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1. For integers a, N and H > 0 write

T.(N,H)= 2 *(*)e(«/*),

where x denotes a non-principal Dirichlet character modulo the positive integer k and
e(y) denotes e2jtiy. By a well-known generalisation of the P61ya-Vinogradov inequality

(1)

In [4] I showed that, for any integer r 5= 2 and any prime k,

\Ta(N, H)\ «H1-Vrky4(r-1)log2k. (2)

For r = 2 this is a simple consequence of (1), but for each r > 2 (2) is stronger than (1) for
some range of H. In [5] I showed (the case r = 3)

\Ta(N,H)\«Hmkm+e

holds for any positive integer k. In the present paper I prove (the case r = 4) the
following theorem.

THEOREM 1. Let k=pa be a power of a prime p>3. Then for all integers a, N and
H>0 and all non-principal characters % modulo k we have

\Ta(N, H)\«H3l4km2 log3 k,

the implied constant being absolute.

By arguments such as that of A. I. Vinogradov [8] the following theorem can be
deduced.

THEOREM 2. With the conditions of Theorem 1 we have

\Ta(N,H)\«Hmkm log4 k.

This estimate is a new estimate even for pure character sums T0(N, H) for the range

kvl2<H<k2/3,

By the argument of [1, §5] it suffices to assume that % is a primitive character to the
prime power modulus k to prove Theorem 1. The latter result itself follows by the
arguments of [4] from the following theorem.

THEOREM 3. Let % be a primitive character to the modulus k = pa(a> 1) a power of
the prime p>3. Then

2 2 \Un,h)\s« ai2k2h4 (0<h^k1'6).
a=0n=0

This theorem we shall prove in the remainder of this paper.
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2. Let r be any fixed positive integer. Let X denote an indeterminate. For vectors
m e Z2r with components satisfying

0< m, =£ /i (0 < i =£ 2r)

put

fl(X) = U(X + ml), f2(X)= ft (X + m,).
1=1 i=r+\

Write

Ax = {m:0<m,:^h, mx + . . . + mr = mr+l + . . . + m2r},

A2(a) = {x:0^x<p«,p\fl(x)f2(x)}.

Then

2 2\Un,h)\2^k 2 2 x(kx))\. (3)
o=0 n=0 meA, xeA2(a) V2 ' I

The principal task of this paper is to give, in the following propositions, some
suitable estimates for the inner sum of (3). These estimates are then combined with the
theorem of [6] to prove Theorem 3. To describe the required estimates we write

F(X) =f[(X)f2(X) - / ; (

Note that the degree of F is ^2r - 3. Let s 3= 0 be a fixed integer. Let d e Zi+1 be of the
form

d = (^o,du... ,ds), do^di>... =s<45*0,

and let y be a positive integer. Write*

A3(y, d) = {x e A2(y):pdi \ F(i\x)(0«i =ss), ifs>0pd° = {pd"\ F(s\x))},

A4(y, d) = {xe A3(y, d) :pd' = {pd>-\ F«(*))(0 < i «*)},

^5(y,d) = {xe>l4(y,d):prf''||FW}.

For / = 3,4 and 5 write

S,(y,d)= 2

In the next section we shall prove the following propositions.*

PROPOSITION 1. / /

do<\a/2], 5 = 0,

then

S5(a,d)«pal2.

PROPOSITION 2. / /

do=\a/2], 0^dl<\a/3], s = l,

t p c || d denotes pc \ d but pc+i\d.
X \x\ denotes the least integer greater than or equal to x.

https://doi.org/10.1017/S001708950000879X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000879X


PARTIAL GAUSSIAN SUMS III 255

then

S3(a, d)

PROPOSITION 3. If

then

Ss(a, d ) « a2r-y2al3].

PROPOSITION 4. / /

do = [20-/3], \a/3]<zdu s&\,

then for each i with 0 < t =£ s

S4(a,d)«pa+di-di->.

It should be noted that in these propositions p is not restricted to be greater than 3.
These propositions are sufficient to replace Theorems 1 to 6 of [2] in the proof of

Theorem 2 of [3] and so to provide the proofs of the character and Gaussian sum estimate
of [3] and [5] with r = 3.

3. In the proofs of these propositions we shall use the following lemma.

LEMMA 1. Let f be a polynomial of degree n having integer coefficients. Let p be a
prime and <p and xp be non-negative integers. Then

#{JC e a complete set of residues (mod/?*) :p*+v> |/(jc),pv| | /'(•*)} =£ n.

Proof. This is a special case of Proposition 1 of [6].
Write

P=\a/i\, y= [or/31,

so that

a-p, [2or/3] = or-y.

For any x denote by A(x) the inverse offl(x)f2(x) (modp"), when it is defined.
Since x ' s a primitive character modulo pa there exists a c, not divisible by p , such

that

We shall require the p-adic Taylor expansion of (fi/f2)(x +pey) (modp") which can
be written as

+ —
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Proof of Proposition 1. For p > 2 this is essentially the proof of Theorems 1, 2 and 3
of [2], but for completeness it is sketched here.

For all primes p we have

(<x,(do))= 2 2 x(j
°-l> V2

= 2 x(j(x)) 2 e(ck(x)yp>iF(x)/pa)

fO if do<a-p,
[p^^SsiP, (d0)) if a- odd and do=a-p.

In the latter case, for p > 2 we have

s5(P,(d0))= 2 i J L x

2 xfiix)) 2

j
2

xj^ eickWyp^FixW").

The last sum vanishes. By Lemma 1

and for elements x of this set

by Weil (see [7, II, Corollary 2F}). On the other hand for p = 2 we may assume a 3*5
and then we have

Stf, (do)) = 2 x(j (x)) + OtfAtf, (P - 1,0))) + O(#A5(/3, (0-1,1)))
*€/J5(/J,(/3-l)) V2 '

P2\F'M

= 2 2

2 x(j(x)) 2
,(p-l)) V2 '

and the inner sum vanishes.
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Proof of Proposition 2. For p > 3 and r = 3 this is essentially Theorem 4 of [2], but
the proof presented here is shorter even in that case.

Write

(4)

so that

Then for all primes p > 3 we have

4(«,d)= 2 2

= 2 x(j
jre/t3(<5,d) V2

Thus by Lemma 1

53(a, d) « p a - a # y l 3 ( 6 , (max(d0, a - 6), d,))

if a-dx is even or d] = 0. If a - dj is odd and d, > 0 and if further d, < 6 - 1 then

6

2 2
Sy<

(H 2
\/9 / nsv<

2

P 2a X
V/2

0)/P").

The inner sum is «Vp by Weil, so

S3(a, d) «p*-*+V2#A3(6 - 1, (or - 6, d,))

by Lemma 1. On the other hand if a-dx is odd, d j>0 and dx = d -1 then
dj = (a- - l)/3 and d = (a- + 2)/3 so

j
xeAy(6,(a-6,dt)) V2

]2
p"\ || F'\x+yp^)
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The inner sum

e(ck(x)(ypd>F(x) + \y2p^F'{x) + lyY^F

)

This sum is non-empty only if pd' || F'(x) or p \ F"(x) and in either case the sum is « V p
by Weil, so that

S3(a, d) «pa-6+U2{#A3{du (a - 8, dj) + #A3(du (or - 6, du 0)}

by Lemma 1.
Finally if p «£ 3 we may assume a & 4. Put

<5=

so

Then

x(fj<(f<*+"'>)
* ,,?s - x (f W )« ? - ^ M W ^ W P " )
«p"-d#A3(d, (max(d0, a - 8), dx)

«P

by Lemma 1.

Proof of Proposition 3.

where e e Z2r"3 and 0 =e e2r_3 =s e2r_4 ̂ . . . =s et = dx =s e0 = d0. Denote by K the p-adic
order of (2r)! If there exists a t such that

then

$ ( * , e ) « #A5{a, e)

by Lemma 1. If for all t

e,_!<e( + y - j c (5)
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then

= 0

if p > 2 or d, =£ a/3. But if p = 2 and d, = a/3 then by (5)

e0 < 2a/3 — K.

Thus

2

= 0.

Proof of Proposition 4.

S4(ar,d)«#A4(a,d)

for any i e (0, s] by Lemma 1.

4. To deduce Theorem 3 from Propositions 1 to 4 we need the following Lemma
which is the principal theorem of [6].

LEMMA 2. Let r = 4. Let p > 3 be a prime and let h be a positive integer. Then for
ju, v, § satisfying fi^v^^^Owe have

#{meA t :3x such that p \fl(x)f2(x),p>i \F(x),p"\ F'(x),

where

o>0= \n/2\.
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Proof of Theorem 3. From (3)

2 2 x(fj(x))\
e/*! xeA2(a) V2 ' Ia=0n=0

« 2 2 |Ss(«, (</„))! + 2 2 l£(«. GMi)

+ 2 2

=2+2+2+2
1 2 3 4

say.
Trivially by Proposition 1

2 « 2 h1p

By Lemma 2 and by Proposition 2

2« 2 a-̂
2 0=£rft<y

« a-V/fc.

By Lemma 2 and Proposition 3

2« 2 2 ^(A
3 /3srfo<*-y y«<5i«rfo

« ar12/i4A:.

Finally also by Lemma 2, writing

w = min(K/3l, \(2d2-d3/3]), a>Q= \dj2],

we have by Proposition 4

2« 2 2 a\h4 + h5p-"> + h6p-">-u>
4 y«rf,sa—y Os

Thus to prove Theorem 3 it suffices to show that if

Y^d^a-y, 0^d3^d2^dt

then

a/6 -d3 + min(d! + y - a, d2 - dx, d3 - d2)« 0, (6)

- d3 - (o + min(d, + y - a, d2 - du d3 - d2)« 0. (7)
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The left-hand side of (6) is

=£ a/6 -d3 + ^(d, + y - a + d2 - dx - d3 - d2)

« ( 2 y - a ) / 6 .

If a- 3= 6 then y « a/3 + 1 =£ a/2. For 2 s£ a « 5 we still have y =£ a/2. Thus (6) is true.
Next if \d}/3] < \(2d2 - d3)/3\ then the left-hand side of (7) is

=£ a/3 -d3- \d{/3] + |(d, + y - a + d2-d, + d3- d2)

^(y -d , ) /3«0 .

Finally if \dJ3] s= \(2d2-d3)/3] then the left-hand side of (7) is

« or /3 -d3- \(2d2 - d3)/3] + i ( d , + y - a + d2-dl)

If d 2 >0 by writing d2 = 3u + 1,2 or 3 we see the last expression is =sO. If d2 = 0 the
left-hand side of (7) is

This completes the proof of Theorem 3.
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