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A RELATION BETWEEN Sl AND S3-INVARIANT HOMOTOPY 
IN THE STABLE RANGE 

SHIRLEY M. F. GILBERT AND PETER ZVENGROWSKI 

ABSTRACT. For any X and any q > 0, one has natural inclusions 7r? _j(X) C 
nL-i W c n4q-i TO' where the groups Sl and S3 act on 5 ^ _ 1 in the standard way and 

7r£ j(X) are the G-invariant homotopy subsets, G = S1 or G = S3. It is proved here 

that for any space X of the homotopy type of a CW-complex and for 7^-1 (X) in the 
c3 cl 

stable range, the inclusion nL_i(X) C 7r? ̂ (X) is m fact an equality when localized 
away from the prime 2. 

1. Introduction. We recall that for a topological group G acting on a sphere Sn so 
that the orbit space Y = Sn/ G is a CW-complex and 7 : Sn —» F the quotient map, the 
G-invariant homotopy subset 7rn

G(X) for any space X is defined as 

irn
G(X) = Im[7# : [F,X] -> [Srt,X] - 7rn(X)] C 7rn(X). 

The first example seems to go back to J. H. C. Whitehead [14] for G — Z2, and since 
the late 1960's G-invariant homotopy has been studied by numerous authors, especially 
for G = Z2. The cases G = Sl acting on S2n~l or G = S3 acting on 54""1 (by the standard 
actions via complex or quaternionic multiplication, respectively), with which we shall 
be concerned, have been studied by Gilbert [4], Gilbert and Zvengrowski [5], Mukai [6], 
Ôshima [7,8,9], Randall [10], and Rees [11]. The case G = Zp acting on S2n-l(p > 2) 
was also studied in [4]. Terms such as symmetric or projective, complex projective, and 
quaternionic projective have also been used for G-invariant homotopy when G = Z2,Sl, 
S3 respectively. 

For an introduction to the basic properties of G-invariant homotopy, including the 
fact that it is a subgroup of 7rn(X) in the stable range, or when X is an //-space, cf. § 1 of 
[5]. Another basic property is that if a subgroup H of G acts on Sn by restriction of the 
G-action then there is clearly a natural inclusion 7rw

G(X) C nn
H(X) induced by the map 

Sn/H^>Sn/G. 
In particular S1 C S3 as a subgroup, so we obtain a natural inclusion 

(1) *£,-i(X) C ir^_x(X). 

Our main result (Theorem 3.2) in this note is that in the stable range and for X a 
space of the homotopy type of a CW-complex the inclusion (1) is in fact an equality 
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when localized away from the prime 2. An example (3.3) is also given showing that 
the stability hypothesis is in fact necessary. This work is based on a portion of [4], and 
the key tool in the proof is the result of Harris [2] on the homotopy of the unitary and 
symplectic groups away from/7 = 2. 

2. Preliminaries on LCP^ and Q°r. Here ZCPn
m = Z(CPn/CPm~l) is a 

CW-complex with a single cell in dimensions 2m + 1, 2m + 3 , . . . , 2n + 1 while Qs
r = 

0sI Qr~X is a CW-complex with a single cell in dimensions 4r— l , 4 r + 3 , . . . ,4s— 1 (cf. 
Steenrod-Epstein [13], Ch. 4). The corresponding cohomology generators for any ring A 
with unit will be denoted 

ILrtt e H2t+l (EC Pn
m\ A) « A, m < t < n, 

0 G H4t~l(Qs
r; A) & A, r < t < s. 

Finally denote the generators of //2(CPn; A) and //4(IH1JP
Ç; A) by y, z respectively. 

LEMMA 2.1. There exists a map Dg: Q^Zn
q —• £CP™llqZ\ such that 

(DgTÇLmt) = 0 

(D )̂*(lT72r-i) = C M-q<t<M-n, 

where 1 < n < q and M is divisible by some suitably large integer. 

PROOF. Consider the map g: CP^+ 1 ~~* ^ ^ induced by the fibre maps/„_i and/^, 
where ft is constructed from the diagram of fibrations 

sl — s3 ^s2 

i I 
S4M 

I 
CP2i+l 

y 

ft 

s4i+3 

1 
MP. 

From the cohomology spectral sequence of ft one easily sees that^*(zO = y21, t < i. 
Thus g*(zf) = v2', n < t < q. Dualizing g, for M divisible by a suitably large integer and 
using work of Atiyah [1] and James [3], we find 

Qfcl = D4*-i(HJ*) - ^ D4M-1(C^^ ,) = *£P%Z%Zl 

The stated behaviour of (Dg)* follows from Spanier [12], Theorem 6.1 
Next let p: C P ^ n - i —> C P ^ l ^ - l b e t h e m a P k i l l i n g t he bottom cell, i.e. pinch­

ing S4M~4^4 = C P%Z%Zl C C/^gzi^zi to a point. Since p*(^) = ^ , 2M - 2<? - 1 < 
s < 2M — 2n — 1, we form the composition i/> = (£/?) o (Dg), and have at once from 
Lemma 2.1 the following result. 
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PROPOSITION 2.2. For 1 < n < q and M divisible by a suitably large power of 2, 
the map 

xP = <2p) O (Dg): Q%T_n
q — 1CP%Z%Z\ 

satisfies 
il>*ÇLri2t) = 0 

"̂(ïffef-i) = 0, M-q<t<M-n. 

PROPOSITION 2.3. Letting J: S4M~4q-1 = Ç^_q
q -+ Q^Zn

q and / rS 4 "" 4 *" 1 = 

Z54M-4^-2 = XC^I^:} >ZCPl%ZJqZ\ be the respective inclusions into the bottom 
cells, \j) oj ~f. 

PROOF. By 2.2 and the definitions of / , / ' , both (^J)*(Lrj2M-2q-\) = 
J*ip*(Zri2M-2q-i) = J*(CM-q) and (J')*(Zri2M-2q-i) will equal the generator of 
jjM-Aq-i^M-Aq-u^ = A T a k i n g A = ir4M_4q_x{j£P\%zfqZ\) « Z and using the 

Hopf classification theorem, this suffices to establish \j) oJ~f. 
For convenience in what follows we now take n = 1. 

COROLLARY 2.4. For any i > 0 there is a commutative diagram 

il ^ K 
^(pM-M-i) A* TnÇLCPÎiïzl^). 

REMARK 2.5. In § 3 we shall take i = 4M - r - 2 with 2 < 2q < r. A simple 
check then shows 7r4M-,-2(Ô$I*) = n4M-r-2(Q%Zq

+J) and 7r4M-r-2(2:C/>^I^_1) = 
7T4M-r-2(^CP2M-2^-i)' 0 < y < oo, since in either case the extra cells attached are in 
dimensions greater than 4M — r — 1. 

3. Application to Sl and S3-Invariant Homotopy. 
Theorem 2.1 of [5] gives a general method for calculating Tr^+k(X) where X is (r — 1)-

connected, in the stable range. We take q > 1 and wish to consider rf x(S
r), where 

G = S1, S3 and 2q < r for stability. In the case G = S1, as shown in [5] Lemma 2.2 (a) 
(which we "suspend" one time here), this gives 

4q_x « Ker[/#: 7r4M-r-2(^4M-4<?"1) — ^ - ^ f f C / ^ . ^ ) ] . 
Notice by Remark 2.5 above that there is no change if we replace ^Pm-iq-i by 

Z£P2M-2q-v s o t m s *s t n e s a m e m a P / that appears in Corollary 2.4. Similarly (cf. [4], 
Theorem 2.3.4), 

7 ^ ( 5 0 « Ker[/,: T ^ M - ^ O ^ - 4 ^ 1 ) — ^ - ^ ( G Î Î l J ) ] . 

Before stating the main theorem we introduce some notation. Let TT*(X) denote the 
stable homotopy of X, and irn(X) = irn(X) <g>Z[l/ 2] the homotopy group localized away 
from/? = 2. Finally let Wn^ = U(n)/ U(n — k) and Xn^ = Sp(n)/Sp(n — k) denote the 
respective complex and quaternionic Stiefel manifolds. 
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THEOREM 3.1. In the stable range 2q < r one has 

PROOF. By the remarks at the beginning of this section, ^iq_i(Sr) and nlq_x(S
r), 

being in the stable range, are simply Ker/* and Ker/* respectively in Corollary 2.4, 
with i = 4M — r — 2. To show equality of these kernels away from 2 it clearly suffices, 
again using Corollary 2.4, to show i/S* is monic. We will do this by defining another map 
if to which Harris' results [2] are applicable, and then comparing tp and i/>. 

Consider the composite inclusion 

XlM-2q-\M+q > - • ^4M~4q-2,2M+2q 

I 
W4M-4q-\,2M+2q 

which we may assume without loss of generality is cellular. According to Chapter IV of 
[13] there are imbeddings 

n2M-2q-\ y 
SlM-q <- A2M-2q-l,M+q 

D4M-4q-2 
^^f>2M-2q-\ ^ W4M-4q-\,2M+2q> 

and in fact the left hand spaces are both the 8M—8g — 2 skeleta of the corresponding right 
hand spaces (a simple numerical check shows that there are no possible product cells in 
dimension < 8M — 8g — 2). Thus there is an induced map QMSq

 q~ — • ^CP2Af-2^-p 
and for m < 8M — %q — 2 we have 

Km (X2M-2q-1 ,M+q ) * ^m ( ^4M-4q-1,2M+2q) 

î " Î" 

Localizing away from 2, we have from Harris [2], p. 412, that /* is monic onto a direct 
summand (for all ni). Hence so is <p% (for m < SM — 8g — 2). The theorem would now 
be immediate if one knew ip ~ \jj. This seems plausible but probably difficult to prove. 
However, using Proposition 2.2 above and [13], p. 52, Theorem 5.4, we see that ip* — i/> * 
in cohomology and it seems easiest to complete the proof at this stage by a fairly simple 
application of the Adams spectral sequence at any odd prime p. 

In fact, at any such /?, with k = M — g, we have that on the /7-primary component of 
homotopy 

(2) W p T a e T 1 ) —>P7rw(ZCi^i3) 
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is monomoiphism onto a direct summand, by the above quoted result of Harris. Since 
this is in the stable range, <p* is induced by the homorphism of Adams spectral sequences 
at the E2 level 

y>#: Ext^ } ( /T(ôf- 1 ; Zp\ Zp) — E x t ^ ( / / * ( I C P ^ i 3 ; Zp\ Zp) 

which in turn is induced by the map 

ip*: //*(ZCP2
2f_l3; Zp) - H\QM~l; Z^). 

Finally, since I/J* = ip*, it will induce the same maps of Adams spectral sequences 
and hence of /7-primary stable homotopy, so condition (2) also holds for i/>*, completing 
the proof. 

REMARK. Some extra light may be shed on the above proof by observing 
W<J£P^Z^Zp) = ^S0

k-lH4k+4t-l(CP2
2^;Zp) 0 I^0

k-2H^^t+\CP^'9Zp) is a 
splitting over the Steenrod algebra A(p) since deg (Pl — 2i(p — 1) is divisible by 4. Thus 
the Adams spectral sequence for Z C F ^ i 3 splits at the E2 level, say 'E2 0 "E2, and Har­
ris' result implies that this splitting passes to E^ (in the stable range ), i.e. no Adams 
differentials connect fE2 and "E2 or vice-versa. Thus 'Ei and "E2 both give rise to direct 
summands of the /^-primary component ^ T T ^ Z C P ^ - 3 ) , at least in the stable range, and 
all ip* or V>* are doing is identifyingPKKQ%~X) with the direct summand arising from 
'E2. 

THEOREM 3.2. Let X be an (r — \)-connected space having the homotopy type of a 
CW-complex. Then in the stable range 2q < r one has 

PROOF. The theorem is already known for X a sphere (3.1). For X a finite (r — 1)-
connected CW-complex we may suppose without loss of generality that XSr~l) = *. The 
theorem then extends to X by a routine application of the exact stable homotopy sequence 
of the cofibration sequence of the attaching map of each cell of X to a finite subcomplex, 
the fact that localization preserves exactness, and the 5-lemma. Since localization also 
commutes with direct limits the theorem then extends to arbitrary (r— l)-connected CW-
complexes and hence to any space having this homotopy type. 

To see that Theorem 3.1 fails outside the stable range, first recall that in the unstable 
range ft„(X) is only a subset of TT£(X), SO by ir£(X) we mean the subset { a (8) 1 : a G 
7Tn

G(X)} C 7TB(X)® Z [ l / 2 ] = 7fn(X). 

EXAMPLE 3.3. In [7] it is proved that Trf (S2) = 7f3
5' (S2) » { k2v : k G Z}, where 

v is the class of the Hopf map. On the other hand it is clear that 7r| (S2) = 0 since 
Y = S3/ S3 = * in this case. Thus Theorem 3.1 does not hold outside the stable range. 
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