A CHARACTERIZATION
OF THE FINITE SIMPLE GROUP L,3)

KOK-WEE PHAN
(Received 24 April 1967)

In this paper we aim to give a characterization of the finite simple
group L4(3) (i.e. PSL(4, 3)) by the structure of the centralizer of an involu-
tion contained in the centre of its Sylow 2-subgroup. More precisely, we
shall prove the following result.

THEOREM. Let &, be an involution contained in the centre of a Sylow
2-subgroup of L,(3). Denote by Hy, the centralizer of ty in L4(3).

Let G be a finite group of even order with the following properties:

(@) G has no subgroup of index 2, and

(b) G has an involution t such that the centralizer C4(t) = H of t in G s
isomorphic to Hy.

Then G s isomorphic to L4(3).

The following notations are used.

Nx(Y): the normalizer of Y in the group X.
Cx(Y): the centralizer of Y in the group X.
{+-+]---}: the set of elements - - - such that - - -.
{+++]++->: the group generated by - - - such that - - -.

[z,y): & lylay

Y= Yz

X:Y]: the index of a subgroup Y in X.

1X]: the order of X.

0(X): the maximal odd-order normal subgroup of X.

z~ y(X): =xis conjugate to ¥ in the group X.
Y char X: Y is a characteristic subgroup of X.
1. Some properties of H,

Let F, be the finite field of 3 elements and V be a 4-dimensional vector
space over F,. Take
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—1

1

which is an involution in SL(4, 3). (Here we identify the linear transforma-
tions in SL(4, 3) with the corresponding matrices in term of a fixed basis.)
The centre of SL(4, 3) is generated by

—1
—1
—1
—1

and is of order 2. Then a matrix («,;) in SL(4, 3) satisfies (x;;)ép = fo(ots;) * ¢
(r = 0, 1) if and only if («;;) has the form

@)= (" 5) o w=(p )

where (4) and (B) are 2 X 2 matrices over F, such that det(4) = det(B) #0.
Denote by Hj, the group of matrices in SL(4, 3) which commute
projectively with £yi.e. which satisfy the relation («;,)t, = ¢o(as;)c” (r = 0, 1).
We have
1 0 1
, 0 1

U = 1 0 , v =

0 1 —1

belong to Hy and generate a four-group F;. Moreover, we get
. (A . B
u B8 =4 .
Denote by Lg, the group of all matrices in SL(4, 3) of the form
A
B

where (4) and (B) belong to SL(2, 3). Clearly then Hy = Fg,- L, and
Fyn Ly = 1. Let L] be the subgroup of L of the form

()

where (4) € SL(2, 3). Hence L; ~ SL(2, 3). Put L, = u'Liu'. Therefore
Ly= LixLs.
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Now L] is generated by the following elements

0 —1 11 —1 1
,_[r o :
“= 1o 0= 1
01 0

Put a, = uw'aju’, by = u'bju’, oy = 4’ oyu’. Let Hy = Hy/{c), and in the
natural homomorphism of Hy onto Hy, let the images of t;, ', v', Fy, Ly,
a;, b;, o;, Ly be ty, u, v, Fy, Ly, a;, b;, 0;, L, respectively (i = 1, 2). Then
we get the following relations:
H, =F,-L,
F, = <u,v) is a four-group
L, =L,-Lywhere LynL,= <>, and [L,,L,] =1

(i.e. Ly, L, commute elementwise).
L

va,v = a7, vb,v = b,a;, vo,v = a7t

2 2 _ —1 -1 1 _ -1 _
i =<a;,b;,0i0ai = b7 =1y,b7'a,b, = a7, 67 a0, = b, 67 b0, = ab,)

The structure of H, is completely determined and it is now easy to
compute the following results of H,.

(1.1) Every element of H, can be written uniquely in the form
aibi ot o u?v? where t = a,a,; ty = bb,; 6 =0,0,; 1=0,1,2 3;
j=01; k=012 1=01,m=01;n=0,1,2 p=0,1; g=0, 1.

|H,| = 27 - 32

(1.2) The group Q = {a,, by, a5, b,> F, is a Sylow 2-subgroup of
L4(3) and of Hy. Z(Q) = <)

(1.3) The group T = {oy, 0,) is a Sylow 3-subgroup of H, and
is elementary abelian of order 9. We have Cp(T) = {{,»xT, and
Ng (T =t u,v)-T.

(1.4) There are seven classes of involutions in H, with representatives
by, 11, #, tyu, uv, tyuv and v,

(1.5) The centralizer of ¢, in H,, Cg(¢,) = 4 = <ay, a3, b1b,, u, v)
is a non-abelian group of order 64 with Z(4) = A’ = {¢,,t,> where A’
denotes the commutator group of A. The group A contains precisely
fcur elementary abelian groups of order 16, namely E, = (¢, ¢, 5, »),
Ey = (ty, by, b5, u0) (b3 = a,t,); Ky = (b, 8y, u, vy and K, = (&, ¢;, a,v, t,u).

(1.6) The centralizer of # in H,,
Cy, () = U = by, 81, b3, u, v * (o).
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We have Cy (#) = Cgq (fy%). A Sylow 2-subgroup of U is
Lor by, by, w,v) = Ey - K,
and has as its centre the group <&, ¢,, #).

(1.7) The centralizer of uv in H,,

Cu (o) = W = by, ty, b5, u,v) - {p)> (p = oy'0y).

We have Cy (wv) = Cy (fyuv). A Sylow 2-subgroup of W is {ty, ¢, 5, %, v)
with its centre equals to (¢, ¢, uv).

(1.8) The centralizer of v in Hyis Ky = {{y, {;, u, v).

(1.9) We have Cg(E,) = E; and Ny (E,)/E; = S,, the symmetric
group in 4 letters. So a Sylow 2-subgroup of Ng (E,)/E; is dihedral of order
8. (t=12).

(1.10) There are precisely two normal elementary abelian groups of
order 16 in Q, namely E, and E,. There is one and only one normal subgroup
of order 32 in Q containing E,. These are {4y, 4,, ¢,, ) = E, with its centre
equals to (¢, ¢,> and {a,, a,, t;, uv)> = E, with its centre equals to {¢,, ¢, ).

2. Conjugacy of involutions

Throughout the rest of this paper, we shall suppose that G is a finite
group of even order with properties (¢) and (b). Since Cg(¢) = H is iso-
morphic to H,, we identify H with H,. Then ¢ = ¢,.

First we note the obvious fact that the group Q is a Sylow 2-subgroup
of G, since by (1.2) Z(Q) = <¢), a cyclic group of order 2.

(2.1) LEMMA. The involution t, is not conjugate to ¢ in G.

Proor. By way of contradiction, suppose that £, is conjugate to ¢ in G.
We have 4 = Cy(#,). Let T be a Sylow 2-subgroup of C(#,) containing 4.
By our assumption [T : A] = 2andso 4 < T. Let x be an element in 77— 4.
Consider x'E;2 C A. We know that there are precisely four distinct
elementary abelian groups of order 16 in A namely E,, E,, K,, K, where
K, =K} Nowif E? = E,,weget E, < (4, x> = T.If x does not normalize
E,, x1E,x #+ E, since otherwise we would have two normal subgroups
E; and E, of Q conjugate in G but not in Ng(Q) € H, a contradiction
to a theorem of Burnside [4, p. 203]. So x'E,x = K, or K,. Therefore
x'E,x = E,, in which case we get E, < T. Hence we have either E,; or
E, normal in T.

Suppose that E, < T. Since Ng(E,)2<Q, T), we get No(E,) ¢ H.
We have by (1.9) Cg¢(E,) = E,, and so & = N¢(E,)/E, is isomorphic
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to a subgroup of GL(4, 2) =~ Ag. A Sylow 2-subgroup @ = Q/E, of & is
dihedral of order 8. Consider C,(a,E,) 2 @. By way of contradiction,
suppose Z(T|E,) = Z(T) = {vE,> or {a,vE;>. Then either (E,, v)> or
{E,, a;v) is normal in T. Since Z({E,,v>) = {¢, ¢, u) and

Z(KEy, ayv)) = 8, 4y, tyu)
both of order 8, hence a contradiction to (1.10). Therefore

(@, T)CCy(aEy).

From the structure of A4, the centralizer of any involution in 44 has order
26-3 or 25-3, we get [C,(a,E,)] = 2%-3 and hence C,(a, E;) has an
abelian 2-complement. The conthlons of Gorenstein-Walter’s theorem [3]
are satisfied by the group < and so we get the following possibilities for &.

(i) #| A = PSL(2,q); g+1 = |Cy(a,E,)M|#|
(i) S|4 = PGL(2,q); g1 = 3ICy(a, E,) M| M|
(i) S|4 ~ @ or
(iv) |4 = A,

where in all cases A4 = 0(F).

Suppose that |.#| # 1. Consider the action of the four group
¥ = {a,E{, b, E,> on #. Since a, E,, b, E,, a,b, E, are conjugate in &,
we get that |.#] ==3% or 3. Since |44 =26-3%-5-7, we must have
|.#| = 3 therefore ¥ - M4 = ¥ X .#. Now we look at

N, (7") = Nglay, by, E1) 0 Ng(Ey)[E;.
Since {t) = Z<{ay, b,, E,>, we have Ng{a,, b;, E;> C H. Thus
NelEy, ay,b)/E, = 4

a contradiction to ¥ - 4 = ¥ X.#. Hence .# = 1. Clearly then (i), (ii)
and (iii) cannot arise,.

Thus we are in case (iv). The non-trivial elements of E, separate into
4 sets of involutions namely {t}; {u, tt,u, ttyu, tt,t,u}; {tu, tu, tou, ¢ tu}
and {t;, %y, £,t,, 8, Uy, tt,8,}, each of these sets lie in a different conjugate
class of H. Let u e Ng(E,) be an element of order 5. Since Cy(E,) = E,
we get that p acts fixed-point-free on E,. Together with the fact that
t, ~ t(G), we conclude that all involutions are conjugate in G. Now let
A€ Ngy(E,) be an element of order 7 in G. Since all involutions of E; are
conjugate to ¢ and because 74 |H|, we get that 1 acts fixed-point-free on
E,, a contradiction since 74 (|E;|—1). Thus we have shown that E; 1 T.

By exactly the same reasoning, we get a contradiction if E, < T.
Hence ¢, is not conjugate to ¢ in G. The proof is complete.

~
~
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(2.2) LEMMA. The elementary abelian groups E,, E,, K, are not conjugate
to one another in G.

Proor. We have shown that E; is not conjugate to E, in G. Suppose,
by way of contradiction, E, is conjugate to K, in G. Since 27 divides the
order of Ng(E,), and by our assumption, we get a Sylow 2-subgroup of
N4(K,) is of order 27. There exists a 2-group in Ng(K,) containing 4 such
that [T : A] = 2. Now Z(A4) = (¢, t,> is characteristic in 4 and so normal
in 7. Since Ng(Z(4)) nH = Q and K, 40, therefore we obtain T ¢ H.
Let xe T—A. Then z 'tz e {¢,, #,}, a contradiction to (2.1). Similarly
we can show that E, is not conjugate to K, in G. The proof is finished.

(2.3) LEMMA. If 64 divides the order of Cg(u) then u and tu do not lie in
the same conjugate class in G.

Proor. Let T C Cg(#) be a group of order 64 containing
U=<44, 4,8, u,v)
and let x € T—U. Then « normalizes Z(U) = {t, ¢,, u). By (2.1),
xltx € {ttu, tyu, tu}.

We shall consider each possibility in turn. If =14z = &, %, then xtux = #,.
The proof is finished since #,% ~ #(H) and #, ~ ¢,(H). Next if x 71z = t,u,
then we get 7 lfuxr = ¢, and so ¢t~ ¢,(G) since ¢, 4 ~ tu(H), a contradiction

o (2.1). Lastly if 7'z = ¢u, then we have z~'t,x € {¢, tt,, tt,u}. Now if
x 1,2 = ¢,, then a1, x = tt,u ~ u(H) and so lemma is proved. The case
x7t,x = #t, is not possible, since this would imply

x Ve =a7 -the =1t - ¢, =1t

(Here we use the fact «% € U). Finally if ¢, 2 = ¢f,u, there is nothing to
prove. The proof of this lemma is complete.

(2.4) LEMMA. If 64 divides the order of Cg(uv), then uv, tuv do not lie
in the same conjugate class in G.

Proor. As in (2.3).

(2.8) LeMMA. If u is conjugate to t in G, then tu is conjugate to ¢, in G.
Moreover, we have Ng(E,)[E, = S, the symmetric group in 5 letters.

Proor. The first part of this lemma is obvious from (2.3).

Consider N¢(E,). We have Ng4(E,) = Q- {¢) and Ng4(E,)/E, = S,.
Let T be a Sylow 2-subgroup of Cg(#) containing U = (¢, ¢, 1,, , v).
There exists x € T—U with 2 € Ng(U) and so 21 E,2 CU. By (1.6) and
(2.2), we get x1E,xz = E,. Hence N4(E,) £ H.
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A Sylow 2-subgroup of & = N(E,)/E, is dihedral of order 8. Suppose
by way of contradiction that, @ has one class of involution in &. Then
there exists an element ge Ng(E,) such that g E,, a, 08 = <{E,, v},
which is a contradiction since Z({E,, a,>) = {¢, ¢;» whereas

Z(<E17 'U>) = <tr tl» M>

Since we have Cg4(E;) = E,;, & is isomorphic to a subgroup of A4,.
Suppose that 0(%) = # = 1. Then consider the action of the four group
# = <{a,E{, b E,> on A. Using the facts that involutions of ¢ are con-
jugate in & and that the centralizer of any involution in A, has order
28.3 or 25-3, we get by Brauer-Wielandt [10], |[.#] = 27 or 3. Since
271 |Ag|, we must have |.#| =3, and so ¥ .4 = ¥ x#. We look at
Ny (#) = Ng(KEy, a1, b)) n Ng(Ey)[E,. Since ) = Z(KEy, a5, by)); we
get No({E,, a,, 8,>) C H. Hence No({E,, ay, b))}/ E, = A,, a contradiction
to ¥ - M = 9 X .#. Thus we have shown 0(&) = 1.

By our earlier remark, we must have |C,(a,E,)| = 2%- 3 or 23. Hence
we may now apply Gorenstein-Walter’s theorem [3] to get & ~ PGL(2, 11);
PGL(2, 13); PGL(2, 3) or PGL(2, 5). The first two cases cannot arise since
11 and 13 do not divide |44|. & =~ PGL(2, 3) ~ S, would contradict the
fact that Ng(E,) € H. Therefore we obtain & ~ PGL(2, 5) ~ S;. The
proof is finished.

(2.6) LEMMA. If uv is conjugate to t in G, then tuv is conjugate to t, in G.
Moreover we have N o(E,)|E, = Sy, the symmetric group in 5 letters.

ProoF. As in (2.5).

(2.7) LEMMA. If u ¢s conjugate to t in G, the group Y, = Ng(E,) n Cgltu)
has the following structure. Y, = (E,, v, 2>+ (o> such that z* = 1; ztz = u;
22 =1,; atyz = by; 302 = 0; and 20z = v or tuv.

Proor. By (2.5), we see there exists an element u € N¢(E,) of order 5
acting fixed-point-free on E,; and so it follows that ¢, is conjugate to fu
in Ng(E,). Now A CNg(E,) nCg(t;) and A is a Sylow 2-subgroup of
C¢l(t,), for otherwise, we would have £, in the centre of a group of order 27,
a contradiction to (2.1). We get that 26 divides [Ng(E;) n Cgltu)]. We
know that o0 e Ng(E,) n Cg(tu) = Y, and u ¢ Y,. Hence |Y,| = 26- 3 and
therefore Y, = 4 - (¢> with 4 ~ A.

We have the group Cg(tu) n H = U a subgroup of index 2 in Y,.
The group <¢,, £,>{c) is the smallest normal subgroup of Cq(tu) n H with
2-factor group. Hence <%, ?,) (o) char Cx(fu) and it follows that it is
normal in Y. Let T be a Sylow 2-subgroup of Y, containing U = (E;, v)
and let ze T—U. We know from the isomorphism of T and A, that Z(T')
is a four-group. Obviously ¢« € Z(T). Since {¢,, t,» char {¢;, t,><{co) and so
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{t;, %,y < T. Hence {t,,¢,> has non-trivial intersection with Z(T). So
1 # ({8 0 Z(T) S <y, by 0 Z(U) = <8y). Thus Z(T) = {tu, t,).
From the fact {#;, ¢{,> (o) is normal in Y, it follows that

27 lgz € {1, £, )<{o).

Replacing z by zv if necessary, we can suppose that z27l¢z = o - z, where
z e {t;,t,y. Again replacing z by 2¢,, 2¢t, or ztf, if necessary, we get
z7loz = . We have {{,,t,> <Y, and so it follows 271tz =1¢, or ¢¢,.
Comparing the action of 2714,z on ¢ by conjugation with those of ¢,, ¢,¢,,
we conclude that 2714,z = ¢,.

Next we want to determine the action of z on <, #)>. We have
Z({U) = <t ¢, u)y char U and therefore (¢, ¢,, 4> < T.In <, ¢, ) by (2.5),
the only elements conjugate to ¢ in Y, are #,# and «. It follows that
27Vz =u; 27'uz =t (22 € H). Because {E,,v) < T, we get z71vz = vs for
some s € E,. From the fact (z1vz)o(271vz) = o7, we see that

se E, n Cglo) = &, u).

If 2719z = tv, then (2%)~vz%® = tuv, a contradiction since v and fuv are
not conjugate in H. Similarly, z~'vz = uv is impossible. Thus z7lvz = v
or tuv.

From the structure of 4, we know that z has order at most 4 and all
elements of order 4 have their squares lying in Z(4). So we have 22 € Z(T)
and from the fact z € Cg(c), we obtain either 22 = 1 or 22 = tu, in which
case replacing z by zu, we have (zu#)2 = 1. Hence all the statements of the
lemma are completely proved.

We note also that each successive replacing of z does not affect the
earlier conclusions. The proof of this lemma. is finished.

(2.8) LEMMA. If uv is conjugate to t in G, then we have
Yy = Ce(uv) 0 Ng(E,) = <E,, 0,2'5<p) (p = o7 0y)
such that (') = 1; 2'tz' = wv; 2"t 2" = tt, Z't2’ = ty; 2'vi' =v or tu;
2'pz’ = p.
ProOOF. As in (2.7).
(2.9) LemMA. The group G is not 2-normal.

ProoFr. Suppose by way of contradiction, that G is 2-normal. Since
{t) is the centre of a Sylow 2-subgroup Q of G. It follows from Hall-Griin’s
theorem [4, p. 216], the greatest 2-factor group of G is isomorphic to that
of N¢(Z(Q)) = H i.e. isomorphic to H/L which is a four-group. But this
contradicts condition (2). Hence G is not 2-normal.

(2.10) LEMMA. The involution t is conjugate to an involution in {u, v, uv}.
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Proor. By (2.9), G is not 2-normal, hence there exists an element z
in G such that r € Q n 271Qxz, but {¢) is not the centre of 27 1Qz. The centre
of x71Qx is {x~'fz) and thus x~1fr 5= ¢{. On the other hand, ¢ e -1 Qx and
so ¢t and z~l{x commute. Therefore z~1fx € H. Without loss of generality,
we may assume that ¥tz € {u, tu, v, uv, tuv} (since x~lw # ¢, by (2.1)).
Interchanging # by tu; v by tv, if necessary, we may and shall suppose
x~'tx is an element in {u, v, uv}.

To prove the next lemma, the following unpublished result of Thompson
is indispensable.

LemMMA A (Thompson) [7]. Suppose & is a finite group of even order
which has no subgroup of index 2. Let &, be a Sylow 2-subgroup of & and
let M be a maximal subgroup of F,. Then for each involution I of &, there
is an element B of & such that B'IB e A

(2.11) LeMMA. The group G has precisely two conjugate classes of tnvolu-
tions Ay and A, with the representatives t and tu respectively: Ay n H is
the union of 4 conjugate classes of tnvolutions of H with representatives t, u,
v, wv; Ay N H is the union of 3 conjugate classes of H with representatives
t, tu, tuv.

ProOOF. By (2.10), there exists an element z in G, such that

x 'tz € {u, uv, v}.

Suppose that x'fx = u. We have M = (a,, a,, b;, b,, #) is a maximal
subgroup of Q, a Sylow 2-subgroup of G. By (2.1); (2.4), the involutions
of M lie in two conjugate classes in G with representatives ¢ and f». By lemma
A, we see that involutions v, uv¢ and v are conjugate to some involutions
in M. By (2.4), uv, tuv lie in different conjugate classes of G. Hence, inter-
changing v by v# if necessary, we may suppose «v is conjugate to ¢ in G and
so tuv is conjugate to fu in G. To decide whether v is conjugate to ¢ or #u,
we use (2.7) and (2.8) and get the following possibilities.

(1) zvz = v and 2'vz" = tu. Then we have ztvz = uv, a contradiction,
since tu and v lie in two different conjugate classes of G.

(i1) zvz = tuv and 2’vz = v. Then we have 2’9z’ = u, a contradiction
as in (i).

(ili) zvz = tuv, and 2’ vz’ = tu. Then by (1.8)

ICe(v) N Celt)l = [Caltuv) 0 Clu)| = 24,

but when 2z’ eCgy(#) and therefore (2',%, u,v,t)> € Cq(u) n Cq(tuv), a
contradiction.

Thus we are in the last case (iv) where zvz = v, and 2'vz" = v. Then
zz2'tz'z = tv proving all the statements of this lemma.
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Suppose z-1tx = uv. We take as a maximal subgroup of @, the group
{ay, @y, by, by, wv> and apply the same proof as in previous cases.

Finally if -1tz = v. We have the group {4, a,, b;, b,, v) is a maximal
subgroup of Q. By lemma A again, interchanging # by ## and/or v by &
if necessary, we get the same conclusions.

Since by (2.10), one of these cases must happen, we have proved our
lemma.

3. The centralizer of an involution in £,

We begin with a preliminary result. The notation in this proof is in-
dependent of the rest of the paper.

ProrosiTION 1. Let G be a finite group of even order with the following
properties:

(1) The centralizer C(x) in G of an involution a contained in the centre of
a Sylow 2-subgroup of G is {a, B> X F where {a, B> is a four group and F is
isomorphic to S, (the symmetric group in 4 letters).

(2) If S is a Sylow 2-subgroup of G then C(S’) = S where S’ denotes
the commutator group of S.

(3) The involutions «, 8, «f are not conjugate to each other in G.

Then either G = C(a) or G 1s 1somorphic to the divect product of a group
of order 2 and D where D ~ S,.

Proor. Put F =V - {p> - (x)> where V = (v,,17,> is a four-group.
We have plr,p = 1, plrgp = T1Ts, TT,T = Ty, TTLT = TyT,; TpT = p}
and 1% = p3 = 1. Obviously S = {a, > x (V{z}) is a Sylow 2-subgroup
of G. V{(z) is dihedral of order 8 and we have S’ = {(r,>. Hence by (2),
C(z;) = S. Finally Z(S) = {«, 8, 7, is elementary of order 8.

(i) Non-trivial elements of Z(S) lie in 7 distinct conjugate classes of G.

By way of contradiction, suppose there are 2 involutions in Z(S)
conjugate to each other in G. Then by a transfer theorem of Burnside [4],
they are conjugate in N(Z(S)). We must have N(Z(S)) > S. Since
C(Z(S)) EC(xy) =S, we get N(Z(S))/S is isomorphic to a subgroup of
GL(3, 2). Clearly 71 IN(Z(S))I|, otherwise there exists an element of order
7in N (Z(S)) which acts fixed-point-free on Z(S). This requires, in particular,
that «, g, «f lie in one conjugate class of G, contradicting condition (3).
Therefore the order of N(Z(S)) is 2%-3. Let Ae N(Z(S)) and O() = 3.
We want to determine the orbits of 2 on Z(S). By condition (3), the elements
«, B, «f lie in 3 distinct orbits, a contradiction to the fact |Z(S)| = 8.

(ii) The focal group S* of S in G contains V.
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This is obvious since p~17,p = 7, and pl1,0 = 7, 7,.
(i) The case S* = S s not possible.

By way of contradiction, suppose that S = S*. This means that G
has no subgroup of index 2. Consider the group ¢8> x (V' {z)). It is maximal
subgroup of S and has at most 5 conjugate classes of involutions with
representatives t,, 7, 8, ft, and fr. By lemma A, we get that G has at most
5 conjugate classes of involutions. This is a contradiction since by (i),
we know that G has at least 7 classes of involutions.

(iv) The case |S*| = 16 s not possible.

Suppose on the contrary, we have the order of S*, the focal group of
Sin G, is 16. This means that G has a subgroup of index 2 but has no sub-
group of index 4. Let M be a subgroup of & of index 2. By D. G. Higman [5],
we have S " M = S* and S* is a Sylow 2-subgroup of M. We have two
cases to consider. If <{«, 8> C S*, then by (ii), we have S* = <a, O X V.
Then <{a>XV is a maximal subgroup of S* and has at most 3 classes of
involutions with representative v;, «, «7; (we use the fact p e M). So by
lemma A, M has at most 3 classes of involutions in contradiction to (i)
since Z(S) C M. Next suppose that S* n (a, 8D is of order 2. We have
S* =V ({a, B, > n S*). There exists an element ' € S* n <{a, B, 7) such
that V'(z’> is a dihedral and has at most 2 conjugate classes in M. Also
V{z'> is a maximal subgroup of S* and hence by Thompson, we obtain
that M has at most 2 conjugate classes of involution, a contradiction to
the fact that Z(S) n S* is of order 4 and by (ii) its involutions lie in 3
distinct conjugate classes of G.

(v) If V = S*, then we have G = C(a) = {a, B> X F.

We have in this case a normal subgroup M of index 8 in G such that
MnS=V. Because pe M and V<{p) ~ 4,, all involutions of V are
conjugate in M and a Sylow 2-subgroup of M is a four group. Also we have
Cyu(t)) =S M =V. By aresult of Suzuki {9,] we have either V a4 M or
M~ A, If VaM, then M =V{p) (since Cyu(V)="V). Therefore
G=S-M=Ca) =<a, X F. If M ~ A;, because the automorphism
group of A, is S;, it follows that C(M) # 1. Clearly C(M) n M = 1. From
the fact v ¢ C(M), we obtain that |C(M)| = 4. Now

CM)CCV) = <a, BOxV,
SO
C(M) C {a, BYXV—V (. C(M)nM=1),

Let C(M) = (2, z,», a four group. It follows that z; = av,; z, = v, where
vy, v, € V. Since a, 2y, B, 2, centralize p; we get v, v, commute with p.
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By the structure of 4,, v; =v, = 1. Thus we get C(M) = («, 8> and
therefore contradicts condition (1).

(vi) If the order S* is 8, then G is a product of a group of order 2 with a
subgroup of G isomorphic to Sg.

Since |S*| = 8, it means that G has a normal subgroup M of index 4
in G and G has no subgroup of index 8 (Here we use the fact V C S* and
S/V is abelian). We have S n M = S* and V is a maximal subgroup of
S*. Since p € M, involutions in V are conjugate in G and so by lemma A,
M has only one class of involutions. By (i), we must have S* n («, ) = 1.
Therefore S* C (a, 8> X (V{(tD>)—<{&, B> and so is dihedral of order 8. Now
7, is in the centre of S* and we have Cp () = S n M = S*

Let 0(M) be the largest normal odd order subgroup of M. V acts on
C (M) and since all involutions of V are conjugate in M, we get

[Couan (t1)] = [Conn (T2)| = |[Coiany (T172)| = 1

because C(r,) is a 2-group. By Brauer-Wielandt’s result [10], 0(M) = 1.

Application of Gorenstein-Walter’s theorem [3], produces the result:
M ~ PSL(2,9) g +1 = |Cp(ry)| or M =~ A,. The second case cannot
happen since the centralizer of an involution in 4, is divisible by 3. Therefore
M ~ PSL(2,7) or PSL(2, 9). Since the automorphism group of PSL(2, 7)
is PGL(2,7), we get C(M) # 1. So we have either G = <{a, 8> XM or G
contains a subgroup iscmorphic to PGL(2, 7). The first possibility cannot
arise since it contradicts condition (1). The second possibility is ruled
out by the fact that a Sylow 2-subgroup of PGL(2,7) is dihedral of
order 16 and so contains an element of order 8, in contradiction to the
structure of S.

We are left with the case M ~ PSL(2,9) ~ A,. Since PGL(2,9)
contains elements of order 8, we conclude that G does not contain a subgroup
isomorphic to PGL(2,9). Also C(M) cannot have order 4, because by
similar argument as in (v), G would be equal to {«, 8> X M, a contradiction
to condition (1). It follows that C(M) is of order 2 and C(M)n M =1
and o ¢ C(M). Let C(M) = (z). From the fact C(M) CC(V) = {a, O XV
and C(M)n M =1, we get C(M) C {«, 5V —V. Hence C(M) = <{h-v)
where 2 e {a, 8>, veV. Since hv and A commute with p, we get v = 1.
Therefore 2 = f or «f.

Now the automorphism group & of PSL(2, 9) has the property &//4,
is a four-group. & is an extension of PGL(2, 9) by the field automorphism
f of order 2. Now PGL (2, 9) is the group of all non-singular 2 x 2 matrices
(a;;) with a;; € GF(9) considered modulo the group of all 2x2 scalar
matrices and we have f(«;)f = (of;). Let ¢ be a generator of the multi-
plicative group of GF(9). Then {4 = —1. Put
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1) (2 Y

We verify that at =1 =082 blab=a"', clac =al; clbc = a™1b;
¢? = a2 Since {a, b) is a Sylow 2-subgroup of PSL(2, 9), it follows {a, b, ¢)>
is a Sylow 2-subgroup of {(PSL(2, 9), c>. We shall produce an element of
(PSL(2,9), c> which is of order 8. We note that

0 ¢

and (cb)? = c?c7lbch = a?a=1bb = a, so is of order 8.

Now <{a)M is isomorphic to a subgroup of index 2 of &/ containing
PSL(2,9). There are 3 such subgroups namely PGL(2, 9); (PSL(2,9),¢)>
and (PSL(2,9), f>. We have shown that the first two cases cannot arise,
so we have (adM =~ (PSL(2,9), >. It is well known that PSL(2,9) is
isomorphic to A4. Hence S; is isomorphic to a subgroup of index 2 in 7.
We check that Sq has no element of order 8. It follows

(1 0) e PGL(2, 9)—PSL(2, 9),

Se = (PSL(2,9), > = (a>M.

Therefore G = C(M) X ({a)M).

The proof of this lemma is now complete.

We can now begin the determination of the structure of Cg(¢%). Con-
sider the factor group Cg(tu)/{tu> = C. We note that {¢, u>/{tu) is in the
centre of a Sylow 2-subgroup {z, %, v,t,¢,, t,>/<{tu)> of C. Since tu is con-
jugate neither to ¢ nor to u, we have Ng(t, u) C Cy(fu). Hence we obtain
Nglt,uy = {z,u,v,¢,t,t,>{¢c> =Y,. Hence we get the centralizer of
&, uwd[w) in C is

(<2, 8, w)[Cud) X ({0, by, 8y, o) Cbup | (Bu)

where <z, ¢, u)>/{tu) is a four-group and <v, ¢,, ¢,, o)>{¢u>[{tu) is isomorphic
to S, and so the group C satisfies condition (1) of the proposition.

To check that condition (2) of the proposition is alsc fulfilled by the
group C, we look at Cg(t)/<t,>. Now {ay, a,,t,y, u, v)[<{t,> is a Sylow
2-subgroup of Cg(2)/<¢,> and <4, ¢ )/<¢,> is its commutator group. The
group N{¢, ¢,> is contained in H, since ¢ is not conjugate to #, or #;. It
follows that Ng{¢, ¢,> n Cg(f) = A. Since ¢, is conjugate to fu in G, it
follows that the centralizer of the commutator group (¢, tu>/{tu)> of
2, u, 0,8, by, by [Cu) in Cis {2z, u, v, 8, &y, by [{du).

Next we want to show that (z, tu)/{tu); (¢, ud[(¢u)y and {at)[{tu)
are not conjugate to each other in C. It is clear that {zt>/{tu) is not con-
jugate to (z, tu>[(tu) or {¢, u)/{tu) since {2t} is cyclic whereas <{z, fu) and
{4, u) are four groups. Both {¢, 4> and {z, #u) are normal in <{z, %, v, ¢, {;, ;).
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If ¢, u)[{tu) were conjugate in C to {z, tu)[{tu), by a transfer theorem of
Burnside [4], they would be conjugate in

NO(<ZJ U, v, t» tl’ t2>/<t“>) ;NC'(<tu’) t1>/<tu>) = <Z, u, v, t’ tl’ t2>/<tu’>»

a contradiction.

Applying Proposition 1 on the group C, we get either Cg(tu) = Y, or C
is the direct product of a group of order 2 by a subgroup which is isomorphic
to Sg. The case Cg{tu) = Y, is not possible since we have by (2.8) and (2.11),
an element

2" e Cqyltu)—Y,.

We shall now take a close look at the remaining case. Let D be the complete
inverse image in Cg(tu) of the subgroup of C which is isomorphic to S,.
From the proof of Proposition 1, we see that (¢, u,t,,£,> C D. Since
{z, ¢, uy> & D, we have either (¢, u,t,,t,, 20> or {t, u, ¢, 1, v> is a Sylow
2-subgroup of D. Suppose that <{f, u, ¢,, ¢,, zv> C D. Let D be the subgroup
of D such that D/{(tu)> ~ A,. We know that ¢, € D and

{t, uy[tn) € D|<u>—D|{tu.

Hence zvt" (r = 0, or 1) is conjugate to ¢, modulo {¢u). Hence there exists
an element geD such that g-laut'g =¢,-h where he{tu) and so
g lavt" - tug = ¢, - h - tu. From (2.7), zvt™ is conjugate to zvt" - tu. It follows
then ¢, is conjugate to #,u, a contradiction to (2.11). Therefore

o, by, by, v> C D.

We check that (2, u, ¢, ¢,, v)> splits over {fu). So by a theorem of Gaschiitz,
(4, p. 246], D splits over {tu). Hence there is a subgroup D of D isomorphic
to Sg such that D = (fu)>x D, and we may suppose that e D. Let D be
the subgroup of D such that D x~ A4,. By the structure of A4 all involutions
in A4 are conjugate in Ag. In <{¢, u, ¢, ¢,, v)>, we observe that elements of
order 4 have their squares equal to #,. Therefore we conclude that all involu-
tions in D lie in A, (in the notation of (2.11)). These facts imply that a
Sylow 2-subgroup of D is {#t,uv, tuv).
We have by Proposition 1 that

Coltu) = (Cat>x D)<ty or (<, twyx D)<
where in both cases, we have D{¢> = D =~ S,. Suppose that
Coltu) = ({2, tup X D)<t).

Clearly z € X", and {z, tu)> x D is a subgroup of index 2 in Cg(z). We want
to determine Cg(2) N Cy(v). Suppose there is an element

g € Calz)— (<2, tup x D)
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and g centralizes v. Now
(z,tuy = Z(<z,tu)y X D)

and therefore (z,tu)> < Cg(2). Thus gltug = ztu (g¢ Cg(tu)). So
g ltuvg = ztuv. But we have D = (<z, tu) X D)’ char C¢(z). Therefore
g 1Dg = D giving g~'tuvg C D a contradiction. Hence we have shown that

Celz) A Calw) C <z, twy X D.

Using the fact tuv € D and centralizer of an involution in A4 has order 8,
we conclude that Cg(2) n Cg{v) has order 32, in contradiction to the fact
that Cg(x) n C(¢) with x € Ay n Cg{t) has order 28 or 32 - 3. Thus we have
finally proved that Cg(tn) = (<zt> X D)<¢>.

(3.1) LEMMA. The centralizer Cy(tu) of tu in G has the following
structure.

Coltw) = (Catyx D)E> where (D(ty =D = S,.
(3.2) LEMMA. The group G is simple.

Proor. Suppose that 0(G) # 1. Act on 0(G) by the four group v, £>.
We know that Cg(2) has no odd-order normal subgroup by the structure
of H, for all x e A";, {¢, v) acts fixed-point-free on 0(G), a contradiction
to a theorem of Burnside. We have therefore proved that G has no non-
trivial odd order normal subgroup.

Suppose that G has a proper normal subgroup N with odd factor-group
G/N. Then Q being a Sylow 2-subgroup of G is contained in N. The Frattini
argument gives G = N - Ng(Q). But Ng(Q) = Q and hence G = N - @ = N,
a contradiction. Thus G has no proper normal subgroup with odd factor
group.

Next suppose that G has a proper non-trivial normal subgroup M such
that |[M| and |G : M| are both even. Suppose that o', n M is not empty.
Then A, CM and in particular ¢ and # are in M. Hence f# C M. So
Ay 0 M # ¢ giving A", C M. Thus all involutions of G are contained in M.
It follows that Q, being generated by its involutions is in M, a contradiction.
This gives A", n M = ¢. Therefore ', n M 5 ¢ and so #,,¢, € M. This
implies that ¢e M, a contradiction. Hence the proof is now complete.

4. Structures of a Sylow 3-subgroup of G
and its normalizer in G

In §3, we have Cg(tu) = ({2t) X D){t). A Sylow 3-subgroup of D is
elementary abelian of order 9, and is self-centralizing in D. Therefore Sylow
3-subgroups of D are independent (i.e. two distinct Sylow 3-subgroups of D
intersect in the identity only). Let T, be the unique Sylow 3-subgroup of D
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containing (o) C Cg(¢u). Therefore T, = Cgqlo) n Cgltu). Since &, uv)
normalizes (o), it normalizes Cg(0) N Cq(tu) = T,. Thus we have

{aty Xt uvy S NG(T,) n Celtu).

From the structure of S;, we know that the normalizer in S4 of a Sylow
3-subgroup of S, is a splitting extension of the Sylow 3-subgroup by a
dihedral group of order 8 (e.g. ((123), (456)) is a Sylow 3-subgroup of S
and

N, (<((123), (456))) = <(1524)(36), (12)) - {(123), (456)).

Therefore we get
Ng(Ty) n Ctu) = (Kat) - <a, £))T,

where a? = tuv, tat = a1, a lzta = zt. Clearly Co(T,) n Cgltu) = <> X T,
and Cy(T,) < Ng(Ty). Let U2 (zt) be a Sylow 2-subgroup of Cg(T4).
If U D (zt), then |Cg(T;) n Cgltu)| would be divisible by 8, which contra-
dicts the structure of Cg(tu). It follows a Sylow 2-subgroup of Cq(T,) is
cyclic of order 4. By a result of Burnside, C¢(T,) has a normal 2-complement
M, 2 T,. The Frattini argument gives

Ng(Ty) = (Nglzt) 0 Ng(T1))Co(T1) C (Celtu) 0 Ne(T1))CelTy)
= (> - {a, tOM].

N(Ty) = (<zt) - <a, £))M,;.

Since M, char Cg(T,) we get M, < Ng(T,), and so <v,t) CNg(T,) acts
on M,. Because {v,vf,t}C ¢ ,, by a result of Brauer-Wielandt [10],
M, is a 3-group.

Now (f, u) also acts on M;. We have Cy (fu) = Ty; Cpr <t up = o).
Hence |M,| = |Cyy (¢)[|Car,(#)|. Because ¢ and # are conjugate in N¢(T),
we get |Cy (¢)| = [Cpy,(u)|. Hence |M,| = 8% or 3% We shall show that
|M,] = 3%1is not possible.

Let T = (o0, 0,0 © H = Cgl(t). Then

Colt) N <oy, 03> = ¢OXT and Ng(T)n H = <t u, vy T.

Thus

Now (¢ is a Sylow 2-subgroup of Cg(T') and therefore by a result of Burn-
side, C¢(T) has a normal 2-complement M and Cy(T) = {¢> - M. We have
Ce(T) < Ng(T) and so by the Frattini argument,

N(T) = (Cglt) n Ng(T)) - Co(T) = <t, u, vDM.

Since M char C¢(T), we have M < Ng(T). Therefore {v, t> acts on M and
hence M is a 3-group. By way of contradiction, suppose |M,| = 3%, then
T, is a Sylow 3-subgroup of G and sois 7. But C(7T') has a different structure

https://doi.org/10.1017/5144678870000690X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000690X

[17] Characterization of L,(3) 67

from that of C4(T,), a contradiction to Sylow’s theorem. Hence we must
have |M,| = 81.
We want to show that M, is abelian. We have

N(Ty) = (Kat) - <a, ))M

By the structure of Sg, there exists an element A € T, inverted by ¢ and a2.
Therefore A € Cg(uv) n Cg(tu). Consider the action of the four-group
{uv, vty on M,. We have Cy ({wv, v£)) = (4). Therefore

(Cag, (40)| == [Cig, (v1)] = 3.
Next consider the action of (v, £) on M;. We have Cy, <¢, v) = 1. Therefore
IM,| = |Cag, (0)] [Cpy, (v)] [Capg, (0))]

giving Cyy (v) = 1. Thus the involution v acts fixed-point-free on M,. By

a result of Zassenhaus, M, is abelian. By a result of Gorenstein-Walter [3],
= C¢(t)Cg(vt). Showing that M, is elementary abelian of order 81.
We shall next take a closer look at M. Since

azeNg(T,) and (az)'t(az) = ot,
we get
Cp,(v2) = (a2)1Cyy, (¢) (az).

Because ¢ € Cyy (t), and there is an unique subgroup of order 9 in Cg(o) N H
namely T = {0y,0,), we get Cp(t)=T. Let (az)7loy(az) =,
(az)tay(az) = ;. Then CMl(vt) = {;, {,>. We also observe that
ulyu = (' using the relation (az)u(az)™ = uv. Collecting the results
proved so far, we have the following lemma.

(4.1) LEMMA. Let T, be the Sylow 3-subgroup of Cq(tu) containing {c).
Then we have Cgo(T,) = (t)M, and N(T,) = ({zt) - {a, D) - M, where

22 =tuv; tat =a7l; M= Cp (£)Cpy (vt);
CMl(t) = <01: O-2>; CMl(vt) = <C1) C2>
with (az)™1eo;(az) = ¢; (0 =1, 2) and ulyu = (3.
Next we shall investigate the structure of Cg(0;). We have
Colo) NH =T+ 0,

where Q, = {a,, b,>, a quaternion group containing the unique involution 2.
Clearly Q, is a Sylow 2-subgroup of C 4(s,). We shall use the following result
of Brauer-Suzuki [9]. If X is a finite group with a generalized quaternion
Sylow 2-subgroup, then X/0(X) has only one involution. In our case, denote
0(Cgloy)) = V. Then <oy> CV and Cg(s;)/V has only one involution ¢V.
It follows that {¢>V is normal in Cg{o,) and so (by Frattini’s argument,
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Coloy) = (Celt) 0 Colr))V =Qy- T - V.

Because Q,T ~ SL(2, 3) is not 3-closed, it follows that 7' & V and so
TV = {o. We get Cqzloy) = (Qs, 050V = S, -V where S, ~ SL(2, 3)
and S, "V = 1. Since Cg{t) n V = (o), it follows that ¢ acts fixed-point-
free on V[{oy> and so V/[{o,) is abelian V' C (o,> C Z(V).

Now v inverts g,. Therefore Ny{(o,> = (¥DS,V. Since V is character-
istic in Cg(oy), we have V < Ng{a,)>. Thus the four group <{v, > acts on V'
and so V is a 3-group. Using Brauer-Wielandt’s result, we get

V1= Cr@®)l ICr(v)] - ICp(v?)].

We know that Cp(f) = {oy> and from the fact M, C C4(oy), we get that
|Cy(vt)| = 9. Now v is conjugate to vf in Cglo,) ie. v = azlvta,, we get
|Cy(v)] = |Cyp(vt)|. Thus |[V| = 35. By Gorenstein-Walter [3],

V = Cy(f)Cyp(v)Cy(vt).
Put Cp(v) = ({3, {4p Where {3 = a3 as, £y = a3'L,a,. We have
V = o1, &1, 8o 85, Lad-

Since V[{o,> is abelian and so elementary abelian of order 81, we may
represent {v>S, on the ‘vector space’ V/{o;) over GF(3). We get in terms

of the basis £;<0,)>, £,{01>, (30D, £401>;

el (e () s

where (I) is the 2 X 2 unit matrix, and C, D are 2 X 2 matrices over GF(3).
Let &, be represented by

4, A,

(A3 A4)

where (4;) 7 =1, 2, 3,4) is 2x 2 matrix over GF(3). Using the relation
byla,by, = azl, we get A= A4,, A,= —A,. Since o3'vo, = 0,v, wWe get
D = I. By the relations o3ta,0, = b,; 030,05 = a,b,, we obtain A, =1,
A, =1, C = —I. Therefore we have

I —1I 1 I
02—9-(0 I); b2->(I —I)'
Hence we have 631830, = {71305 05 00, = (31,08 where ¢, = 0,1 or
—land?=1,2.

Since V[{a,>, is abelian, we have {32, = {,0f where ¢ = 0, 1 or —1.
Conjugating both sides of the equation (31¢,{; = {,0f by the element a,,
we get {;18,¢, = £, 0%. Consider the group Cg(<oy, £;)) € Cglo;). We have
Ce(<o1, £10) 8 P = {0y, 03, 1, 8a, La, Lap- Suppose that C¢(<oy, {1)) = P,
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then ¢ = 0, and so Cg({¢y, {y») is divisible by 3%, a contradiction to the
structure of Cg(T') since T is conjugate to {{,, {,> in G. So & # 0.

We observe that <oy, ;> < P. Since Ng(oy, §10)/Cel{oy, &) is
isomorphic to a subgroup of GL(2, 3), we get that Cg(<oy, {;>) is of order 35.
So Cg(<ay, £1)) = K04, 05, &4, &a, > where x € ({3, {,>. Then we have the
commutator group (Cg({oy, 2,)))’ of Cg(loy, {y)) is

{oy, a3 z0,> #~ {0y, {1 it x £,

From the structure of Cg(0,)/{o;> and the fact that Cg4(<¢y, {;>) is not
divisible by 35, we get Z(Cg(<oy, £1>)) = <0y, {y). Therefore we have

Z(Cg(<o1, £13)) 0 (Coloy, £1)))" = o) char Cg(<oy, £1))
and so

{0 AN¢(Cgl<oy, £1))) = Ng(<oy, &1D)

(since {ay, {;)> = Z(C¢(<oy, £1)))). By (4.1), there is an element faz € Cg(tu),
such that (faz) e Ng({oy, {y>) but tfazeNg{e;>, a contradiction to
{g,> 4 Ng{{oy, {1>). Therefore we have shown that

Celoy, L) =V, = {01, 03, {1, Ca, E30-

Similarly we can prove that

Ceg(<oy, 8p>) = V3 = <04, 02, {1, §2s L3

with uaz playing the role of taz.

Now we are in a position to determine ¢; (¢ = 1, 2). By conjugating the
equations 63030, = (718305 and 63,0, = (3,05 by the element uf,
we verify that &; = &, = 0 using the fact {; € Cy(¢;) and {, € Cg(l;). Except
for the unknown ¢ = 0, we have determined the structure of P completely. In
particular we see that Z(P) = {a,). The fact implies that N4(P) C N {oy>
and therefore P is a Sylow 3-subgroup of G. By the structure of Ny{a,>,
we see that Ng(P) =V - (Ng(oy) n Sy(v)) = (v,¢t) - P. Collecting the
results found so far, we have proved the following lemma.

(4.2) LEMMA. A Sylow 3-subgroup P of G and its normalizer B = N o(P)
in G have the following structures.

P=T:T,-Ty; B=NgP)={v,t>-P,
where
T = C»(t) = {0y, 63
T, =C,(vt) = <&y, &
T3=C,(v) =<5 Lo
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M =T - T, s elementary abelian

[Cs, &1l = 1 = [{4, &s]
(L4 &) = of =[5, Cs]
[oa, G3] = &4
[0z, C4] = 0.

5. Final characterization

We shall now determine the structure of Ng(v,t>. First we note
by (4.1) that the element faz e Cg{fu) satisfies the following relations:
(taz)? = v; (taz) '{(taz) = vt and (taz)'v(taz) = v. Therefore taz € N (v, t).
Also using (4.1), we show that

taz € No(oy, £1) = Ng(Cooy, £10) = Ne(Vy)-

Because ({3 = Cg(v) n V,, we get (faz)1{,(taz) = ¢4 where 8, = 1 or —1.
Next consider the element waz in Cg(fu). Again we verify that (uaz)? = v,
(waz)t(naz) = vt, and (uaz) 'v(uaz) = v. So (uaz) e N v,t)>. Also we
check that waz e Ng{oy, §3> = Ng(Celoy, o)) = Ng(V3). So we get once
more (uaz)1¢,(uaz) = 328, = 1 or —1.

We can now construct the following table using (4.1) and the results
just found to show the actions of the elements faz, a,, #az on V,, V(= V),
V5 respectively by conjugation.

TaBLE 1
taz ag uaz (tazag)3 (aguaz)3
o1 &1 a1 e ofl af 3
o2 Lo — &1 — -
& crl_l {3 0y ! Ci‘l -
2 o1 {4 o — ¢ha
& &g ot — o4 —
La — o ot — th

If 6, is equal to (—1), then we have
(tazay)®v e No<Kv, t) n Cloy, Ly
and (faza,)®v inverts {,, a contradiction since

N, t) n Celoyg, &y = 1.
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Hence we must have 6, = 1 and consequently (faza,)® = 1. Similarly,
we obtain 8, = 1 and (a,uaz)3 = 1. Since uaz = tu - taz and taz € Cg(tu),
we have that faz and #az commute. Thus we have shown that

{taz, a4y, waz) C N (v, t>
and the following relations hold for the group {faz, az, naz);
(taz)? = ai = (uaz)? = (taza,)? = (a,uaz)® =1
(mod <v, t)); (taz)(uaz) = (waz)(taz). By Moore’s result, we get
{taz, ay, uazy[{v,t> =~ S,

(the symmetric group in 4 letters). Since Cg(v, £) is of order 16, we have
also proved that {faz, a,, naz) = N (v, t). Therefore we have proved the
following lemma.

(5.1) LEMMmA. We have
N = NKv, t) = (taz, a,, uaz)

where N v, t)[{v, t) = S,. Moreover, the actions of the elements taz, a,, uaz
onV,, V,, V,respectively are shown in Table I with §; = 6, = 1.

We shall next show that the set of elements in BNB i.e. the set of
elements of the double cosets BxB with z € N, forms a subgroup of G.
Moreover we shall compute the order of BNB. But first we want to define
a few notations.

Put W = N/<{v,t> and taz{v,t> = r,, a,{v,t> =7,, uazl{v,t) = 7;.
Then elements of W are generated by the involutions 7,, 7,, 7;. For any
weW, let [(w) =1 be the smallest non-negative integer such that
W= r; "7, -7y, Where 7;;€ {r, 75, 75}. Let w(ry) = taz, o(r,) = a, and
w(rg) = uaz. Foranywe Wandw =r; 7, - -7, , let

w(w) = (o, (r;,) - - - o).
For notational convenience, we shall denote BwB (w € W) to mean Bw(w)B.

(6.2) LemMMA. The set of elements in G;= Bu Br;,B (1 =1,2,3) is
a subgroup of G.

ProOF. Representing the elements faz, {, on the ‘vector space’
M = {ay, 04, 1, {o) over GF(3), we get

—1 0

0 —1
taz — ;o L

o o~
—_— O == O
O -~ O ™
-0 o O

We note that since Co(M) = M, the representation is faithful.
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Consider the element fazf,. We have
—e
(tazl,)3 —
1

Suppose ¢ = 1, then we have v(taz,)% € C4lo,, {;) = V,, a contradiction.
Therefore ¢ = —1. Then we get (fazl,)? e M n Cg(v) = 1. So (tazf,)® = 1.
Similarly we get (uaz2{3)3 = 1 and we know that (a,0,)3 = 1. Therefore,
we have putting {, = X, 0, = X,, {3 = X,

(%) (0(r)X,)® =1 (i=123)

Suppose that we have g, = b,w(r;)b; € Br; B with b, b; in B. Then the
element g; = (b)) o(r,) (w(r;)2- b;') € Br;B and we have g;-g;= 1.

Clearly to show that G, is a subgroup of G, we need only to show that
o) Xlor)eG, (8=0,1, or —1), since for any be B, we can write
b = v, X, with v; € {v, t)V; where v, is normalized by w(r;). We have three
cases to consider.

(a) 6 = 0. Then we have w(r;) - w(r;) € {v,t>) C B.
(b) 6 = 1. Then w(r))X,0(r;) = X ow(r,) w(r;)"2X;* € Br,B by ().
() 6 = —1. Then w(r,)X o(r;) = o(r,)? X, 0(r;)X,w(r;)* e Br;B
by ().
Therefore we have shown that G, is closed under taking inverses and
multiplication. Thus G, is a subgroup of G.

(5.3) LEMMA. Foranyiandw e W, if l(r;w) = I(w), thenr, Bw C Br,wB.

Proor. Since W ~ S,, and 7, satisfies the Moore’s relation, we may
identify 7;, 7,, 73 with the transposition (12), (23), (34) in S, respectively.
Let Cy = {1}, C; = {r,, 75, 73}. We shall give a method of constructing C,
for n = 2. Suppose that the sets C,, - - -, C,_, have been constructed. Let
C, be the set of all ‘words’ of length #. Define C, = 0,— Uy<;<n1C;. Then
clearly elements w in C, has l(w) = ».

To check that for those w e W with I(r,w) = I(w), we have

r,Bw C Br,wB,

we need only to see that »,X,w C Br,wB. It is easily verified that for those
w e W such that I(r,w) = [(w), we can always write 7, X ,w = r,wY, with
Y, e B using Table I,

The computations are summarized in Table II, which is self-explana-
tory.
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TasLE II

w =4 el i, l{w) I{rw) l(row) l{rsw) b4 Yo Y3

(12) 2 1 0 2 2 {2 l3
~1 -1

(23) 2 1 2 S &

(34) 73 1 2 2 Ca &1

(132) 17e 2 1 3 3 s &t

(123) 971 2 3 1 3 ag (5]

(12)(34) 173 2 1 3 1 ot

(243) ro73 2 3 1 3 o1 o2

(234) rarg 2 3 3 1 ' &

(13) 717971 3 2 2 4 o1

(1432) r17273 3 2 4 4 $a o2

(1342) rgr17g 3 2 4 2 ot

(1243) ror173 3 4 2 4 & L2

(1234) r3rery 3 4 4 2 o2 {3

(24) ror37y 3 4 2 2 o1

(143) Yi7o7173 4 3 3 5 {2

(142) 1727372 4 3 5 3 Cz_l

(13)(24) rorgryre 4 5 3 5 3 !

(134) r3rar1re 4 3 5 3 ot

(124) YorgYery 4 5 3 3 &1

(1423) r172Y17372 5 4 4 (] 4

(14) r17rar3¥27] 5 4 a2

(1324) 7213717271 5 6 4 4 {3

(14)(23) Y17273727172 (] 5 5 5

(6.4) LEMMA. The set BNB = G is a subgroup of G and the double coset
Bw, B is different from Bw,B if w, = w,.

Proor. It follows from (3.1), (5.2), (5.3) and Tits [8].
We shall next compute the order of G,. We check that

Wy = w(7,757573717,) € Clv, )

and so is an involution. The group <v,t, w,) is elementary and different
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from (v,¢, u) = {v, ¢, w(r,)lw(r;))>. Consider the group I = P n wyPw,.
It is acted on by <v, ¢>. By Brauer-Wielandt [10], we get

I = C4(t)C1(u1)Cy(0).

Now we have C;(f}) = T n wyTw,. Since {t, v, wy> 7 {t, u, v), we get
either {{, v, wy) = {¢, v, 4> or ¢, v, ut;>. In either case, by the structure
of H, we get T n wyTw, = 1. Since Ty, = w(r,) ' Tw(r,), we obtain

Ty v wyTywy = (T o Tetrowutrn™otry),
We have again that
w(r)wow(r) e Cqv, ) and &, u,vd # &, v, o(r)weolr,) ).

So we get Ty nwyTw, = C{vt) = 1. Lastly, by exactly the same reason,
we prove that T3 n w,Tyw, = C;(v) = 1 showing that I = 1.

TasLE III
w By (Bw)’
1 1 P
(12) &a> v,
(23) {o2> Va
(34) Y Vs
(132) {04, £3> <oy, 81y 830 80D
(123) {Ca» Ca> (o1, 03, 1, 03D
(12)(34) &3, Lo {0y, 02, 81, Ca>
(243) s Ca> {0y, 04, £as L
(234) {03, L1 {01, 820 835 Co>
(13) {03, {2, Ea> <oy, 81, 83>
(1432) {61, &1, 8D (03,8, Cad
(1342) {0q, &1, CaD <0y, £, Ea>
(1243) <0y, 8a, Ea> {0y, 1, Lo
(1234) {01, 85, L3> {04, {1, E3>
(24) <62r Clr CB> <O'1: CZ' Cd>
(143) <Ul: Clt C:)r C4> <GZr Cz>
(142) {01, 63, 1, £ {Cas E0>
(13) (24) <O'l’ 62' Cl’ Ca> <Ca: C4>
(134> <61x 0'2: Cz: C4> <C1: C3>
(124) {01, 8a, 83, $o> {0q, L0
(1423) vy NI
(14) V, {op>
(1324) Vs Y
(14)(23) P 1
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Define for any w € W, the group B,, generated by all elements x in P
such that w(w)zw(w)™! is in w,Pw,. Using the informations obtained so
far and taking advantages of the identification of W with S, in Table II,
we can construct the group B, for all w € W, and these groups B, are
shown in Table ITI.

We observe that for every B, there exists the subgroups (B,)
that B,(B,) = P and B, n (B,) = 1.

!

such

(5.5) LEMMA. Every element of G, can be written uniquely in the ‘normal’
form k- po(w) - p, with he (v, ty, pe P and p,e B,. The order of G, is
27-38-5-13.

Proor. By (5.4), the group G, is the set of elements in BNB. Hence
for any element z € G,, we get that X = b,w(w)b,, b, € B. We have that
P = Bw- (Bw)'. We may write b, = hp,p, with he (v, ¢), p,e B, and
po€ (By). Since, we have w(w)ho(w)™ e (v,t) and w(w)p,o(w)e P,
we get x = b - w(w) * p, showing the existence of the ‘normal’ form.

To prove uniqueness, suppose that we have bw(w)b, = &' w(w’){b,).
By Tits [8], we get w = @’ and so we have bw(w)b,, = b’ w(w)(b,)’. There-
fore we get (b')71b = w{w)b, (b, ) w(w) 1. Since we have (b')'be B and
0 (w)b,(b,) tw(w)! € P¥, we obtain (0')~16 € B n P* { P. The uniqueness
follows from the fact P n P¥ = 1.

By Tits [8], the 24 double cosets BwB are distinct. Therefore we have

Gol = 3 |[BwB| = |B| 3 |B,| = 27+ 3% 5 - 13.
w 17}

The proof of this lemma is now complete.

Before the final proof of the theorem we need the following result of
Thompson [7].

LeEMMA B (Thompson). Let A be a subgroup of the group & such that

(@) || is even

(b) A contains the centralizer of each of its involutions.

(€) Useq #* is of odd order.

Then (%) = 1 where 1(Z) is the number of conjugate classes of involu-
tions of Z.

Conclusion of the proof of the theorem

Using the informations of our tables (I, IT and III), we can multiply
any two elements of G, in the ‘normal’ form to get the product uniquely
in the ‘normal’ form. (Uniqueness of product since we have determined
g, 8;, 8,). Now if X is any finite group satisfying (a) and (b) of the theorem,
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then X has a subgroup X, of order |L,(3)] with uniquely determined multi-
plication table. Hence taking X to be L,(3), we see that X, = L,(3) and so
L,(3) = G,. Consequently G, satisfies conditions (a) and (b) of lemma B.
If condition (c) of this lemma were true for G,, then we would get i(G) = 1,
a contradiction to (2.11). So [),.q G§ is even and normal in G. By (3.2)
we get immediately that G = . The proof of the theorem is now complete.
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