber of a carrier wave, A1 being its amplitude. The
unknowns Φ and η are expanded in terms of ε

Φ = εΦ1 + ε2Φ2 + ε3Φ3 + . . . , (2.7)

η= εη1 + ε2η2 + ε3η3 + . . . . (2.8)
A multiple-scale method for the water wave problem presumes that x can be separated into
a fast variable x and a slow variable X ≡ εx, and similarly, t can be separated into a fast
time t and a slow time T ≡ εt. Hence, in (2.7, 2.8), Φn(n = 1, 2, 3) and ηn, (n = 1, 2, 3)
are functions of (x, X, t, T, z). It should be noted that, in principle, the slow variables X
and T should be characterised by a different small parameter other than ε (see e.g. Li et al.
2021). However, the use of a single small parameter ε aids clarity, and as explained in
Appendix A, it is reasonable for some problems, such as in Benney & Roskes (1969) and
the current problem.

Substituting (2.7, 2.8) into the Laplace equation and the boundary conditions, at the
leading order O(ε), one finds the following linear equations for Φ1 and η1:

∂2Φ1

∂x2 + ∂2Φ1

∂z2 = 0; ∂2Φ1

∂t2
+ g

∂Φ1

∂z
= 0

∣∣∣∣
z=0

; −gη1 = ∂Φ1

∂t

∣∣∣∣
z=0

; ∂Φ1

∂z
= 0

∣∣∣∣
z=−h

.

(2.9)
Two types of solutions exist for (2.9). One, a periodic solution that involves only
fast variables, e.g. Φ1 = φ1(z)ei(kx−ωt), the other, a solution in the form of Φ1(X, T ),
containing only slow variables (e.g. Mei et al. 2005, (13.2.21)). The former is the classical
Airy solution for water waves (e.g. Manasseh 2021), named carrier wave in this paper,
while the latter corresponds to a slow-varying solution related to the bound IG wave. The
function Φ1(X, T ) is so far an arbitrary function of slow variables; its details cannot be
specified at O(ε). To determine its analytical form, analyses must be carried to O(ε2) and
O(ε3), leading to (4.1), from which Φ1(X, T ) can be solved.

2.2. Wave modification due to the heaving body: an overview
Consider in figure 2, a block of draught d and length 2L on a water depth h, allowed
to heave. It interacts with a nonlinear wave group containing, among others, two linear
carrier waves and a nonlinearly generated bound IG wave. The block’s linear interaction
with two carrier waves ηI,A1 and ηI,A2 leads to the following surface elevations in region I
of figure 2 (x<−L):

ηI,A1 + ηI,A2 + ηI,D1 + ηI,D2 + ηI,R1 + ηI,R2, (2.10)

and the following waves in region III (x> L):

ηIII,D1 + ηIII,D2 + ηIII,R1 + ηIII,R2, (2.11)

where superscripts I and III denote region I and region III. The superscripts
An, Dn, Rn, (n = 1, 2) denote the first and second approaching (i.e. incident), diffracted,
and radiated waves, respectively. These linear waves are determined in § 3.
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fIGΦI,R
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Approaching wave

direction

Region I Region II Region III

h L

s3

s2

x
O

z

bIG
ΦI,A1A2

bIG
ΦI,D1D2

bIG
ΦI,R1R2 bIGΦIII,tot

f IGΦIII,M

IGΦII,M

IGΦII,R fIGΦIII,R
bIG

ΦI,D1R2

bIG
ΦI,D2R1

bIGΦIII,D1D2

bIGΦIII,R1R2

bIGΦIII,D1R2

bIGΦIII,D2R1

Figure 2. Cross-section of a 2-D rectangular heaving block on a water layer of depth h. The block’s resting
draught is d, with length 2L . Regions I, II and III are named to facilitate analysis. Here, s1,2,3 are the names
of the three immersed surfaces of the 2-D block. Second-order IG wave potentials (black fonts) in different
regions are also shown. These wave potentials are specified from § 4 to § 6.

Nonlinear interactions between carrier waves spawn a total bound IG wave potential
denoted by ΦI,tot

bIG in region I (the superscript tot means ‘total’)

Φ
I,tot
bIG =Φ

I,A1 A2
bIG +Φ

I,D1 D2
bIG +Φ

I,R1 R2
bIG +Φ

I,D1 R2
bIG +Φ

I,D2 R1
bIG , (2.12)

and a total bound IG wave potential in region III, ΦIII,tot
bIG

Φ
III,tot
bIG =Φ

III,D1 D2
bIG +Φ

III,R1 R2
bIG +Φ

III,D1 R2
bIG +Φ

III,D2 R1
bIG , (2.13)

where the subscript bIG is for ‘bound IG wave’, while the superscript A1A2 etc. indicate
which two carrier waves are interacting. Note that, in region I, no bound IG wave potential
is generated due to the cross-interactions between the counter-propagating waves (i.e.
between incident waves and the radiated/diffracted waves), see e.g. Agnon & Mei (1985,
§ 4). These potentials are shown in figure 2; they will be discussed in detail in § 4.
Corresponding to these potentials, the total bound IG wave surface elevations in regions I
and III are

η
I,tot
bIG = η

I,A1 A2
bIG + η

I,D1 D2
bIG + η

I,R1 R2
bIG + η

I,D1 R2
bIG + η

I,D2 R1
bIG , (2.14a)

η
III,tot
bIG = η

III,D1 D2
bIG + η

III,R1 R2
bIG + η

III,D1 R2
bIG + η

III,D2 R1
bIG . (2.14b)

Figure 2 also shows free IG (subscript ‘fIG’) wave potentials, viz. ΦI,M
fIG , Φ

I,R
fIG ,

Φ
III,M
fIG , Φ

III,R
fIG , where the superscripts R and M represent radiated free IG waves and free

IG waves required to satisfy the matching conditions. These, and the associated surface
elevations, ηI,M

fIG , η
I,R
fIG , ηIII,M

fIG , η
III,R
fIG , as well as the IG potentials in region II, ΦII,M

IG and

Φ
II,R
IG , will be discussed in §§ 5 and 6.
The sum of free and bound IG surface elevations gives the total IG waves. Denote the

total IG wave potential in regions I and III by ΦI,tot
IG and ΦIII,tot

IG , they are

Φ
I,tot
IG =Φ

I,M
fIG +Φ

I,R
fIG +Φ

I,tot
bIG ; Φ

III,tot
IG =Φ

III,M
fIG +Φ

III,R
fIG +Φ

III,tot
bIG , (2.15a,b)
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k0,1, k0,2: wavenumbers of first-order waves.
ω1, ω2 or f1, f2: frequencies of incident carrier waves. ω2 = 1.1ω1 in this paper.

A1, A2: real amplitudes of incident carrier waves
a0,1, a0,1: complex amplitudes of diffracted waves in region I
a0,1, a0,2: complex amplitudes of radiated waves in region I

b0,1, b0,1: complex amplitudes of diffracted waves in region III
b0,1, b0,1: complex amplitudes of radiated waves in region III

η
I,A1
1 , ηI,A2

2 : surface elevations of incident (‘approaching’) waves (in region I only)
η

I,D1
1 , ηI,D2

2 : surface elevations of diffracted waves in region I
η

I,R1
1 , ηI,R2

2 : surface elevations of radiated waves in region I
η

III,D1
1 , ηIII,D2

2 : surface elevations of diffracted waves in region III
η

III,R1
1 , ηIII,R2

2 : surface elevations of radiated waves in region III

Table 1. A summary of quantities related to first-order waves mentioned in § 3.

which corresponds to the surface elevation: ηI,tot
IG and ηIII,tot

IG , their details are

η
I,tot
IG = η

I,M
fIG + η

I,R
fIG + η

I,tot
bIG ; η

III,tot
IG = η

III,M
fIG + η

III,R
fIG + η

III,tot
bIG . (2.16a,b)

Our primary interest here is controlling the amplitude of ηIII,tot
IG by suitable 2-D heaving

block.

3. Carrier waves modified by a 2-D heaving body
When the two linear carrier waves encounter the heaving block in figure 2, diffracted and
radiated waves are generated. Both incident waves are discussed to familiarise the reader
with the symbol system used throughout the paper. Parameters in this section are listed in
table 1 for easier reference.

3.1. Governing equations
The governing equations and boundary conditions for the diffraction problem are (2.9)
plus the following boundary condition on the floating body:

∂Φ1

∂n
= 0

∣∣∣∣
on s1,2,3

, (3.1)

where n represents normal vectors of surfaces s1,2,3 in figure 2. For the heaving radiation
problem, the block’s vertical velocity is

ξ̇ (t)= −iωAhe−iωt, (3.2)

where Ah is an unknown complex heaving amplitude, and ω is the angular frequency of
the incident wave. To determine it, the following boundary condition on the bottom of the
block is required, stating that the z-velocity of the flow equals the heaving velocity:

∂Φ1

∂z
= −iωAhe−iωt

∣∣∣∣
on the bottom of the block, s2

. (3.3)
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3.2. Incident waves
Incident waves in figure 2 approach from the negative x-axis, satisfying (2.9) in region I.
Sinusoidal surface profiles are well-known solutions (see Appendix B)

ηI,A1 = A1 cos(k0,1x−ω1t), ηI,A2 = A2 cos(k0,2x−ω2t), (3.4)

where the superscripts ‘I, An’ (n = 1, 2) denote incident waves 1 and 2 in region I (see
figure 2 for region division). The letter ‘I’ denotes region I, and the letter ‘A’ denotes
‘approaching’ waves, a term used as an alternative for ‘incident’ waves, to avoid using the
letter ‘I’ again in the superscripts. The real quantities An, k0,n, ωn, (n = 1, 2) are wave
amplitudes, wavenumber and wave frequencies, respectively. Note that the subscript 0 in
k0,n arises to ensure consistency with the notations in Appendix B. The values of k0,n
satisfy the dispersion relations

ω2
1 = gk0,1 tanh k0,1h, ω2

2 = gk0,2 tanh k0,2h. (3.5)

The majority of examples in this paper assume that ω2 = 1.1ω1 (cf. Hossain et al. 2001;
Sergiienko et al. 2024); other frequencie ratios are discussed briefly in § 9.2.

3.3. Diffracted and radiated waves
When waves given by (3.4) interact with the 2-D heaving block, diffracted and radiated
wave fields are generated. The governing equations are (2.9), (3.1) and (3.3). Generally, the
diffracted and radiated waves can be described by infinite sums of eigenfunctions involving
progressive and evanescent modes. Evanescent modes are neglected because they decay
rapidly away from the block and do not spawn IG waves (Agnon et al. 1988; Liu &
Iskandarani 1991; Hermans 2010). Using the superscripts D1, D2 to denote diffracted
waves related to incident carrier waves 1 and 2, using the superscripts R1, R2 to denote
radiated waves 1 and 2 and using ‘I’ for waves in region I and ‘III’ for waves in region III,
the progressive modes of the eight diffracted and radiated waves are

ηI,Dn = ∣∣a−
0,1

∣∣ cos
[− k0,n(x− (−L))−ωnt+ arg

(
a−

0,n
)]
, n = 1, 2, (3.6a)

ηI,Rn = ∣∣a−
0,n

∣∣ cos
[− k0,n(x− (−L))−ωnt+ arg

(
a−

0,n
)]
, n = 1, 2, (3.6b)

ηIII,Dn = ∣∣b+
0,n

∣∣ cos
[
k0,n(x− L)−ωnt+ arg

(
b+

0,n
)]
, n = 1, 2, (3.6c)

ηIII,Rn = ∣∣b+
0,n

∣∣ cos
[
k0,n(x− L)−ωnt+ arg

(
b+

0,n
)]
, n = 1, 2, (3.6d)

where a−
0,1, a−

0,2, a
−
0,1, a

−
0,2 are unknown coefficients for reflected waves in region I, and

b+
0,1, b+

0,2, b
+
0,1, b

+
0,2 for transmitted waves in region III. These coefficients are solved in

Appendices B and C. To this end, (2.10) and (2.11) are fully specified. All wave surface
elevations in this paper are presented in real form, like (3.6). This is because surface
elevations are inherently real quantities, and unlike flow potentials, they are final results
that no longer participate in important calculations. Hence, a real presentation is suitable.

4. Bound infragravity waves around the heaving body
Due to nonlinearities in boundary conditions, the linear wave solutions, (3.4) and (3.6),
interact and generate new waves including higher-frequency superharmonics (see e.g.
figure 1d) not relevant to this study, and lower-frequency subharmonics (IG waves), which
are of interest. As mentioned in § 2, to determine the IG wave potential, O(ε2) and O(ε3)
analyses are needed. We neglect the well-documented details (Mei et al. 2005) and present
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results only: they are bound IG waves due to interactions between incident, diffracted
and radiated carrier waves, and due to cross-interactions between radiated and diffracted
carrier waves.

4.1. Bound IG wave potentials due to interaction of incident carrier waves

Use ΦI,A1 A2
bIG to denote the flow potential of the bound IG wave generated by the two

incident carrier waves (3.4). The subscript ‘bIG’ stands for ‘bound IG waves’, the
superscript ‘I’ means that the bound IG wave is in region I and A1A2 indicates that it
is generated by the interaction of two incident carrier waves A1 and A2 where, as before,
A stands for ‘approaching waves’. The potential is governed by the following equation (cf.
(13.2.36) of Mei & Benmoussa 1984; Mei et al. 2005; and Liu & Iskandarani 1991):

∂2Φ
I,A1 A2
bIG

∂T 2 − gh
∂2Φ

I,A1 A2
bIG

∂X2 = i

(
g2kSkL

ωS
+ ω2

SωL

2 sinh2 kSh

)

×
[
e2i(kL X−ωL T ) − e−2i(kL X−ωL T )

]
A1 A2, (4.1)

where X and T are slow-varying spatial and temporal scales, kS , ωS , kL and ωL are defined
as follows:

ωL =
∣∣∣∣ω1 −ω2

2

∣∣∣∣, ωS = ω1 +ω2

2
, kL =

∣∣∣∣k0,1 − k0,2

2

∣∣∣∣, kS = k0,1 + k0,2

2
. (4.2)

Physically, the former two are the averaged wavenumber and angular frequency of the
carrier waves. The subscript S stands for ‘short waves’, and L stands for ‘long waves’. To
obtain the wavenumber and frequency of the IG wave, one should multiply both kL and
ωL by 2. This is because kL and ωL are defined in such a way in past studies (e.g. Mei
et al. 2005); we follow the tradition.

Equation (4.1) contains a homogeneous part for ΦI,A1 A2
bIG on the left-hand side and an

inhomogeneous forcing term proportional to the product of carrier waves’ amplitudes,
A1 A2, on the right-hand side. The particular solution to (4.1) is

Φ
I,A1 A2
bIG = CB A1 A2

[
e2i(kL X−ωL T ) − c.c.

]
, (4.3)

where ‘c.c.’ stands for complex conjugate, and the coefficient CB is defined as

CB = i(−4ω2
L + 4ghk2

L

)
(

g2kSkL

ωS
+ ω2

SωL

2 sinh2 kSh

)
. (4.4)

Equation (4.3) is not a function of z, as (4.1) does not contain z.

4.2. Bound IG wave potentials due to diffracted and radiated carrier waves
The diffracted and radiated first-order waves expressed by (3.6) also generate bound IG
wave potentials. The IG wave potentials due to interaction between diffracted waves in
regions I and III are denoted by ΦI,D1 D2

bIG and ΦIII,D1 D2
bIG , respectively, while IG wave

potentials due to interactions between radiated waves in regions I and III are denoted
by ΦI,R1 R2

bIG and ΦIII,R1 R2
bIG . The bound IG wave potential arising from cross-interactions

between diffracted and radiated carrier wave are ΦI,D1 R1
bIG , ΦI,D2 R1

bIG , ΦIII,D1 R2
bIG , ΦIII,D2 R1

bIG ,
Φ

I,D1 R2
bIG . These wave potentials are governed by equations similar to (4.1), and their

details are given in Appendix D. It should be noted that there is no IG wave arising
from interactions between waves of the same frequency; therefore, the following IG wave
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potentials do not exist: ΦI,D1 R1
bIG , ΦIII,D1 R1

bIG , ΦI,D2 R2
bIG , ΦIII,D2 R2

bIG . Moreover, as noted in
§ 2, no bound IG waves are generated by the interaction between incident waves and
radiated/diffracted waves in region I. To this end, all elements in (2.12) and (2.13) are
explained.

4.3. Bound IG wave surface elevations
The bound IG wave potentials each give rise to surface elevations. For example, the
incident bound IG wave potential ΦI,A1 A2

bIG corresponds to the following surface elevation
(cf. 2.9):

−1
g
Φ

I,A1 A2
bIG
∂T

= 2C1 A1 A2 cos [2 (kL X −ωL T )], (4.5)

in which

C1 = − ωL

2gk2
L

(
−C2

g + gh
)
(

g2kSkL

ωS
+ ω2

SωL

2 sinh2 kSh

)
. (4.6)

The surface elevation expressed by (4.5) is incomplete; it needs to be amended by another
comparably small IG wave, due to O(ε2) self-interactions of carrier wave components,
cf. (13.2.33) of Mei et al. (2005), to yield the complete surface elevation for the incident
bound IG wave ηI,A1 A2

bIG

η
I,A1 A2
bIG = 2 (C1 + C2) A1 A2 cos [2 (kL X −ωL T )], (4.7)

where C2 is the amplitude of the other IG wave

C2 = − kS

2 sinh 2kSh
. (4.8)

Similarly, bound IG waves due to interactions between diffracted waves in regions I and
III are denoted by ηI,D1 D2

bIG and ηIII,D1 D2
bIG , respectively, while bound IG waves generated

by interactions between radiated waves in regions I and III are denoted by ηI,R1 R2
bIG and

η
III,R1 R2
bIG . Bound IG waves due to cross-interactions between diffracted and radiated

carrier waves are ηI,D1 R1
bIG , ηI,D2 R1

bIG , ηIII,D1 R2
bIG , ηIII,D2 R1

bIG , ηI,D1 R2
bIG . Their details are given in

Appendix E. These waves contribute to (2.14).

5. Free infragravity waves to satisfy matching conditions

5.1. Free IG wave potentials and surface elevations
The total bound IG wave potentials (2.12 and 2.13) are generally discontinuous across the
block. To rectify this, free IG wave potentials in regions I and III, denoted by ΦI,M

fIG and

Φ
III,M
fIG (subscript fIG for free IG waves), are introduced. In region II, the second-order

potential is ΦII,M
IG (the subscript is ‘IG’ but not ‘fIG’; it corresponds to neither free nor

bound waves). Among the unknowns, ΦI,M
fIG and ΦIII,M

fIG should satisfy the homogeneous
version of (4.1), hence

Φ
I,M
fIG = DIe

−2i ωL√
gh

X
e−2iωL T + c.c., Φ

III,M
fIG = DIIIe

2i ωL√
gh

X
e−2iωL T + c.c. (5.1)
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In (5.1), there are four unknown coefficients: DI, DIII and their complex conjugates,
DI, DIII. The remaining potential ΦII,M

IG should satisfy the Laplace equation and the
boundary conditions on the block’s bottom s2 (see figure 2) and on the sea bottom. The
following solution can be used (cf. (B6) in Appendix B, also see Hossain et al. 2001):

Φ
II,M
IG = (A1 X +A2)e−2iωL T + c.c., (5.2)

which contains four more unknown coefficients: A1, A2 and their complex conjugates A1
and A2, increasing the number of unknowns to eight, requiring eight equations. They are
determined by the following four matching conditions, which require that the total IG wave
potential and flux are continuous at both the bow (X = −L) and the stern (X = L) of the
heaving block (Agnon et al. 1988; Wu & Liu 1990; Liu & Iskandarani 1991; Hossain et al.
2001; Li et al. 2021)

Φ
I,tot
bIG +Φ

I,M
fIG

∣∣∣
X=−L

= Φ
II,M
IG

∣∣∣
X=−L

, (5.3)

Φ
II,M
IG

∣∣∣
X=L

= Φ
III,tot
bIG +Φ

III,M
fIG

∣∣∣
X=L

, (5.4)

Φ
I,tot
bIG
∂X

+ Φ
I,M
fIG

∂X

∣∣∣∣∣
X=−L

= Φ
II,M
IG
∂X

∣∣∣∣∣
X=−L

, (5.5)

Φ
II,M
IG
∂X

∣∣∣∣∣
X=L

= Φ
III,tot
bIG
∂X

+ Φ
III,M
fIG

∂X

∣∣∣∣∣
X=L

. (5.6)

Substituting the known quantitiesΦI,tot
bIG andΦIII,tot

bIG into (5.3–5.6) and collocating like time
harmonics yields eight equations, see Appendix F. Solving the equations determines the
unknown potentials, then the surface elevations of the free IG waves ηI,M

fIG and ηIII,M
fIG can

be calculated by

η
I,M
fIG = −1

g

∂Φ
I,M
fIG

∂T
, X <−L; η

III,M
fIG = −1

g

∂Φ
III,M
fIG

∂T
, X > L . (5.7a,b)

The free IG waves, (5.1) and (5.2), as well as the matching conditions (5.3–5.6), are
approximations, as they do not satisfy the governing equations and boundary conditions
on the heaving block exactly; moreover, the free IG waves are assumed to be shallow water
waves (see e.g. Li et al. 2021, § 2.6.3).

5.2. A note on total IG wave amplitude modulation
The free IG wave’s phase speed

√
gh is generally faster than the bound IG wave’s phase

speed (the group velocity)

CbIG = ωL

kL
= Cg. (5.8)

As such, when a localised wave packet interacts with an obstacle (e.g. Li et al. 2021),
the free IG wave will overtake the bound IG wave, so that the total amplitude of the
IG wave is location-dependent. Such an amplitude variation of second-order waves was
also observed by Massel (1983). However, these previous studies did not systematically
consider IG wave amplitude modulation from a wave reduction/coastal protection point of
view using heaving bodies.
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6. Free infragravity waves radiated by second-order heaving

The previous section reveals that a second-order wave potential ΦII,M
IG exists in region

II. This creates a force that drives the block to a ‘slow’ heaving motion ξIG(T ) at the
frequency of IG waves. Similar to the ‘fast’ heaving radiation problem where the carrier
wave potential in region II excites the block into fast heaving (3.2), this slow motion
generates a wave potentialΦII,R

IG and associated free IG waves. Details are presented below
where ξIG(T ) and ΦII,R

IG are determined.

6.1. Slow heaving

The slow heaving motion due to the second-order potential ΦII,M
IG (5.2) is characterised by

its amplitude denoted by AIG
h and its complex conjugate AIG

h . Assuming that slow heaving
is a periodic function of time, then its displacement ξIG(T ) can be expressed as

ξIG(T )= AIG
h e−2iωL T + c.c. (6.1)

Equation (6.1) implies the following slow heaving velocity and acceleration:

ξ̇IG(T )= −2iωL AIG
h e−2iωL T + c.c., ξ̈IG(T )= −4ω2

L AIG
h e−2iωL T + c.c.. (6.2)

The unknown amplitudes AIG
h and AIG

h are decided by a force balance equation. The
excitation force in the equation is calculated by

F D
IG =

∫ L

−L
−ρ ∂Φ

II,M
IG
∂T

∣∣∣∣∣
z=−d

dX = 4iρgωL

(
A2e−2iωL T −A2e2iωL T

)
. (6.3)

For a block section with unit width, the restoring force is calculated as F S = ρgAwpξIG,
where the waterplane area Awp = 2L . The inertia force F M is calculated by mξ̈IG, where
the mass m equals 2Lρd for unit width. Finally, the radiation force F R equals −ξ̈ma − ξ̇ R,
where the frequency-dependent added mass ma and radiation damping R are evaluated at
the frequency of the IG wave, 2ωL . The analytical details of ma and R are derived in
Appendix C.2.

Balancing all forces by F M + F S = F D
IG + F R and collecting different harmonics leads

to two equations. Solving them yields AIG
h and AIG

h

AIG
h = 2iρωLA2

−2ω2
L(2Lρd + ma)− iωL R + ρgL

, AIG
h = −2iρωLA2

−2ω2
L(2Lρd + ma)+ iωL R + ρgL

.

(6.4)

6.2. Radiated free IG wave potentials

Once the slow heaving amplitudes AIG
h and AIG

h are determined, the slow heaving flow
potential can be determined. Denote the flow potential by ΦII,R

IG (the superscript R stands
for radiation); similar to ΦII,M

IG discussed in the last section, it should also satisfy the
Laplace equation and the boundary conditions on s2 and on the sea bottom, cf. (2.9) and
(3.1). In addition, it should satisfy the following boundary condition stating that the z-
derivative of ΦII,R

IG gives heaving velocity on the bottom of the block, s2:

∂Φ
II,R
IG
∂z

= ξ̇IG(T )

∣∣∣∣∣
s2

. (6.5)
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A solution is (cf. C4)

Φ
II,R
IG = (B1x +B2) e−2iωL T + AIG

h
(z + h)2 − x2

2(h − d)
e−2iωL T + c.c., (6.6)

which contains four unknowns, B1,B2 and their complex conjugates B1,B2. The potential
Φ

II,R
IG generates radiated waves in regions I and III, and it is envisaged that these waves

assume the same form as the free IG waves discussed before. Denoting these radiated free
IG wave potentials by ΦI,R

fIG and ΦIII,R
fIG , their details are

Φ
I,R
fIG =DIe

−2i ωL√
gh

X
e−2iωL T + c.c. Φ

III,R
fIG =DIIIe

2i ωL√
gh

X
e−2iωL T + c.c. (6.7)

Equation (6.7) contains four more unknown coefficients, DI, DIII and their complex
conjugates DI and DIII. The unknowns are determined by the following four matching
conditions stating that the vertical integrals of the potentials and their fluxes in (6.6) and
(6.7) are continuous at the bow (X = −L) and the stern (X = L) of the heaving body:∫ 0

−h
Φ

I,R
fIG dz =

∫ −d

−h
Φ

II,R
IG dz

∣∣∣∣∣
X=−L

, (6.8)

∫ −d

−h
Φ

II,R
IG dz =

∫ 0

−h
Φ

III,R
fIG dz

∣∣∣∣∣
X=L

, (6.9)

∫ 0

−h

∂Φ
I,R
fIG

∂X
dz =

∫ −d

−h

∂Φ
II,R
IG
∂X

dz

∣∣∣∣∣
X−L

, (6.10)

∫ 0

−h

∂Φ
II,R
IG
∂X

dz =
∫ −d

−h

∂Φ
III,R
fIG

∂X
dz

∣∣∣∣∣
X=−L

. (6.11)

Substituting the contents ofΦI,R
fIG ,ΦII,R

IG andΦIII,R
fIG into the above matching conditions and

collecting like terms, one obtains eight equations determining all eight unknowns B1,B2,
B1,B2, DI, DIII, DI and DIII.

The radiated free IG waves can now be calculated by (cf. 5.7)

η
I,R
fIG = −1

g

∂Φ
I,R
fIG

∂T
, X <−L; η

III,R
fIG = −1

g

∂Φ
III,R
fIG

∂T
, X > L . (6.12a,b)

To this end, all unknowns in (2.16) are determined.

7. Some results for diffraction-only 2-D blocks
Results of the total IG wave field, (2.16), will be presented for stationary blocks
(diffraction-only) first. The results are obtained by removing all radiation-related
quantities. Only IG waves in region III will be presented, because region III is in the lee of
the block, and from a coastal protection point of view, this is the region of interest. There,
the total IG waves involve both bound and free types according to (2.16). Both types, as
well as the total IG waves, will be presented.

7.1. An example
We start by providing in figure 3 an example (L = 0.1h, d = 0.5h, k0,1h = 1.20, A1 =
A2 = 0.04 m, h = 1 m) to illustrate carrier and IG waves around a stationary block.
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Figure 3. An illustration of wave components around a 2-D stationary block (diffraction only). The case is
taken from the red curves of the second column of figure 5 where L/h = 0.1, d/h = 0.5. The value of k0,1h is
set to 1.20. The figures show surface elevation η for: (a) carrier waves; (b) incident and transmitted IG waves;
(c) total IG waves at t = 0; (d) total IG waves evaluated at various times, revealing the modulated amplitude
envelope. In all plots, bIG means bound IG waves, and fIG means free IG waves. See § 7.1.

Panel (a) shows carrier waves; bound and free IG waves are given in panel (b). The total
transmitted IG wave is given in panel (c) for T = 0, while in panel (d), total IG waves
are evaluated at six different times, superimposed to reveal an amplitude envelope. Panel
(d) also shows that the minimum transmitted total IG wave amplitude is near zero, but
the maximum is almost one. The reason for such an amplitude modulation (cf. § 5.2) can
be understood in view of panel (b), where the spatial wavelength of the transmitted free
IG waves is almost twice the bound IG waves, so that when they superimpose, peaks and
troughs in the total IG wave amplitude are created. In this case, if reducing total IG Waves
is the goal, then the optimal location is approximately 50 m in the lee of the block.

7.2. Systematic calculation of more cases
Consider 2-D blocks specified by combinations of L = 0.01h, 0.1h, 1.0h, 1.5h, 2.0h and
d = 0.1h, 0.3h, 0.5h. All blocks are evaluated for wave conditions up to k0,1h = 2. The
two carrier waves satisfy f2 = 1.1 f1. To ensure the smallness of the blocks compared with
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k0,1 h

L/
h

0 1.7681.3491.113 2.000

1

2

3

Figure 4. Validity range. For a given value of L/h, when the value of k0,1h is located to the right of the red
curve (i.e. in the light region), then the inequality (7.1) fails. This diagram is calculated with ω2 = 1.1ω1 and
h = 1 m. Gridlines are added to mark three points on the red curve corresponding to L/h = 1, 1.5 and 2. For
details, see § 7.2.

the IG waves, it is required that

2L <
2λg

20
, (7.1)

where 2L gives the total length of the block, λg = 2π/(2kL) is the length of the carrier
wave group (so that the IG wave length is 2λg). For blocks with L = 0.01h and 0.1h, the
inequality (7.1) is always satisfied in the range k0,1h ∈ [0, 2]. However, for blocks with
L = 1.0h, k0,1h should be smaller than 1.768, for L = 1.5h, k0,1h should be smaller than
1.349 and when L = 2.0h, k0,1h should be less than 1.113. The k0,1h limits for other values
of L/h are given in figure 4.

The transmission coefficient of carrier waves is discussed first. It is defined as

transmission coefficient = amplitude of the transmitted carrier wave
amplitude of the incident carrier wave

. (7.2)

The first row of figure 5 presents the transmission coefficient of the first carrier wave
(with wavenumber k0,1). The transmission of the second carrier wave (with wavenumber
k0,2) will follow the same trend, so it is omitted. A general observation from the first row of
figure 5 is that the carrier waves are attenuated as L and d increase, meaning larger-sized
blocks are more effective in reflecting the incident carrier waves.

The second row of figure 5 shows the normalised amplitude of total bound IG waves, as
the ratio between the total bound IG wave amplitude in region III (|ηIII,tot

bIG |) and the incident
bound IG wave amplitude in region I (|ηI,A

bIG|). Similarly to the carrier wave’s transmission
coefficient, it reduces as L and d increase. The light red regions in figure 5 highlight the
regimes where the inequality (7.1) is not respected, so caution should be exercised when
interpreting the results in these red regions. In the light grey regions where k0,1h < 0.15,
no IG wave results are shown, because for the examples considered here (which assume
that the water depth h = 1 m to be relevant to laboratory conditions), the IG wavelength is
too long to be realistic when k0,1h < 0.15.

The third row of figure 5 shows free IG waves in the form of the ratio between the total
free IG wave amplitude in region III (|ηIII,tot

fIG |) and the incident bound IG wave amplitude.
The free IG wave increases as L and d increase, suggesting that reducing bound IG waves
incurs a cost: the release of free IG waves. Note that in panels (n) and (o) of figure 5,
the free IG wave can be noticeably larger than 1. Caution should be exercised when
interpreting these results, as they occur in the light red regions where the condition (7.1) is
not satisfied.

Adding up the bound and free waves in region III, one obtains the last row of figure 5,
showing the total IG wave amplitude (i.e. |ηIII,tot

IG |) normalised by the incident IG wave.
Due to the reasons mentioned in § 5.2, |ηIII,tot

IG | is modulated: it depends not only on
k0,1, L , d, but also on the location x . For this reason, an upper bound (dashed lines) and a
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Figure 5. Wave modification due to stationary 2-D blocks. Five columns correspond to different L; see the
legends at the top of each column. Light blue shades are added as visual guides to distinguish different columns.
The four rows are: row 1, transmission coefficient for monochromatic waves with non-dimensional wavenumber
k0,1h. Row 2: the total bound IG wave amplitude in region III normalised by the incident bound IG wave
amplitude. Row 3: similar to row 2 but for normalised free IG wave amplitude. Row 4: for total IG wave
amplitude. In all plots, black, blue and red curves correspond to d = 0.10h, 0.30h and 0.50h. In row 4, dashed
and solid curves are the maximum and minimum amplitudes, respectively. In the red shades of plots (n, o, s,
t, x, y), the condition (7.1) is not met, and the results may be invalid. In the light grey shades, k0,1h < 0.15,
and no results are presented. In all cases, the two carrier wave frequencies satisfy f2 = 1.1 f1. These results are
relevant to § 7.

lower bound (solid lines) exist when evaluating the total IG wave amplitude. It is clear that
although the lower bound can be as small as zero (the IG wave is wholly eliminated), the
upper bound is usually close to one (the IG wave amplitude is comparable to the incident
IG wave).

7.3. A summary: diffraction-only results
This section reveals that when reducing the total IG waves is the goal, the best a diffraction-
only block can do is the location-dependent reduction exemplified by figure 4(d): at some
locations, the total IG wave amplitude is always near zero for all times, while at some
other locations, the total IG wave is not reduced. This is due to the superposition of free
and bound IG waves. Such a location-dependent reduction can be achieved by small-sized
blocks (e.g. L = 0.1h) as well as larger blocks. The larger blocks have a stronger impact on
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lower values of k0,1h while the reverse is true for the small-sized blocks. If bound and free
IG waves are shown separately, figure 5 shows that, when bound IG waves are small, free
IG waves are non-small, vice versa. This aspect concurs with Liu & Iskandarani (1991).

8. Some results for heaving 2-D blocks
This section allows the blocks to heave. Heaving redistributes the energy of the incident
wave field not only via diffraction but also via radiation; accordingly, the results will differ
from the diffraction-only cases.

8.1. An example
An example is provided to demonstrate that the total IG waves can be reduced everywhere
in the lee of a block. Consider a block with d = 0.5h, L = 2.0h. Set k0,1h = 0.95, A1 =
A2 = 0.04 m. The wave elevations around the block are presented in figure 6. Incident and
transmitted carrier wave groups are given in panel (a). The IG waves bound to these wave
groups are given in panel (b), which also shows bound IG waves due to cross-interaction
between radiated and diffracted carrier waves, as well as free IG waves. The total IG
waves are given in panel (c), evaluated at a specific time (T = 0). Evaluating the waves at
more values of T and combining the plots, one obtains figure 6(d). The spatial amplitude
modulation (cf. § 5.2) of the transmitted total IG waves is again observed. Despite the
modulation, at all x > L locations, the total IG waves are reduced everywhere.

8.2. Systematic calculation of more cases
Figure 7 shows results for heaving blocks. The transmission of the carrier waves is
presented in the first row. Troughs of the transmission curves are related to the peaks
of the heaving response amplitude operator (RAO) curves in the second row: when the
values of k0,1h are to the right of the values of RAO peaks, the transmission coefficient
quickly reduces (cf. Cui et al. 2023). The RAO peaks correspond to linear resonance; their
locations are decided by both d and L: as d and L increase, they move to lower values
of k0,1h. The transmission of total bound IG waves is given by the third row of figure 7;
their shapes are similar to the first row. These curves can be above unity, e.g. panels (m),
(n), (o). The reason for this is given in Appendix G. The fourth row of figure 7 presents
the amplitude of total free IG waves. Unlike the stationary blocks, the total free IG waves
do not increase monotonically. The curves now have peaks and troughs, and the troughs
can reach near-zero values, because the total free IG waves are the sum of induced free IG
wave ηIII,M

fIG (5.7) and the radiated free IG wave ηIII,R
fIG (6.12); the two waves can interact

destructively. The last row of figure 7 shows total IG wave (2.16). Like the diffraction-
only case, the total IG wave amplitude has upper (dashed lines) and lower bounds. Unlike
the diffraction-only case, where the upper bound is usually close to or above one, now
the upper bounds can be noticeably lower than one, meaning the total IG waves can be
reduced everywhere in the lee of the block. For the cases studied, these cases usually occur
when d = 0.5h, and when k0,1h is greater or smaller than the RAO peaks, indicating that
avoiding linear resonance leads to reduction of IG waves. The relationship between IG
wave and RAO peaks is studied in more detail in the following subsection.

8.3. Relating linear resonance (RAO peaks) to IG wave modification
The previous subsection mentioned that for deeper-draught blocks (d = 0.5h), when k0,1h
is located to either side of the RAO peak curve, the maximum total IG wave amplitude
can be reduced, establishing a link between RAO curves (resulting from linear analysis)
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Figure 6. An illustration of wave components around a heaving 2-D block (L = 2h, d = 0.5h where h = 1 m,
k0,1h = 0.95). These correspond to a case on the red curves in the fifth column of figure 7. Surface elevation η
for: (a) first-order carrier waves; (b) incident and transmitted bound and free IG waves; (c) the total IG waves;
(d) similar to (c) but evaluated at various times, illustrating the modulated amplitude envelope in region III. In
all plots, bIG means bound IG waves, and fIG means free IG waves.

and IG waves (nonlinearly generated). This subsection studies this observation further, by
overlapping locations of RAO peaks with IG wave results. To identify the trend clearly, L
is now allowed to vary continuously, and the upper limit of L/h is increased from 2 to 3.
The results are plotted in figure 8 in the form of heat maps, for the total free IG waves
(row 1) and the maximum total IG waves (row 2). These quantities are related to row 4 of
figure 7 and the dashed curves in row 5 of figure 7, respectively.
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Figure 7. Wave modification due to heaving 2-D blocks. Five columns correspond to different L; see the
legends at the top of each column. Light green shades are added to columns 2 and 4 as visual guides to
distinguish different columns. Rows 1 and 2: transmission coefficient and RAO for monochromatic waves with
non-dimensional wavenumber k0,1h. Row 3: the total bound IG wave amplitude in region III normalised by
the incident bound IG wave amplitude. Row 4: similar to row 3, but for total free IG wave amplitude. Row 5:
similar to row 3, but for total IG wave amplitude. Black, blue and red curves correspond to d = 0.10h, 0.30h
and 0.50h. In row 5, dashed and solid curves are the maximum and minimum IG wave amplitudes, respectively.
In all cases, the two carrier wave frequencies satisfy f2 = 1.1 f1. In the red shades of plots (n, o, s, t, x, y), the
condition (7.1) is not met, and the results may not be valid. In grey shades, k0,1h < 0.15, results for IG waves
are not presented. This figure is relevant to § 8.

The first row of figure 8 shows that, as d increases, the RAO peak curve (white curve)
relocates to largely coincide with a red-coloured ‘ridge’ on the heat map where total free
IG waves assume relatively large amplitudes. To both sides of the ‘ridge’, the free IG wave
amplitudes decrease as the colour turns towards blue. The same conclusion applies to the
second row of figure 8, where maximum total IG waves are shown. These conclusions do
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Figure 8. Panels (a), (b) and (c) show normalised amplitude of total free IG waves in the lee (region III) of a
2-D block. Panels (d), (e), ( f ) are similar, but for total IG waves. The white solid lines are locations of the 2-D
block’s RAO peaks (cf. row 2 of figure 7). In the white-coloured regions, the condition (7.1) is not met, and
the results are not presented. This plot is similar to rows 4 and 5 of figure 7, except that the parameter L/h is
varying continuously.

not apply to small-d cases (panels a and d), presumably because, according to row two
of figure 7, the RAOs for the small-d cases are devoid of obvious peaks; hence, the RAO
peak curve ceases to be a meaningful indicator.

Overall, when d is very large, a relationship exists between a block’s linear RAO peak
and its ability to attenuate transmitted total IG waves.

8.4. A summary of heaving cases
Compared with diffraction-only blocks, allowing heaving fundamentally changes the
behaviour of IG waves around the block. From an IG wave reduction point of view, it is
possible to reduce IG waves everywhere in the lee (region III) by up to 50 %, particularly
for blocks with larger L and d, e.g. the L = 1.5h and 2.0h cases with d = 0.5h, see the red
dashed curves in figure 7(x, y), or figure 8(c, f ).

9. Discussion and conclusions

9.1. Some comments on viscous effects in the 2-D blocks’ equations of motion
All previous discussions assume that there is no damping when the 2-D blocks are
heaving. A more realistic model should consider viscous damping due to e.g. power-
take-off installed on WECs, and vortex generation during heaving motion. The viscous
damping reduces the RAO peaks shown in figure 7 and generally shifts the peaks slightly
towards the lower values of k0,1h. The latter effect was investigated systematically by Cui
et al. (2022). For IG waves, one may envisage that if the RAO peak can be shifted to
a lower value of k0,1h, the same block can control different IG waves, because figure 8
shows that IG wave is linked to the location of the RAO peaks. Unfortunately, this idea
is not viable for the blocks considered in this paper, because the shift of the RAO peaks
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Figure 9. Effects of damping. Red curves in two panels are the same as the red curves in figure 7( j) and (y)
(L = 2h, d = 0.5h). Grey curves: calculated with an empirical viscous term (see § C.4 in Appendix C) with the
viscous parameter Kv set to 3 × 106. This figure is related to § 9.1.
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Figure 10. Effects of different modulation ratios. Similar to figure 7(x) (L = 1.5h), but instead of assuming
f2 = 1.10 f1, now the two cases feature f2 = 1.03 f1 (a) and f2 = 1.15 f1 (b). This figure is related to § 9.2.

towards low frequencies is not significant, and because an important ingredient of the total
IG waves, viz. The radiated free IG wave (6.12), is not substantially affected by added
damping, as their low frequency is usually far from heaving resonance.

An example is shown in figure 9: even when strong damping is applied, the total IG
wave amplitude curves did not shift much in frequency, although it is interesting to note
that the IG wave magnitudes are decreased for most values of k0,1h.

9.2. Other ratios of carrier frequencies
Previous examples in this paper use f2 = 1.1 f1. Two more ratios are discussed here:
f2 = 1.03 f1 and f2 = 1.15 f1. It can be shown (details omitted here) using the analysis
in Appendix A that, by choosing appropriate carrier wave amplitude ranges, the scaling in
this paper still applies.

For brevity, only selected results are presented, see figure 10. The two panels of the
figure are similar to figure 7(x), but using f2 = 1.03 f1 and f2 = 1.15 f1. For the former
case, the condition (7.1) is satisfied for all values of k0,1h. For the latter case, the condition
(7.1) is satisfied up to k0,1h = 1.012. From an IG wave reduction point of view, for the
f2 = 1.03 f1 case, the total IG wave is reduced for a wide range of k0,1h for both d = 0.5h
(red curves) and d = 0.3h (blue curves) cases. For the f2 = 1.15 f1 case, in the validity
range k0,1h < 1.012, the total IG wave is reduced for some values of k0,1h. Overall, the
figure demonstrates no qualitative difference from the f2 = 1.10 f1 case.
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Figure 11. A dimensional example. (a) heaving RAO for 2-D heaving blocks with L = 0.70h. The water depth
is h = 30 m. Black: d = 0.10h; blue: d = 0.30h; red: d = 0.50h. (b) normalised total IG wave in region III for
heaving blocks; (c) similar to (b) but for diffraction-only blocks. In all cases, the two carrier wave frequencies
satisfy f2 = 1.1 f1. In the red shaded regions, the condition (7.1) is not met, and the results may not be valid.
Carrier wave amplitudes are A1 = A2 = 2 m. Note that the horizontal axis shows dimensional frequency f1,
not the non-dimensional parameter k0,1h.

9.3. A physical example using dimensional parameters
All calculations so far are performed with parameters consistent with laboratory conditions
(h = 1 m, f1 > 0.15 Hz), and used the non-dimensional wavenumber k0,1h extensively.
Here, we revert to the dimensional parameter f1 (the frequency of the first linear
carrier wave), and consider an example physically relevant to coastal waters and floating
structures. Assume the water depth is h =30 m, relevant to some coastal zones (e.g.
McComb et al. 2009), and assume the 2-D block’s half-breadth is L = 0.7h = 21 m, i.e. the
full breadth is 2L = 42 m, relevant to some floating structures such as some types of ships.
The draughts are chosen to be d = 0.1h, 0.3h and 0.5h. The condition (7.1) is satisfied
for f1 < 0.137 Hz; however, figure 11(b, c) presents IG wave transmission results up to
0.2 Hz, with red shading marking regions that violate condition (7.1).

The main finding in figure 11(b) is that, when heaving is allowed, the total IG wave
transmission can be reduced for some values of f1, particularly when d = 0.5h, while the
diffraction-only cases in figure 11(c) cannot achieve this.

9.4. Conclusions
This paper studies 2-D heaving and stationary blocks. These blocks’ draught d is less than
half of the local water depth h, and their lengths 2L are, in general, smaller than 1/20 of
the length of the IG wave, which is two times the length of the wave group. In some cases,
the length restriction is violated; the results of these cases are still shown, with cautionary
notes (see e.g. the light red regions in figures 5 and 7). The main contributions of this
paper are:

(i) generalise the method of Liu & Iskandarani (1991) and Hossain et al. (2001) by
allowing device motion, using heave as an example;

(ii) discover that heaving resolves the problem regarding free IG wave management found
in e.g. Liu & Iskandarani (1991);

(iii) discover that relatively small heaving devices can modify IG waves from an
offshore location before the ‘troublesome’ free IG waves are released by near-shore
bathymetry changes. This differs from Gao et al. (2021), where relatively large-scale
infrastructure is needed to control IG waves;

(iv) provide new results applicable to emerging applications such as multiple-purpose
wave energy arrays (Sergiienko et al. 2024).
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This study has limitations: (i) the ratio between the wavenumber of the two incident
carrier waves is fixed to a few numbers; (ii) the 2-D blocks are infinitely long in the
spanwise direction; but real blocks are finite, and 3-D effects should be considered. For
isolated 3-D objects such as a single cylindrical heaving buoy, the radiated waves decay
quickly and can be omitted in the analysis of IG waves (Wu & Liu 1990). For such cases,
the conclusions of this paper are unlikely to apply; (iii) the flow is assumed to be inviscid,
which leads to an overestimation of a 2-D block’s heaving amplitude. A formal discussion
of viscous effects is not given, although an empirical discussion is provided in § 9.1;
(iv) the method cannot deal with blocks whose lengths are not small compared with
the length of IG waves; (v) the paper assumes a flat bathymetry; (vi) in the real ocean,
the wave field is unlikely to contain only two carrier waves as it is assumed here, but
contains other frequency components; (vii) a quantitative comparison of the current results
with Sergiienko et al. (2024) is not attempted, because the 2-D heaving blocks used here
differ in detail from the quasi-infinite OWC arrays despite both generating long-crested
y-independent waves.

Some specific findings are now revisited. The classic linear diffraction and radiation
problems are solved by eigenfunction expansion. The resulting diffracted and radiated
carrier waves are then used to calculate bound IG waves via an equation derivable from
multiple-scale analysis. A semi-analytical method then evaluates free IG waves, which,
when combined with the aforementioned bound IG waves, ensures that the IG wave
potential is continuous across the block. Such a free IG wave excites the block to heaving
motion, which further spawns radiated free IG waves.

When all bound and free IG waves are combined, the resulting total IG waves generally
differ from the incident IG waves. Four factors dictate the extent of IG wave modifications
in the lee (region III in figure 2) of the block: first, the reduction of bound IG waves due
to reduction of carrier waves via diffraction; second, the modification of bound IG waves
due to radiated carrier waves; third, the generation of induced free IG waves to match the
total IG wave potential and flux across the block; fourth, the generation of radiated free IG
waves due to second-order heaving motion of the block. The second and fourth factors are
absent in the case of diffraction-only blocks.

The results can be classified into three scenarios: (i) a significant decrease in the total
IG wave amplitude everywhere in the lee of the block; (ii) a significant decrease in total
IG wave amplitude at some locations with noticeable increases at the other locations;
(iii) a significant decrease in total IG wave amplitude at some locations, but an unchanged
IG wave (or a small modification) at the other locations. When reducing the total IG waves
is the objective, scenario (i) should be pursued; when amplifying IG waves is needed,
scenario (ii) is better.

The diffraction-only cases in figure 5 generally yield scenario (iii), suggesting that they
are not optimal for IG wave reduction and amplification. From an oceanographic point of
view, many natural objects are stationary (diffraction only), such as underwater sandbars,
rocks and reefs. These are usually bottom mounted, as opposed to the floating blocks
discussed in this paper; hence, the quantitative details may not apply to them. A discussion
of these objects is straightforward using the method of this study.

As for the heaving blocks in figure 7, for the shallow-draft (d = 0.1h, 0.3h) cases,
scenarios (ii) and (iii) are more prevalent. Cases of scenario (i) occur primarily for the
deep-draft (e.g. d = 0.5) blocks at some wavenumber, e.g. the red curves in figures 7(x) and
7(y). The reduction of IG waves everywhere in the lee of a block can reach approximately
50 % in figure 7(y). This is achieved with only one small heaving block. From an
oceanographic point of view, this hints that the heaving motion of floating objects (such
as some icebergs) can modify IG waves and impact the environment behind them.
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Figure 12. Comparing the wave steepness k0,1 A1 ≡ ε against two ratios, ωL/ωS and kL/kS , showing that these
quantities are of the same order of magnitude for most values of k0,1h discussed in this work. This is relevant
to Appendix A.

In conclusion, we show that small heaving 2-D blocks can attenuate transmitted IG
waves; this is a step towards explaining the IG wave attenuation observed by Sergiienko
et al. (2024).
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Appendix A. Justification of scaling in perturbation expansions
The small parameter ε defined as wave steepness, ε≡ k0,1 A1, is used both to expand Φ, η
and to characterise the slow temporal and spatial scales in the multiple-scale expansion (cf.
§ 2.1). Figure 12 justifies this through a calculation example. First, ε= k0,1 A1 is plotted
against k0,1h assuming h = 1 m and A1 =0.04 m (these are assumptions underlying most
of the examples in this work). Second, the ratio between the ‘slow’ frequency ωL (see
4.2) and the ‘fast’ frequency ωS (also given by 4.2) is plotted. Third, the ratio between
the ‘slow’ and ‘fast’ wavenumbers kL/kS (4.2) is plotted. For most values of k0,1h, these
ratios are of the same order of magnitude as ε, hence ε can be employed to characterise
the slow scales. For very small k0,1h, ε can be much smaller than these ratios; however,
in these cases, by increasing wave amplitude A1, this can be rectified (not shown in the
figure). Hence, one can generally choose A1 such that ε can be used to characterise slow
scales in the multiple-scale expansion. As long as A1 is not too large, it generally does not
affect the main objective of this work (IG wave modification).

Appendix B. The linear diffraction problem for the 2-D floating block
The coefficients for diffracted waves in (3.6) are determined. The governing equations
are (2.9) and (3.1). The eigenfunction expansion method (e.g. Linton & McIver 2001)
is applied to study a monochromatic case with an arbitrary frequency, and the method
extends to other frequencies. The approach follows Yiew (2017) and Westcott et al. (2024),
but more details are provided. The results are validated against Lee (1995) who used a
similar method.

Use ΦD to denote the diffraction potential. Periodicity in time suggests

ΦD(x, z, t)= Re
{ g

iω
φD(x, z)e−iωt

}
, (B1)
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where φD is unknown. Substituting (B1) into (2.9) and (3.1) and simplifying, we obtain
equations for φD

∂2φD

∂x2 + ∂2φD

∂z2 = 0; ∂φD

∂z
= ω2

g
φD

∣∣∣∣
z=0

; η= Re
{
φDe−iωt

}∣∣∣
z=0

.

∂φD

∂z
= 0

∣∣∣∣
z=−h

; ∂φD

∂n
= 0

∣∣∣∣
on s1,2,3

. (B2)

B.1. Solutions: with N evanescent modes
Equation (B2) is examined in three regions in figure 2. Denote φD in regions I, II, III by
φI,D , φII,D and φIII,D . We have

φI,D =
N∑

n=0

[
a+

n eikn(x−(−L)) + a−
n e−ikn(x−(−L))]ψn(z), where ψn = cosh kn(z + h)

cosh knh
,

(B3)
in which k0 is the solution to ω2 = gk0 tanh k0h. For n > 0, kn = −iKn , where Kn is the
solution to ω2 = −gKn tan Knh. Similarly, in region III, φIII,D is expanded as

φIII,D =
N∑

n=0

[
b+

n eikn(x−L) + b−
n e−ikn(x−L)]ψn(z). (B4)

The coefficients a+
n in (B3) describe incident waves travelling to the right, b−

n in (B4)
describe incident waves travelling to the left, whilst a−

n and b+
n are coefficients for reflected

and transmitted waves. It is assumed that incident waves are right-travelling only, with no
evanescent modes, so b−

n = 0 for all n, and a+
n = 0 for n > 0, while a+

0 = Ae−ik0 L where
A is the amplitude of the incident wave, so

a+
0 eik0(x−(−L)) = Ae−ik0 Leik0(x−(−L)) = Ae−ik0 Leik0(x+L) = Aeik0x. (B5)

The potential φII,D for region II assumes the following form:

φII,D = (
α+

0 x+ α−
0
)
ζ0 +

N∑
n=1

[
α+

n eiκn(x−(−L)) + α−
n e−iκn(x−L)]ζn(z), (B6)

where α+
0 and α−

0 are unknown coefficients, and

ζn = cosh κn(z + h)

cosh κn(h − d)
, κn = n

iπ
h − d

. (B7)

B.2. Matching conditions
Matching the velocity potential from region I to region II at x= −L and from region II to
region III at x= L requires

φI,D = φII,D
∣∣∣
x=−L

, and φIII,D = φII,D
∣∣∣
x=L

, for z ∈ [−h,−d]. (B8)
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Matching flux from region I to region II at x= −L and flux from region II to region III at
x= L requires

∂φI,D

∂x
=

⎧⎪⎨
⎪⎩
∂φII,D

∂x

∣∣∣∣
x=−L

, z ∈ [−h,−d]
0, z ∈ [−d, 0]

, and
∂φIII,D

∂x
=

⎧⎪⎨
⎪⎩
∂φII,D

∂x

∣∣∣∣
x=L

, z ∈ [−h,−d]
0, z ∈ [−d, 0]

.

(B9)
The above matching conditions are turned to systems of algebraic equations with which

the unknown coefficients are solved, using the following inner products:

∫ −d

−h
(·)ζmdz, and

∫ 0

−h
(·)ψmdz, m = 0, 1, 2, . . . , N . (B10)

B.3. Surface elevations of linear diffracted waves
Once φI,D , φII,D and φIII,D are determined, (B2) suggests that the surface elevation of
diffracted waves is determined by η= Re{φDe−iωt}|z=0. The incident potential function
φI,A constitutes the a+

n terms of φI,D plus the b−
n terms of φIII,D , being

φI,A =
⎧⎨
⎩
∑N

n=0 a+
n eikn(x−(−L))ψn(z), x<−L ,

∑N
n=0 b−

n e−ikn(x−L)ψn(z), x> L .
(B11)

Because in this paper it is assumed that b−
n = 0, a+

n = 0 (for n > 0), and that a+
0 = Ae−ik0 L ,

it follows that φI,A = Aeik0xψ0(z), x<−L ,where ψ0(0)= 1. The surface elevation of the
incident wave is hence ηI,A = Re{φI,Ae−iωt}|z=0 = A cos(k0x −ωt), leading to (3.4). The
reflected waves’ potential function φI,D involves the a−

n terms of φI,D , being

φI,D =
N∑

n=0

a−
n e−ikn(x−(−L))ψn(z), x<−L . (B12)

The surface elevation of reflected waves then reads

ηI,D = Re
{
φI,De−iωt}∣∣

z=0, x<−L

= |a−
0 | cos

[− k0(x− (−L))−ωt+ arg(a−
0 )

]
+ Re

{
N∑

n=1

a−
n ei[−kn(x−(−L))−ωt]

}
, x<−L .

(B13)

The transmitted waves’ potential function φIII,D involves the b+
n terms of φIII,D and leads

to the following surface elevation:

ηIII,D = |b+
0 | cos

[
k0(x− L)−ωt+ arg(b+

0 )
]+ Re

{
N∑

n=1

b+
n ei[kn(x−L)−ωt]

}
, x> L .

(B14)
Discard evanescent modes to obtain (3.6a) and (3.6c).

1020 A29-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10514


L. Cui and others

Appendix C. The linear radiation problem for the 2-D floating block
The coefficients for radiated waves in (3.6) are determined. The procedures still follow
Yiew (2017) and Westcott et al. (2024). Introduce a heaving radiation potential ΦR

ΦR(x, z, t)= Re
{ g

iω
φR(x, z)e−iωt

}
, (C1)

where φR is unknown. Substituting the above to (2.9), (3.1), and (3.3), the governing
equations for φR are the same in form as (B2) with an additional boundary condition

g
iω
∂φR

∂z
e−iωt = −iωAhe−iωt

∣∣∣∣
on s2

⇒ ∂φR

∂z
= ω2

g
Ah

∣∣∣∣
z=−d,−L<x<L

. (C2)

where Ah is the unknown heaving amplitude introduced in (3.2).

C.1. Flow potentials and matching conditions
Denote φR in regions I, II, III by φI,R , φII,R , φIII,R , then the waves corresponding to φI,R

should travel away from the block (left going), while the waves related to φIII,R should be
right going. Accordingly, the following eigenfunction expansions are used:

φI,R =
N∑

n=0

a−
n e−ikn(x−(−L))ψn(z) and φIII,R =

N∑
n=0

b+
n eikn(x−L)ψn(z), (C3)

where the Gothic letters a−
n and b+

n should be distinguished from the diffraction
coefficients an and bn . The eigenfunctions in region II need to satisfy the additional
boundary condition equation (C2), resulting in

φII,R = (
β+

0 x+ β−
0
)
ζ0 +

N∑
n=1

[
β+

n eiκn(x−(−L)) + β−
n e−iκn(x−L)]ζn(z)

+ ω2

g
Ah
(z + h)2 − x2

2(h − d)
. (C4)

The matching conditions across the three regions are similar to those in Appendix B.2.
The added unknown Ah requires an added equation, specified in the ensuing subsection.

C.2. Added mass, radiation damping and a force balance equation for heaving amplitude
The heaving amplitude Ah in (3.2) is decided by a force balance equation. Neglecting
viscous effects, the ingredient of this equation involves the incident wave’s excitation
force, the restoring force, the inertia force and a radiation force (related to added mass
and radiation damping).

The radiation force (e.g. Mei et al. 2005; Falnes & Kurniawan 2020) reads

F R =
∫ L

−L
−ρ ∂Φ

II,R

∂t

∣∣∣∣
z=−d

dx= ρge−iωt
∫ L

−L
φII,R(x, z)

∣∣∣
z=−d

dx, (C5)

where φII,R is given by (C4). The integration in (C5) can be cast into the following form,
separating real and imaginary parts:∫ L

−L
φII,R

∣∣∣
z=−d

dx= Re
{∫ L

−L
φII,R

∣∣∣
z=−d

dx
}

+ iIm
{∫ L

−L
φII,R

∣∣∣
z=−d

dx
}
, (C6)
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with which (C5) becomes

F R = ρge−iωtRe
{∫ L

−L
φII,R

∣∣∣
z=−d

dx
}

+ iρge−iωtIm
{∫ L

−L
φII,R

∣∣∣
z=−d

dx
}

= ρge−iωt ξ̈

−iω

Re
{ ∫ L

−L φ
II,R

∣∣
z=−ddx

}
ξ̇

+ iρge−iωtξ̇
Im

{ ∫ L
−L φ

II,R
∣∣
z=−ddx

}
ξ̇

= −ρξ̈ Re
{ ∫ L

−L φ
II,R

∣∣
z=−ddx

}
ω2

g
Ah

− ρωξ̇
Im

{∫ L
−L φ

II,R
∣∣
z=−d dx

}
ω2

g
Ah

= −ξ̈ma − ξ̇ R, (C7)

where ma and R are added mass and radiation damping.
The excitation force that drives heaving motion is due to the diffraction potential φII,D

(cf. B6) in region II

F D =
∫ L

−L
−ρ ∂φ

II,D

∂t

∣∣∣∣
z=−d

dx= ρge−iωt
∫ L

−L
φII,D(x, z)

∣∣∣
z=−d

dx. (C8)

The restoring force (hydrodynamic stiffness) for a block with unit width is F S = ρgAwpξ ,
where Awp is the waterplane area that equals 2L .

The inertia force is proportional to the acceleration of the block: F M = mξ̈ , where m =
2Lρd is the mass of the block with unit width.

Balancing all forces by F M + F S = F D + F R and using ξ̇ (t)= −iωAhe−iωt, etc. leads
to an equation for Ah

−ω2(2Lρd + ma)Ah − iωR Ah + 2LρgAh = ρg
∫ L

−L
φII,D(x, z)

∣∣∣
z=−d

dx, (C9)

from which Ah is found as

Ah = ρg
∫ L
−L φ

II,D(x, z)
∣∣
z=−d dx

−ω2(2Lρd + ma)− iωR + 2Lρg
. (C10)

C.3. Surface elevation of radiated waves
The reflected (left-travelling) and transmitted (right-travelling) wave potentials denoted by
φI,R and φIII,R are given by (C3). Then, the surface elevations of radiated waves equation
can be calculated be (2.9)

ηR = Re
{
φRe−iωt}∣∣

z=0. (C11)

Hence the surface elevations of reflected and transmitted radiated waves are

ηI,R = Re
{
φI,Re−iωt}∣∣

z=0, x<−L

= ∣∣a−
0

∣∣ cos
[−k0(x− (−L))−ωt+ arg

(
a−

0
)]

+ Re

{
N∑

n=1

a−
n ei[−kn(x−(−L))−ωt]

}
, x<−L , (C12)
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ηIII,R = |b+
0 | cos

[
k0(x− L)−ωt+ arg(b+

0 )
]+ Re

{
N∑

n=1

b+
n ei[kn(x−L)−ωt]

}
, x> L .

(C13)
Discarding evanescent modes, one obtains the radiated waves in (3.6b, d).

C.4. A note on viscous damping
To include viscous damping, an empirical viscous damping term with a real viscous
damping coefficient Kv (e.g. Cui et al. 2023) is added to the force balance equation (C9),
for it to become

−ω2(2Lρd + ma)Ah − iω
(

R +Kv 8ω
3π

|Ah|
)

Ah + 2LρgAh = ρg
∫ L

−L
φII,D(x, z)

∣∣∣
z=−d

dx.

(C14)
So Ah is now

Ah = ρg
∫ L
−L φ

II,D(x, z)
∣∣
z=−d dx

−ω2(2Lρd + ma)− iω
(

R +Kv 8ω
3π

|Ah|
)

+ 2Lρg
, (C15)

which is an equation for Ah , as it contains Ah on both sides. It is to be solved iteratively.

Appendix D. Details of bound IG wave potentials
Bound IG waves mentioned in § 4 are given in this appendix. Since the incident bound IG
wave potential is already given by (4.3), it is not repeated below. Other bound IG wave
potentials are as follows.

D.1. Bound IG wave potentials in region I

Φ
I,D1 D2
bIG = CB

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣[e−2ikL (X+L)e−2iωL T e2iγ
I,D1 D2
IG − c.c.

]
, (D1a)

Φ
I,R1 R2
bIG = CB

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣[e−2ikL (X+L)e−2iωL T e2iγ
IR1 R2
IG − c.c.

]
, (D1b)

Φ
I,D1 R2
bIG = CB

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣[e−2ikL(X+L)e−2iωLT e2iγ I,D1R2
IG − c.c.

]
, (D1c)

Φ
I,D2 R1
bIG = CB

∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣[e−2ikL (X+L)e−2iωL T e2iγ
I,D2 R1
IG − c.c.

]
, (D1d)

where the phase angles are

γ
I,D1 D2
IG = arg

(
a−

0,1
)− arg

(
a−

0,2
)

2
, (D2a)

γ
I,R1 R2
IG = arg

(
a−

0,1
)− arg

(
a−

0,2
)

2
, (D2b)

γ
I,D1 R2
IG = arg

(
a−

0,1
)− arg

(
a−

0,2
)

2
, (D2c)

γ
I,D2 R1
IG = arg

(
a−

0,2
)− arg

(
a−

0,1
)

2
. (D2d)
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D.2. Bound IG wave potentials in region III

Φ
III,D1 D2
bIG = CB

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣[e2ikL (X−L)e−2iωL T e2iγ
III,D1 D2
IG − c.c.

]
, (D3a)

Φ
III,R1 R2
bIG = CB

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣[e2ikL (X−L)e−2iωL T e2iγ
III,R1 R2
IG − c.c.

]
, (D3b)

Φ
III,D1 R2
bIG = CB

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣[e2ikL (X−L)e−2iωL T e2iγ
III,D1 R2
IG − c.c.

]
, (D3c)

Φ
III,D2 R1
bIG = CB

∣∣b+
0,2

∣∣∣∣b+
0,1

∣∣[e2ikL (X−L)e−2iωL T e2iγ
III,D2 R1
IG − c.c.

]
, (D3d)

where

γ
III,D1 D2
IG = arg

(
b+

0,1
)− arg

(
b+

0,2
)

2
, (D4a)

γ
III,R1 R2
IG = arg

(
b+

0,1
)− arg

(
b+

0,2
)

2
, (D4b)

γ
III,D1 R2
IG = arg

(
b+

0,1
)− arg

(
b+

0,2
)

2
, (D4c)

γ
III,D2 R1
IG = arg

(
b+

0,2
)− arg

(
b+

0,1
)

2
. (D4d)

Appendix E. Details of bound IG wave surface elevations
Details of quantities in (2.14) are given. The bound IG waves due to self-interactions
between diffracted carrier waves, and self-interactions between radiated carrier waves in
regions I and III are

η
I,D1 D2
bIG = 2

(
C1 + C2

)∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣ cos
[
2
(− kL(X + L)−ωL T + γ

I,D1 D2
IG

)]
, (E1a)

η
I,R1 R2
bIG = 2

(
C1 + C2

)∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣ cos
[
2
(− kL(X + L)−ωL T + γ

I,R1 R2
IG

)]
, (E1b)

η
III,D1 D2
bIG = 2

(
C1 + C2

)∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣ cos
[
2
(
kL(X − L)−ωL T + γ

III,D1 D2
IG

)]
, (E1c)

η
III,R1 R2
bIG = 2

(
C1 + C2

)∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣ cos
[
2
(
kL(X − L)−ωL T + γ

III,R1 R2
IG

)]
, (E1d)

where the phase angles γ I,D1 D2
IG etc. are defined by (D2) and (D4). The bound IG waves

due to cross-interactions between diffracted and radiated carrier waves in regions I and III
are

η
I,D1 R2
bIG = 2

(
C1 + C2

)∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣ cos
[
2
(− kL(X + L)−ωL T + γ

I,D1 R2
IG

)]
, (E2a)

η
I,D2 R1
bIG = 2

(
C1 + C2

)∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣ cos
[
2
(− kL(X + L)−ωL T + γ

I,D2 R1
IG

)]
, (E2b)

η
III,D1 R2
bIG = 2

(
C1 + C2

)∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣ cos
[
2
(
kL(X − L)−ωL T + γ

III,D1 R2
IG

)]
, (E2c)

η
III,D2 R1
bIG = 2

(
C1 + C2

)∣∣b+
0,2

∣∣∣∣b+
0,1

∣∣ cos
[
2
(
kL(X − L)−ωL T + γ

III,D2 R1
IG

)]
. (E2d)

Appendix F. Details of equations arising from matching conditions
This section provides details for § 5. Submitting known quantities into (5.3–5.6) and
collecting like harmonics to obtain eight equations for eight unknowns DI, DIII, DI, DIII,
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A1, A2, A1 and A2. The phase angles γ I,D1 D2
IG etc. below are defined by (D2) and (D4)

−CB

(
e−2ikL X A1 A2 + e−2iγ

I,D1 D2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣+ e−2iγ
I,R1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣
+ e−2iγ

I,D1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣+ e−2iγ
I,D2 R1
IG

∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣)+ DIe
2i ωL√

gh
X =A1x +A2

∣∣
X=−L ,

(F1)

CB

(
e2ikL X A1 A2 + e2iγ

I,D1 D2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣+ e2iγ
I,R1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣
+ e2iγ

I,D1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣+ e2iγ
I,D2 R1
IG

∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣)+ DIe−2iωL/
√

gh X =A1x +A2
∣∣

X=−L ,

(F2)

2ikLCB

⎛
⎝e−2ikL X A1 A2 − e−2iγ

I,D1 D2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣− e−2iγ
I,R1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣

− e−2iγ
I,D1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣− e−2iγ
I,D2 R1
IG

∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣+ ωL DIe2iωL/
√

gh X

kLCB
√

gh

⎞
⎠=A1

∣∣
X=−L ,

(F3)

2ikLCB

⎛
⎝e2ikL X A1 A2 − e2iγ

I,D1 D2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣− e2iγ
I,R1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣

− e2iγ
I,D1 R2
IG

∣∣a−
0,1

∣∣∣∣a−
0,2

∣∣− e2iγ
I,D2 R1
IG

∣∣a−
0,2

∣∣∣∣a−
0,1

∣∣− ωL DIe−2iωL/
√

gh X

kLCB
√

gh

)
=A1

∣∣
X=−L ,

(F4)

A1x +A2 = −CBe−2iγ
III,D1 D2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣− CBe−2iγ
III,R1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣
− CBe−2iγ

III,D1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣− CBe−2iγ
III,D2 R1
IG

∣∣b+
0,2

∣∣∣∣b+
0,1

∣∣+ DIIIe−2iωL/
√

gh X
∣∣

X=L ,

(F5)

A1x +A2 = CBe2iγ
III,D1 D2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ CBe2iγ
III,R1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣
+ CBe2iγ

III,D1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ CBe2iγ
III,D2 R1
IG

∣∣b+
0,2

∣∣∣∣b+
0,2

∣∣+ D+IIIe2iωL/
√

gh X
∣∣

X=L ,

(F6)

A1 = 2ikLCB

⎛
⎝e−2iγ

III,D1 D2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ e−2iγ
III,R1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣

+ e−2iγ
III,D1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ e−2iγ
III,D2 R1
IG

∣∣b+
0,2

∣∣∣∣b+
0,1

∣∣− ωL DIIIe−2iωL/
√

gh X

kLCB
√

gh

) ∣∣
X=L ,

(F7)
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Carrier waves at a specific time

Bound IG waves at a specific time

Total bound IG waves at a specific time

Incident carrier waves, ηI, A1 + ηI, A2

Diffracted carrier waves, ηIII, D1 + ηIII, D2

Radiated carrier waves, ηIII, R1 + ηIII, R2

bIGbIG due to incident carrier waves, ηI, A1 A2

bIGbIG due to diffracted carrier waves, ηIII, D1 D2

bIGbIG due to radiated carrier waves, ηIII, R1 R2

bIG due to incident carrier waves, ηI, A1 A2
bIG

bIGbIG due to cross-interaction, ηIII, D2 R1

bIGbIG due to cross-interaction, ηIII, D1 R2

Total bIG

η
 (

m
)

η
 (

m
)

η
 (

m
)

(a)

(b)

(c)

x (m)

–50 0 50 100

–50 0 50 100

–50 0 50 100

0.04

0

–0.04

–0.0005

0.0005

0

–0.0005

0.0005

0

–0.0010

0.0010

Figure 13. The total bound IG waves can be higher than the incident bound IG wave. The case corresponds
to a case on the black curves in the fourth column of figure 7 where L = 1.5h, d = 0.1h, h = 1 m, k0,1h = 1.
Surface elevation η for: (a) carrier waves; (b) bound IG waves; (c) total bound IG waves. Free IG waves are not
shown, because this figure focuses only on bound IG waves. This figure corresponds to Appendix G.

A1 = 2ikLCB

⎛
⎝e2iγ

III,D1 D2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ e2iγ
III,R1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣

+ e2iγ
III,D1 R2
IG

∣∣b+
0,1

∣∣∣∣b+
0,2

∣∣+ e2iγ
III,D2 R1
IG

∣∣b+
0,2

∣∣∣∣b+
0,1

∣∣+ ωL DIIIe2iωL/
√

gh X

kLCB
√

gh

) ∣∣
X=L . (F8)

Appendix G. Increased bound IG waves
This appendix explains why the total bound IG waves in panels (m), (n), (o) of figure 7
can be greater than the incident bound IG waves. Consider an example taken from the
black curve in figure 7(n) where L = h, d = 0.1h. Further choose k0,1h = 1. In this case,
the amplitude of ηIII,tot

bIG is greater than the incident IG waves. Carrier waves (incident,
radiated and diffracted) are plotted in figure 13(a), and bound IG waves are plotted in
figure 13(b). Although the phase shift between radiated and diffracted carrier waves is
large, such that they destructively superimpose, the same cannot be said for bound IG
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waves: there is almost zero phase shift between ηIII,R1 R2
bIG (red) and ηIII,D1 D2

bIG (black), such
that they superimpose constructively, leading to total IG waves larger than the incident IG
waves. The remaining two IG wave components, viz. the blue- and the magenta-coloured
waves, are ηI,D1 R2

bIG and ηI,D2 R1
bIG (due to cross-interactions). Although they are no longer

in phase with the aforementioned two waves, they cannot override the overall result that
the total bound IG wave is larger than the incident counterpart, see figure 13(c). This
suggests that for the heaving cases, the superposition of bound IG wave components does
not necessarily repeat the way carrier waves superimpose: it is possible that while carrier
waves destructively superimpose, the bound IG wave components can constructively
superimpose, giving rise to greater total IG waves.
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