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In this paper we aim to give a characterization of the finite simple
group 1.4(3) (i.e. PSL(4, 3)) by the structure of the centralizer of an involu-
tion contained in the centre of its Sylow 2-subgroup. More precisely, we
shall prove the following result.

THEOREM. Let t0 be an involution contained in the centre of a Sylow
2-subgroup of £4(3). Denote by Ho the centralizer of t0 in Lt(Z).

Let G be a finite group of even order with the following properties:

(a) G has no subgroup of index 2, and
(b) G has an involution t such that the centralizer CG(t) = H of t in G is

isomorphic to Ho.
Then G is isomorphic to £4(3).

The following notations are used.

NX(Y): the normalizer of Y in the group X.
CX{Y): the centralizer of Y in the group X.
{• • • I • • •}: the set of elements • • • such that • • •.
<•••!•••>: the group generated by • • • such that • • •.
[x,y]: x~xy~^xy
Yx: x~*Yx
[X : Y]: the index of a subgroup Y in X.
\X\: the order of X.
0(X): the maximal odd-order normal subgroup of X.
x ~ y{X): x is conjugate to y in the group X.
Y char X: Y is a characteristic subgroup of X.

1. Some properties of Ho

Let F3 be the finite field of 3 elements and V be a 4-dimensional vector
space over F3. Take
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which is an involution in SL(4, 3). (Here we identify the linear transforma-
tions in SZ.(4, 3) with the corresponding matrices in term of a fixed basis.)
The centre of SL(4, 3) is generated by

c =

and is of order 2. Then a matrix (<xti) in SZ,(4, 3) satisfies {aLu)t'o = *o(a«) * °r

(r = 0, 1) if and only if (ot̂ ) has the form

B)
 or

where (A) and (B) are 2 x 2 matrices over F 3 such that det (A) = det (B) =£ 0.
Denote by H'o, the group of matrices in 5Z.(4, 3) which commute

projectively with t'oi.e. which satisfy the relation (<x<3)<o = t'0(a.ii)c
T ir = 0, 1).

We have
1 ON ,1
0 ' » • - / - 1 ,

— 1

belong to H'o and generate a four-group F'o. Moreover, we get

Denote by L'o, the group of all matrices in 51,(4, 3) of the form

.)
where (̂ 4) and (B) belong to SL(2, 3). Clearly then H'o = F'o • L'o and
F'o n L'o = 1. Let L'x be the subgroup of L'o of the form

where (A) eSL(2, 3). Hence L[ ~ SL{2, 3). Put L'2 = u'L\u'. Therefore
T — Z.'1
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Now L\ is generated by the following elements

and

Put a'2 — u'a[u', b'2 = u'b[u', a'z = u'' a[u''. Let Ho = H'J^c}, and in the
natural homomorphism of H'o onto Ho, let the images of t'o, u', v', F'o, L'o,
a'it b'o a'f, L'f be t0, u, v, Fo, Lo, ait bit at, Lt respectively (i = 1, 2). Then
we get the following relations:

Ho — -f o ' Lo

Fo = (u, v)> is a four-group
Lo = Lx • L2 where ^ n I 8 = (ty, and [L1( Z,2] = 1

(i.e. Llt L2 commute elementwise).

Li = <«,-, 6<, ailfl? = 6? = ô- Klaibi = a!X, 07lai°i = bi> <hlbiai = «<*<>
vajt) = aj1, vbtv = 6^,-, vatv = (T71.

The structure of Ho is completely determined and it is now easy to
compute the following results of Ho.

(1.1) Every element of Ho can be written uniquely in the form
a<

1b
i
1a^t[t^anupV where tx = a1a2; ti = bxbi; a = axa2\ i = 0, 1, 2, 3;

/ = 0, 1; k = 0, 1, 2; / = 0, 1; m = 0, 1; « = 0, 1, 2; p = 0, 1; ? = 0, 1.

\H0\ = V • 3^

(1.2) The group Q = <a1( 6j, a2, b2} Fo is a Sylow 2-subgroup of
L4(3) and of Ho. Z(Q) = <<„>•

(1.3) The group T = <<T1( CT2> is a Sylow 3-subgroup of Ho and
is elementary abelian of order 9. We have CH (T) = <70> x T, and
NH()<Ty = (t, u, vy-r.

(1.4) There are seven classes of involutions in Ho with representatives
ô» h> u> tou> uv> touv a n ( i v-

(1.5) The centralizer of tx in Ho, CH (tt) = A = (alt a2, b1b2> u, vy
is a non-abelian group of order 64 with Z(A) = A' = (t9, txy where A'
denotes the commutator group of A. The group A contains precisely
four elementary abelian groups of order 16, namely Ex = (tQ, t1, t2, w>,
E2= <to,tltt3,uvy (t3 = a1t2);K1= (to,t1,u,v

(1.6) The centralizer of u in Ho,
CHM = U = (t0, tlt t2, u, v
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We have CH (u) = CH (tou). A Sylow 2-subgroup of U is

{to,tltt2,u,v} = E1-Kl

and has as its centre the group <t0, tlt w>.

(1.7) The centralizer of uv in Ho,

CHO(UV) = W = <*o. h> h. u> v> • <p> (p = o^Oz).

We have CHJiuv) = CHa(touv). A Sylow 2-subgroup of W is <70, t1, t3, u,
with its centre equals to <20, tx, uv}.

(1.8) The centralizer of w in Ho is i ^ = (tn, tlt u, v>.

(1.9) We have CG{Ei) = £t- and Nu^E^jEt ~ 54, the symmetric
group in 4 letters. So a Sylow 2-subgroup of NH (£j)/£,- is dihedral of order
8. (i = 1, 2).

(1.10) There are precisely two normal elementary abelian groups of
order 16 in Q, namely E± and E2. There is one and only one normal subgroup
of order 32 in Q containing Et. These are <«1( a2, t2, u) ^ Ex with its centre
equals to <t0, txy and (alt a2, t3, uv} Sg E2 with its centre equals to <70, txy.

2. Conjugacy of involutions

Throughout the rest of this paper, we shall suppose that G is a finite
group of even order with properties (a) and (b). Since CG(t) = H is iso-
morphic to Ho, we identify H with Ho. Then t = t0.

First we note the obvious fact that the group Q is a Sylow 2-subgroup
of G, since by (1.2) Z(Q) = (ty, a cyclic group of order 2.

(2.1) LEMMA. The involution t1 is not conjugate to t in G.

PROOF. By way of contradiction, suppose that tx is conjugate to / in G.
We have A = Cjjfa). Let T be a Sylow 2-subgroup of CG(tt) containing A.
By our assumption [T : A] = 2 and so A < T. Let x be an element in T—A.
Consider x~xErxQA. We know that there are precisely four distinct
elementary abelian groups of order 16 in A namely Ex, E2, Klt K2 where
K2 = Kl*. Now if E\ = Elt we get Ex < (A, x> = T. If x does not normalize
Elt x~xExx ^ Zs2 since otherwise we would have two normal subgroups
Ex and E2 of Q conjugate in G but not in NG(Q) Q H, a contradiction
to a theorem of Burnside [4, p. 203]. So x~^Exx = KX or K2. Therefore
x~1E2x = E2, in which case we get E2 < T. Hence we have either Et or
E2 normal in T.

Suppose that Ex < T. Since Ne(Et) D (Q, Ty, we get 2Vc(
£i) $ •H'-

We have by (1.9) Ce(E1) = Et, and so S^ = Ne(E1)IE1 is isomorphic
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to a subgroup of GL(4, 2) ~ Aa. A Sylow 2-subgroup Q = Q\EX of Sf is
dihedral of order 8. Consider Cy(a1E1)^Q. By way of contradiction,
suppose Z{T\EX) = Z{T) = (vExy or (a^Zi!). Then either (Ex, v} or
(_EX, axv> is normal in 7\ Since Z « £ 1 , )y>) = (t, tx, u) and

both of order 8, hence a contradiction to (1.10). Therefore

From the structure of A8, the centralizer of any involution in As has order
26 • 3 or 25 • 3, we get \Cy(ajEx)\ = 2s • 3 and hence Cy(axEx) has an
abelian 2-complement. The conditions of Gorenstein-Walter's theorem [3]
are satisfied by the group £? and so we get the following possibilities for £f.

(i) ST\Jt ~ PSL(2,q); q±l = \C <,{axEx)Jt\J!\
(ii) ST\Jt ^ PGL(2,q); q±l = \\C^ax

(iii) y\Jl ~ Q or
(iv) &\Jt ~ A7

where in all cases ^ =
Suppose that |~#| ^ 1. Consider the action of the four group

'f = (ya1E1, b^E^ on JK. Since a1E1, b1E1, a1b1E1 are conjugate in £f,
we get that |uT| == 33 or 3. Since |^8| = 2« • 32 • 5 • 7, we must have

= 3 therefore -f • Jt = -fx^. Now we look at

= NG(ax, blt Ex} n N^

Since <7> = ^(a! , 61( Ej), we have NG(alt blt Exy Q H. Thus

NG(E1,al,b1}IE1 ~ Ait

a contradiction to "T • J( = Vy.J(. Hence J( = 1. Clearly then (i), (ii)
and (iii) cannot arise.

Thus we are in case (iv). The non-trivial elements of Ex separate into
4 sets of involutions namely {t}; {u, ttxu, tt2u, ttxt2u}; {tu, txu, t2u, txt2u}
and {tx, t2, txt2, ttx, tt2, ttxt2}, each of these sets lie in a different conjugate
class of H. Let /i eNG(Ex) be an element of order 5. Since CG(EX) = Ex,
we get that [i acts fixed-point-free on Ex. Together with the fact that
tx~t{G), we conclude that all involutions are conjugate in G. Now let
I eNG(Ex) be an element of order 7 in G. Since all involutions of Ex are
conjugate to t and because 1\ \H\, we get that X acts fixed-point-free on
Ex, a contradiction since 7-f (|£i| — 1). Thus we have shown that Ex <tl T.

By exactly the same reasoning, we get a contradiction if E2 < T.
Hence tx is not conjugate to t in G. The proof is complete.
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(2.2) LEMMA. The elementary abelian groups Ex, E2,KX are not conjugate
to one another in G.

PROOF. We have shown that Ex is not conjugate to E2 in G. Suppose,
by way of contradiction, Ex is conjugate to Kx in G. Since 27 divides the
order of NG(E1), and by our assumption, we get a Sylow 2-subgroup of
NG(KX) is of order 27. There exists a 2-group in NG(KX) containing A such
that [T : A] = 2. Now Z(A) = (t, tx} is characteristic in A and so normal
in T. Since NG(Z(A)) nH=Q and Kx <fl Q, therefore we obtain T $ H.
Let xeT—A. Then x"xtx e {tx, ttx}, a contradiction to (2.1). Similarly
we can show that E2 is not conjugate to Kx in G. The proof is finished.

(2.3) LEMMA. / / 64 divides the order of CG(u) then u and tu do not lie in
the same conjugate class in G.

PROOF. Let T Q CG(u) be a group of order 64 containing

U = (t,tx,t2,u,v}

and let x e T—U. Then x normalizes Z(U) = (t, tlt u). By (2.1),

x~xtx e {ttxu, txu, tu).

We shall consider each possibility in turn. If x~xtx = ttxu, then x~Hux = ttx.
The proof is finished since ttxu ~ u(H) and ttx ~ tx(H). Next if x"ltx = txu,
then we get x~xtux = tx and so tr~~*tx(G) since txu<~^tu{H), a contradiction
to (2.1). Lastly if x~xtx = tu, then we have x~xtxx e {tx, ttx, ttxu). Now if
x~xtxx = tx, then x~xttxx = tt-^ur-^ u(H) and so lemma is proved. The case
x^tjX = ttx is not possible, since this would imply

x~xtx = x~1t1 • ttxx = ttx • tx = t

(Here we use the fact x2 e U). Finally if x~ltxx = ttxu, there is nothing to
prove. The proof of this lemma is complete.

(2.4) LEMMA. / / 64 divides the order of CG(uv), then uv, tuv do not lie
in the same conjugate class in G.

PROOF. As in (2.3).

(2.5) LEMMA. / / u is conjugate to t in G, then tu is conjugate to tx in G.
Moreover, we have NG{EX)\EX ~ S5, the symmetric group in 5 letters.

PROOF. The first part of this lemma is obvious from (2.3).
Consider NG(EX). We have NH(EX) = Q • <cr> and NH{EX)IEX ~ 54 .

Let T be a Sylow 2-subgroup of CG(u) containing U = (t,tx,t2,u,vy.
There exists xeT—U with xeNG(U) and so x'^E^xQU. By (1.6) and
(2.2), we get »~1E1x = Ex. Hence NG{EX) $ H.
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A Sylow 2-subgroup of Sf = NG(E1)IE1 is dihedral of order 8. Suppose
by way of contradiction that, Q has one class of involution in Sf. Then
there exists an element g€NG(E1) such that g~1(E1, ax}g = (Ex, v},
which is a contradiction since Z{(EX, %>) = (t, t{) whereas

Since we have CG(E1) = Ex, £f is isomorphic to a subgroup of As.
Suppose that 0(6?) = ^4f ^ 1. Then consider the action of the four group
& = (axEx, bxExy on JK. Using the facts that involutions of # are con-
jugate in y and that the centralizer of any involution in A8 has order
2« • 3 or 25 • 3, we get by Brauer-Wielandt [10], |uT| = 27 or 3. Since
27 f |48|, we must have |uf| = 3, and so $ • Jl = ftxJV. We look at
N,{#) = N0«Elt «lf b^nNaiE^/E,. Since <*> = Z « £ 1 , a1( ft^); we
get NG((EX, ax, bxy) C # . HenceNG((E1, ax, biy)/E1 s ^44, a contradiction
to # • ^ = &Y.JK. Thus we have shown O(^) = 1.

By our earlier remark, we must have |C ,̂(«X-E î) i = 23 • 3 or 23. Hence
we may now apply Gorenstein-Walter's theorem [3] to get Sf ^ PGL(2, 11);
PGL(2, 13); PGL(2, 3) or PGL(2, 5). The first two cases cannot arise since
11 and 13 do not divide \A8\. Sf s PGL{2, 3) =; S4 would contradict the
fact that NdEj) $ if. Therefore we obtain & = PGZ.(2, 5) s 56. The
proof is finished.

(2.6) LEMMA. If uv is conjugate to t in G, then tuv is conjugate to tx in G.
Moreover we have NG(E2)IE2 ^ S5, the symmetric group in 5 letters.

PROOF. AS in (2.5).

(2.7) LEMMA. / / u is conjugate to t in G, the group Yx = iVG(£1) n CG(tu)
has the following structure. Y1 = (E-^, v, z~y • <(cr) such that z2 = 1; ztz = u;
ztxz = tx; zt2z = t2; zaz = a; and zvz = v or tuv.

PROOF. By (2.5), we see there exists an element fi eiVG(£1) of order 5
acting fixed-point-free on Ex and so it follows that tx is conjugate to tu
in N^Ei). Now A CiVG(£1) n CG(tx) and A is a Sylow 2-subgroup of
CG(^), for otherwise, we would have tx in the centre of a group of order 27,
a contradiction to (2.1). We get that 2« divides \NG{E1) n CG{tu)\. We
know that a eN^EJ n CG(tu) = Yx and fi$Yx. Hence lY^ = 2« • 3 and
therefore Yx = A • <CT> with A ^ A.

We have the group CG(tu) n H = U a. subgroup of index 2 in Yx.
The group (tx, t2y(o} is the smallest normal subgroup of CG(tu) n H with
2-factor group. Hence (Jtlt £2><ff> char CH(tu) and it follows that it is
normal in Yx. Let T be a Sylow 2-subgroup of Yx containing U = (Ex,vy
and let z e T—U. We know from the isomorphism of T and A, that Z(T)
is a four-group. Obviously tu e Z(T). Since (tx, 22> char ^ ^ <2><<T> and so
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<Jtx, £2> <d T. Hence (tltt^) has non-trivial intersection with Z(T). So
1 ¥= <h, h> n Z(T) Q <*1( t2> n Z(U) = <^>. Thus Z(T) = (tu, t,}.

From the fact (tx, <2><ff> is normal in Y1, it follows that

z~~x
az e

Replacing z by zv if necessary, we can suppose that z~xaz = a • x, where
x e (ti,t2}. Again replacing z by ztx, zt2 or zt1t2 if necessary, we get
z~laz = a. We have (t1, t2} <Yt and so it follows z~xt2z = t2 or t^t2.
Comparing the action of z~xt2z on a by conjugation with those of t2, t1t2,
we conclude that z~xt2z = t2.

Next we want to determine the action of z on (t, u). We have
Z{U) = <t, tlt uy char U a n d therefore (t, tt, u) < T. I n (t, t l t u) b y (2.5),

the only elements conjugate to t in Yx are ttxu and M. It follows that
z~ltz = u; z~xuz = t (z2 e H). Because <£x, v} < 7", we get z^vz = i;s for
some s e Ex. From the fact (z~1vz)a(z~1vz) = a~x, we see that

seE1n CG(a) = <t, u).

If z" 1 ^ = tv, then (z2)"1^2 = tuv, a contradiction since w and tuv are
not conjugate in H. Similarly, z~xvz = uv is impossible. Thus 2~xi;z = v
or fow.

From the structure of A, we know that z has order at most 4 and all
elements of order 4 have their squares lying in Z(A). So we have z2 e Z(T)
and from the fact z s CG(CT), we obtain either z2 = 1 or z2 = tu, in which
case replacing z by zw, we have (ZM)2 = 1. Hence all the statements of the
lemma are completely proved.

We note also that each successive replacing of z does not affect the
earlier conclusions. The proof of this lemma is finished.

(2.8) LEMMA. If uv is conjugate to t in G, then we have

Y2 = CG(uv) n NG(E2) = <£2, v, z'><p> (P = o?o2)

such that (z')2 = 1; z'tz' = uv; z'ttxz' = tt1, z'ttzz' = tt3; z'vz' = v or tu;
z'pz' = p.

PROOF. AS in (2.7).

(2.9) LEMMA. The group G is not 2-normal.

PROOF. Suppose by way of contradiction, that G is 2-normal. Since
<<> is the centre of a Sylow 2-subgroup Q of G. It follows from Hall-Griin's
theorem [4, p. 216], the greatest 2-factor group of G is isomorphic to that
of NG(Z(Q)) =H i.e. isomorphic to HjL which is a four-group. But this
contradicts condition (a). Hence G is not 2-normal.

(2.10) LEMMA. The involution t is conjugate to an involution in {u, v, uv}.
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PROOF. By (2.9), G is not 2-normal, hence there exists an element x
in G such that i e Q n x~xQx, but <7> is not the centre of x~xQx. The centre
of x~xQx is <x~xte> and thus x~xtx ^ t. On the other hand, t e x~1Qx and
so t and a ^ t e commute. Therefore x~xtxeH. Without loss of generality,
we may assume that x~~xtx e {u, tu, v, uv, tuv} (since x~xtx ^ tx by (2.1)).
Interchanging u by tu; v by tv, if necessary, we may and shall suppose
x~*tx is an element in {u, v, uv}.

To prove the next lemma, the following unpublished result of Thompson
is indispensable.

LEMMA A (Thompson) [7]. Suppose © is a finite group of even order
which has no subgroup of index 2. Let S^2 be a Sylow 2-subgroup of © and
let „# be a maximal subgroup of £f%. Then for each involution I of ©, there
is an element B of & such that B^IB e <Jf.

(2.11) LEMMA. The group G has precisely two conjugate classes of involu-
tions Jf\ and $T2 with the representatives t and tu respectively: C%~x n H is
the union of 4 conjugate classes of involutions of H with representatives t, u,
v, uv; Jf2 n H is the union of 3 conjugate classes of H with representatives
tlt tu, tuv.

PROOF. By (2.10), there exists an element x in G, such that

x~ltx e {u, uv, v}.

Suppose that x~ltx = u. We have M — <a1( a2, bx, b2, u} is a maximal
subgroup of Q, a Sylow 2-subgroup of G. By (2.1); (2.4), the involutions
of M lie in two conjugate classes in G with representatives t and tu. By lemma
A, we see that involutions uv, uvt and v are conjugate to some involutions
in M. By (2.4), uv, tuv lie in different conjugate classes of G. Hence, inter-
changing v by vt if necessary, we may suppose uv is conjugate to t in G and
so tuv is conjugate to tu in G. To decide whether v is conjugate to t or tu,
we use (2.7) and (2.8) and get the following possibilities.

(i) zvz = v and z'vz' = tu. Then we have ztvz = uv, a contradiction,
since tu and uv lie in two different conjugate classes of G.

(ii) zvz = tuv and z'vz = v. Then we have z'vtz' = u, a contradiction
as in (i).

(iii) zvz = tuv, and z'vz' = tu. Then by (1.8)

\Co{v) n CG{t)\ = \CG(tuv) nC{u)\ = 2*,

but when z' e CG(u) and therefore <V, t, u, v, ^> e CG(u) n CG(tuv), a
contradiction.

Thus we are in the last case (iv) where zvz = v, and z'vz' = v. Then
zz'tz'z = tv proving all the statements of this lemma.
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Suppose x~*tx = uv. We take as a maximal subgroup of Q, the group
<a1( a2, b1, b2, MW> and apply the same proof as in previous cases.

Finally if x~Hx = v. We have the group (ax, a2,b1,b2, v} is a maximal
subgroup of Q. By lemma A again, interchanging u by tu and/or v by tv
if necessary, we get the same conclusions.

Since by (2.10), one of these cases must happen, we have proved our
lemma.

3. The centralizer of an involution in Jf2

We begin with a preliminary result. The notation in this proof is in-
dependent of the rest of the paper.

PROPOSITION 1. Let G be a finite group of even order with the following
properties:

(1) The centralizer C(a) in G of an involution a contained in the centre of
a Sylow 2-subgroup of G is <a, f}}xF where <a, /3> is a four group and F is
isomorphic to S4 (the symmetric group in 4 letters).

(2) If S is a Sylow 2-subgroup of G then C(S') = S where S' denotes
the commutator group of S.

(3) The involutions a, /?, a/3 are not conjugate to each other in G.

Then either G = C (a) or G is isomorphic to the direct product of a group
of order 2 and D where D ~ S6.

PROOF. Put F = V • <p> • <T> where V = <T1? T2) is a four-group.
We have p~1r1p = T2; p~1r2p = TiT2> TTXT = r1; TT2T = r^^; xpx = p"1

and T2 = p3 = 1. Obviously S = <a, /?>x (F<T>) is a Sylow 2-subgroup
of G. F<T> is dihedral of order 8 and we have S' = (r^. Hence by (2),
C(Ti) = S. Finally Z(S) — <a, /?, TX> is elementary of order 8.

(i) Non-trivial elements of Z(S) lie in 7 distinct conjugate classes of G.

By way of contradiction, suppose there are 2 involutions in Z(S)
conjugate to each other in G. Then by a transfer theorem of Burnside [4],
they are conjugate in N(Z(S)). We must have N(Z(S)) >S. Since
C(Z(S)) CC(T X ) = S, we get iV(Z(5))/S is isomorphic to a subgroup of
GL(3, 2). Clearly 7f |iV(Z(S))|, otherwise there exists an element of order
7 in N(Z(S)) which acts fixed-point-free on Z(S). This requires, in particular,
that a, fi, a/3 lie in one conjugate class of G, contradicting condition (3).
Therefore the order of N(Z(S)) is 25 • 3. Let XeN(Z(S)) and O(A) = 3.
We want to determine the orbits of A on Z(S). By condition (3), the elements
a, /?, a/3 lie in 3 distinct orbits, a contradiction to the fact |Z(S)| = 8.

(ii) The focal group S* of S in G contains V.
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This is obvious since p^r-^p = T2 and p"xt2p = x^x2.

(iii) The case S* = S is not possible.

By way of contradiction, suppose that S = S*. This means that G
has no subgroup of index 2. Consider the group <jS> X (F<T>). It is maximal
subgroup of S and has at most 5 conjugate classes of involutions with
representatives xx, r, /?, /?TX and /5T. By lemma A, we get that G has at most
5 conjugate classes of involutions. This is a contradiction since by (i),
we know that G has at least 7 classes of involutions.

(iv) The case \S*\ = 16 is not possible.

Suppose on the contrary, we have the order of S*, the focal group of
S in G, is 16. This means that G has a subgroup of index 2 but has no sub-
group of index 4. Let M be a subgroup of G of index 2. By D. G. Higman [5],
we have S n M = S* and S* is a Sylow 2-subgroup of M. We have two
cases to consider. If <a, /?> Q S*, then by (ii), we have S* = (a , |3>xF.
Then <(a> X V is a maximal subgroup of S* and has at most 3 classes of
involutions with representative rlt a, <XTX (we use the fact peM). So by
lemma A, M has at most 3 classes of involutions in contradiction to (i)
since Z{S) CM. Next suppose that S* n <a, /S) is of order 2. We have
S* = F « a , /?, T> n S*). There exists an element t ' e S * n <«, /?, T> such
that F<V> is a dihedral and has at most 2 conjugate classes in M. Also
F<T'> is a maximal subgroup of S* and hence by Thompson, we obtain
that M has at most 2 conjugate classes of involution, a contradiction to
the fact that Z(S) n S* is of order 4 and by (ii) its involutions lie in 3
distinct conjugate classes of G.

(v) / / F = S*, then we have G = C(a) = <a, /3> X F.

We have in this case a normal subgroup M of index 8 in G such that
M n S = F. Because peM and F<p> ^ Ait all involutions of F are
conjugate in M and a Sylow 2-subgroup of M is a four group. Also we have
CM{rx) = S r\M = F. By a result of Suzuki [9,] we have either V < M or
M ~ A5. If V<M, then M = V(Py (since C^(7) = 7 ) . Therefore
G = S - M = C(a) = <«,j?>xF. If M ~ y45, because the automorphism
group of ^ 5 is SB, it follows that C{M) =£ 1. Clearly C(M) n M = 1. From
the fact T £ C(M), we obtain that \C{M)\ = 4. Now

so
C(M)C<a, ;3>XF-F (•.• C(M) n M = 1).

Let C(M) = (zlt z2y, a four group. It follows that zx = ct.vx; z2 = fiv2 where
v1>vzeV. Since x,z1,^,z2 centralize p; we get v1,v2 commute with p.
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By the structure of Ait vt = v2 = 1. Thus we get C(M) = <<x, /?> and
therefore contradicts condition (1).

(vi) / / the order S* is 8, then G is a product of a group of order 2 with a
subgroup of G isomorphic to S6.

Since \S*\ — 8, it means that G has a normal subgroup M of index 4
in G and G has no subgroup of index 8 (Here we use the fact V QS* and
S/V is abelian). We have 5 n M = S* and V is a maximal subgroup of
S*. Since p e M, involutions in V are conjugate in G and so by lemma A,
M has only one class of involutions. By (i), we must have 5* n <a, /?> = 1.
Therefore S* Q <<x, /?> X ( F < T » —<a, /3> and so is dihedral of order 8. Now
xx is in the centre of S* and we have C ^ T J = S n M = S*.

Let 0(Af) be the largest normal odd order subgroup of M. V acts on
C(M) and since all involutions of V are conjugate in M, we get

because Cfo) is a 2-group. By Brauer-Wielandt's result [10], 0(M) = 1.
Application of Gorenstein-Walter's theorem [3], produces the result:

M ^ PSL(2,q) q ± 1 = IC^fo)! or M ~ A1. The second case cannot
happen since the centralizer of an involution in A 7 is divisible by 3. Therefore
M s PSL{2, 7) or PSL(2, 9). Since the automorphism group of PSL{2, 7)
is PGL{2, 1), we get C(M) =£ 1. So we have either G = <<x, /?>xM or G
contains a subgroup iscmorphic to PGL(2, 7). The first possibility cannot
arise since it contradicts condition (1). The second possibility is ruled
out by the fact that a Sylow 2-subgroup of PGL(2, 7) is dihedral of
order 16 and so contains an element of order 8, in contradiction to the
structure of S.

We are left with the case M ^ PSL{2, 9) =; A6. Since PGL(2, 9)
contains elements of order 8, we conclude that G does not contain a subgroup
isomorphic to PGL(2, 9). Also C(M) cannot have order 4, because by
similar argument as in (v), G would be equal to <a, fiyxM, a contradiction
to condition (1). It follows that C(M) is of order 2 and C(M) n M = 1
and a £ C(M). Let C(M) = <*>. From the fact C{M) Q C{V) = <<x, /3>xF
and C(M) n t f = l , w e get C(M) Q <«, p}V-V. Hence C{M) = <A • J;>
where A e <<x, /3>, v eV. Since AD and A commute with p, we get w = 1.
Therefore h = /S or a/3.

Now the automorphism group J / of PSL(2, 9) has the property ^jA6

is a four-group, JS/ is an extension of PGL(2, 9) by the field automorphism
/ of order 2. Now PGL(2, 9) is the group of all non-singular 2x2 matrices
(<xo) with oi{jeGF(9) considered modulo the group of all 2x2 scalar
matrices and we have /(a,,)/ = (a?3). Let f be a generator of the multi-
plicative group of GF(9). Then £* = — 1. Put
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/f 0 \

We verify that a* = 1 = b2, b~xab = w1, c~xac = a"1; c~xbc = a~1b;
c2 = a2. Since (a, by is a Sylow 2-subgroup of PSL(2, 9), it follows (a, b, c>
is a Sylow 2-subgroup of (PSL(2, 9), c>. We shall produce an element of
<PSL(2, 9), c> which is of order 8. We note that

(l
Q °^\ePGL(2,9)-PSL{2,9),

and (cb)2 = c2c~xbcb = a2a~1bb = a, so is of order 8.
Now (aCyM is isomorphic to a subgroup of index 2 of stf containing

PSL(2, 9). There are 3 such subgroups namely PGZ.(2, 9); (PSL{2, 9), c>
and (PSL(2, 9), />. We have shown that the first two cases cannot arise,
so we have <a>M s (PSL{2, 9),/>. It is well known that PSL(2, 9) is
isomorphic to Ae. Hence 56 is isomorphic to a subgroup of index 2 in s/.
We check that S6 has no element of order 8. It follows

S 6 ^ <P5L(2,9),/> ~ <a>M.

Therefore G = C(M)x ««>M).
The proof of this lemma is now complete.
We can now begin the determination of the structure of CG(tu). Con-

sider the factor group CG(tu)/(tuy = C. We note that (t, uy\(tuy is in the
centre of a Sylow 2-subgroup (z, u, v, t, tx, t2yi(tuy of C. Since tu is con-
jugate neither to t nor to u, we have NG(t, M> Q CG(tu). Hence we obtain
NG(t, uy = <2, u, v, t, tx, t2y(oy = Yx. Hence we get the centralizer of
(t, uyj(tuy in C is

where (z, t, M>/<7«> is a four-group and (y, tlt t2, a><to>/<to> is isomorphic
to St and so the group C satisfies condition (1) of the proposition.

To check that condition (2) of the proposition is alsc fulfilled by the
group C, we look at CG(^)/<^>. Now <ax, a2, t2, u, v>/< î> is a Sylow
2-subgroup of CG(<1)/<<1> and (t, t^yj^y is its commutator group. The
group NG(t, txy is contained in H, since t is not conjugate to tx or tt±. It
follows that NG(t, txy n CG{tx) = A. Since tx is conjugate to tu in G, it
follows that the centralizer of the commutator group (t1, tuy/(tuy of
(z, u, v, t, tx, t2y/(tu,y in C is (z, u, v, t, t1, t2y/(tuy.

Next we want to show that (z, tuy/(tuy; (t, uy/(tuy and (zty/(tuy
are not conjugate to each other in C. It is clear that (zty/(tuy is not con-
jugate to (z, tuy/(tuy or (t, uy/(tuy since (zty is cyclic whereas (z, tuy and
(t, uy are four groups. Both (t, uy and (z, tuy are normal in (z, u, v, t, tx, t2y.
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If (t, uy\(tuy were conjugate in C to (z, tu)l(tuy, by a transfer theorem of
Burnside [4], they would be conjugate in

Nc{(z, u, v, t, tx, tiy\{tuy)QNc{(tu, hyKtu}) = <*, u, v, t, tx,

a contradiction.
Applying Proposition 1 on the group C, we get either CG(tu) = Y1ov C

is the direct product of a group of order 2 by a subgroup which is isomorphic
to S6. The case CG(tu) = Yx is not possible since we have by (2.8) and (2.11),
an element

z'eCG(tu)-Yx.

We shall now take a close look at the remaining case. Let D be the complete
inverse image in CG(tu) of the subgroup of C which is isomorphic to S6.
From the proof of Proposition 1, we see that (t, u,tx, tzy Q D. Since
(z, t, uy $ D, we have either (t, u, tx, t2, zv} or (t, u, tx, t2, v~) is a Sylow
2-subgroup of T). Suppose that (t, u,tx,t2, zv~} Q D. Let D be the subgroup
of D such that Dl(tu} s As. We know that tx e D and

(t, uy\<tu) e DKtuy—Dl<tu}.

Hence zvtr (r = 0, or 1) is conjugate to tx modulo (tu). Hence there exists
an element g e D such that g~1zvtrg = tx- h where h e (tuy and so
g~xzvtr • tug — tx • h • tu. From (2.7), zvtr is conjugate to zvtr • tu. It follows
then tx is conjugate to ttxu, a contradiction to (2.11). Therefore

We check that (t, u, tx, t2, vy splits over (tuy. So by a theorem of Gaschiitz,
[4, p. 246], D splits over (tuy. Hence there is a subgroup D of D isomorphic
to Se such that D = (tuy x D, and we may suppose that t e D. Let D be
the subgroup of D such that D s A6. By the structure of A6 all involutions
in A6 are conjugate in A6. In (t, u, tx, t2, vy, we observe that elements of
order 4 have their squares equal to tx. Therefore we conclude that all involu-
tions in D lie in Jf2 (in the notation of (2.11)). These facts imply that a
Sylow 2-subgroup of D is (tt2uv, tuvy.

We have by Proposition 1 that

cG{tu) = {(ztyxD)(ty or ((z, tuyxD)(ty

where in both cases, we have D(ty = D s 56 . Suppose that

CG(tu) = ((z,tuyxD)(ty.

Clearly z e Jf~2 and (z, tuy x D is a subgroup of index 2 in CG(z). We want
to determine CG{z) n CG(v). Suppose there is an element

geCG{z)— {(z, tuyxD)

https://doi.org/10.1017/S144678870000690X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000690X


[15] Characterization of Lt(3) 65

and g centralizes v. Now
<z,to> = Z((z,tu>xD)

and therefore (z,tu}<\CG(z). Thus g~xtug = ztu (g$CG(tu)). So
g-ifruvg = ztuv. But we have D = «z, tu}xp)' char CG(z). Therefore
g-iDg = Z) giving g~~xtuvg Q D a contradiction. Hence we have shown that

CG(2) n CG(v) C <z, to> xD.

Using the fact tuv e D and centralizer of an involution in A6 has order 8,
we conclude that CG(z) n CG(v) has order 32, in contradiction to the fact
that CG{x) n C(t) with xeJf2n CG(t) has order 2« or 32 • 3. Thus we have
finally proved that CG(tu) = ({zt}xD)(t}.

(3.1) LEMMA. The centralizer CG(tu) of tu in G has the following
structure:

CG(tu) = ((zt>xD)(t> where <7)><0 = D ~ 56 .

(3.2) LEMMA. TAe group G is simple.

PROOF. Suppose that 0(G) ^ 1. Act on 0(G) by the four group <v, t}.
We know that CG(x) has no odd-order normal subgroup by the structure
of H, for all x e jf^, <2, «> acts fixed-point-free on 0(G), a contradiction
to a theorem of Burnside. We have therefore proved that G has no non-
trivial odd order normal subgroup.

Suppose that G has a proper normal subgroup N with odd factor-group
GIN. Then Q being a Sylow 2-subgroup of G is contained in N. The Frattini
argument gives G=N • NG(Q). But NG{Q) = () and hence G =N -Q =N,
a contradiction. Thus G has no proper normal subgroup with odd factor
group.

Next suppose that G has a proper non-trivial normal subgroup M such
that \M\ and \G : M| are both even. Suppose that Jf\ n M is not empty.
Then X'1 Q M and in particular t and w are in M. Hence tu Q M. So
Jf2 n M ^ <f> giving Jf2 C M. Thus all involutions of G are contained in M.
It follows that Q, being generated by its involutions is in M, a contradiction.
This gives Jf\ n M = <£. Therefore X~2nM ^<f> and so «x, ^ e M. This
implies that t e M, a contradiction. Hence the proof is now complete.

4. Structures of a Sylow 3-subgroup of G
and its normalizer in G

In § 3, we have CG(tu) = {{zf}xD)(ty. A Sylow 3-subgroup of D is
elementary abelian of order 9, and is self-centralizing in D. Therefore Sylow
3-subgroups of D are independent (i.e. two distinct Sylow 3-subgroups of D
intersect in the identity only). Let Tx be the unique Sylow 3-subgroup of D
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containing <ff>CCG(£w). Therefore Tx = CG(a) n CG(tu). Since (t,uvy
normalizes <a>, it normalizes CG(a) n CG(tu) = 7 \ . Thus we have

<**> x <*, MW> Q NgiTJ n CG(tu).

From the structure of S6, we know that the normalizer in S6 of a Sylow
3-subgroup of S6 is a splitting extension of the Sylow 3-subgroup by a
dihedral group of order 8 (e.g. <(123), (456)> is a Sylow 3-subgroup of S6

and
2VSe«(123), (456)» = <(1524)(36), (12)> • <(123), (456)>.

Therefore we get
N0(T1)nC(tu) = {{zty-{

where a2 = tuv, tat = or1, arxzta = zt. Clearly CG{TX) n CG(tu) = (zty X T1

and CG(7\) < iVG(7\). Let J7 D (^0 be a Sylow 2-subgroup of CG(7\).
If t/ D <ẑ >, then |CG(ri) n Ce(^«)| would be divisible by 8, which contra-
dicts the structure of CG(tu). It follows a Sylow 2-subgroup of CG(rx) is
cyclic of order 4. By a result of Burnside, CG(7\) has a normal 2-complement
Mx 2 Tt. The Frattini argument gives

NaPi) = (NG(zt) nN^T^C^T,) Q (CG(tu) n iVG(ri))CG(T1)

Thus

Since Mxch.ax CG{TX) we get M1<NG(T1), and so (v, tyQN^T^) acts
on Mj. Because {u, »<, i} Q Jfx, by a result of Brauer-Wielandt [10],
Mj is a 3-group.

Now (t, %y also acts on Mx. We have CM (<M) = 7 \ ; CM <<, «> = <CT>.

Hence liWTx| = \CM (t)\\CM (u)\. Because t and u are conjugate in iVG(7\),
we get |CMi(OI =1 |CM I(M)' | . Hence |M\| = 32 or 34. We shall show that
|Mj| = 32 is not possible.

Let r = <&!, a2y Q H = CG(f). Then

CG{t) n <a1( o-2> = (<)XT and iVG(T) n H = <t, it, w> • T.

Now <<> is a Sylow 2-subgroup of CG(T) and therefore by a result of Burn-
side, CG(T) has a normal 2-complement M and CG(r) = <<> • M. We have
CG(r) < NG(T) and so by the Frattini argument,

^VGCO = (Ce(t) nNe(T)) - C0(T) = <t, u, vyM.

Since M char CG(T), we have M < NG(T). Therefore <«, <) acts on M and
hence M is a 3-group. By way of contradiction, suppose \MX\ = 32, then
7\ is a Sylow 3-subgroup of G and so is T. But CG(T) has a different structure
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from that of CG(7\), a contradiction to Sylow's theorem. Hence we must
have IMil = 81.

We want to show that Mx is abelian. We have

By the structure of S6, there exists an element X e 7 \ , inverted by t and a2.
Therefore X e CG(uv) n CG(tu). Consider the action of the four-group
(uv, vf) on Mx. We have CM {(uv, vty) = <A>. Therefore

\CUi(uv)\ = \CUi{vt)\ = 3*.

Next consider the action of (v, ty on Mx. We have CM (t,vy = 1. Therefore

l^il = 1^(01 \CMl(vt)\ \CMi(v)\

giving CM (v) = 1. Thus the involution v acts fixed-point-free on Mx. By
a result of Zassenhaus, Mx is abelian. By a result of Gorenstein-Walter [3],
M1 = CG(t)CG(vt). Showing that Mx is elementary abelian of order 81.

We shall next take a closer look at Mx. Since

azeN^Ti) and (az)~1t(az) = vt,
we get

CMi(vt) = (az)-iCUi(t)(az).

Because a e CM (t), and there is an unique subgroup of order 9 in CG(a) n H
namely T = (alt a2}, we get CM (t) = T. Let (az)~1<r1(a2) = Ci,
(az^a^az) = f2. Then CMi(vt) = (£x, C2>- We also observe that
u^u = Cz1 using the relation (az)u(az)~1 = uv. Collecting the results
proved so far, we have the following lemma.

(4.1) LEMMA. Let T1 be the Sylow ^-subgroup of CG(tu) containing <CT>.

Then we have C G ( r i ) = {zt}M1 and N^T^ = ((zty • (a, f)) • Mx where

z2 = tuv; tat = a-1; Mx = CMi(t)CMi(vt);

cUl(t) = <*i. ^>; cMi(vt) =\clt iy

with (az^Ofiaz) = C( (i = 1, 2) and u^u = &.
Next we shall investigate the structure of CG{a^). We have

where Q2 = <a2, 62>, a quaternion group containing the unique involution t.
Clearly Q2 is a Sylow 2-subgroup of CG(ff1). We shall use the following result
of Brauer-Suzuki [9]. If X is a finite group with a generalized quaternion
Sylow 2-subgroup, then XjO[X) has only one involution. In our case, denote
0(CG(CT1)) = V. Then (o^ QV and C^oJ/V has only one involution tV.
It follows that (t)>V is normal in C^a^) and so (by Frattini's argument,
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CG{a1) = {CG(t) n Caia^V = Q2-T-V.

Because Q2T ^ SL(2, 3) is not 3-closed, it follows that T $ V and so
T n V = <ffl>. We get CG{ax) = <<?2, a2yV = S2 • F where S2 s S i (2, 3)
and S2 n F = 1. Since CG(t) nV= (^a-^, it follows that t acts fixed-point-
free on F/<(71> and so F/<CT1> is abelian V Q <ffl> Q Z(V).

Now v inverts a1. Therefore NG(axy == (vyS2V. Since F is character-
istic in CG(cr1), we have F < NQ^Ojy. Thus the four group <i>, ^) acts on F
and so F is a 3-group. Using Brauer-Wielandt's result, we get

\V\ = \Cy(t)\ \CV(V)\ • \Cy(vt)\.

We know that Cv(t) = (o^) and from the fact M1QCG{a1), we get that
|CF(z^)| = 9. Now v is conjugate to vt in CG(CT1) i.e. v = a\~xvta2, we get
\Cv{v)\ = \Cr{vt)\. Thus \V\ = 35. By Gorenstein-Walter [3],

F = Cv(t)Cr{v)Cv(vt).

Put Cr(v) = <C3, C4> where C3 = <Hx^xH, d = H1^^. We have

V = <crx, Clf C2, C3, C4>-

Since V/^aj} is abelian and so elementary abelian of order 81, we may
represent <fl>Sa on the 'vector space' F/<or1> over G,P(3). We get in terms
of the basis C/ffx), C2<

ai>> C3<^i>, C4<ofi>;

where (/) is the 2 x 2 unit matrix, and C, D are 2x2 matrices over GF(3).
Let b2 be represented by

where (4<) i = 1, 2, 3, 4) is 2 x 2 matrix over GF(3). Using the relation
fc^aa&sj = a^1, we get yl3 = A2, A± = —^4X. Since a^xva2 = CT2W, we get
D = I. By the relations cra"

1a2ff2 = b2; a2
1b2a2 = a2&2, we obtain A2 — I,

Ax = I, C = —I. Therefore we have

Hence we have tr^Cs^ = Cr1^*^1! ^^^2, = C2"
1C40rfa where et- = 0, 1 or

— 1 and i = 1, 2.
Since F / ^ j ) , is abelian, we have Cî CaCs = t2tf? where e = 0, 1 or —1.

Conjugating both sides of the equation C3"
1C2C3 = C2

CTi by the element a2,
we get CrxCiC4 = Cio-f. Consider the group C ^ ^ , Ci» £ C g ^ ) . We have
CGK°i, Ci» £ P = <ffl, (T2, ?1( ?2, C3, C4>. Suppose that CG«cr1, d » = P,
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then e = 0, and so CG(^Ci, £2>) is divisible by 35, a contradiction to the
structure of CG(T) since T is conjugate to <f1( C2> in G. So e ^ 0.

We observe that <cr1( Cx> < P. Since iVG«CT1, Ci>)/CG«o-1, Ci>) is
isomorphic to a subgroup of GL(2, 3), we get that CG«CT1, fx» is of order 35.
So CG((olt ?!» = <&!, CT2) f!, C2. ̂ > where a; e <?3, C4>. Then we have the
commutator group (CG(O1( Z ^ ) ) ' of CG«<r1, Cx» is

O L aj^a^xffa) ^ <<r1, fx> if a; ^ f3.

From the structure of C'G(or1)/<of1> and the fact that CG«CX, C2>) is not
divisible by 35, we get Z(CG«a1, f1>)) = <a1; d ) . Therefore we have

Z{Co«<*i. d » ) n (CG«cr1) Cx»)' = <crx> char CG«cr1> d »

and so
<ffl> < iVc(Co«alf Cx») = NG((olt Cx»

(since <CT1> Ci> = Z{CG({alt Cx>))). By (4.1), there is an element taz s CG(tu),
such that (taz) eiVG«ff1, d>) but tezeiVG<ff1>, a contradiction to

<c iVG«a1, Ci>). Theiefore we have shown that

C G « f f l . ? 1 » = ^ 1 = <<fl. ^2. Cl, C2, C3>-

Similarly we can prove that

C«(<ffi, C2» = F 3 = <*!, aa, Ci, C, C3>

with uaz playing the role of taz.
Now we are in a position to determine e( (i = 1, 2). By conjugating the

equations a^1Czai = C^1C3fff
l and a^Ct^a = ^s1^0!* by the element vt,

we verify that e1 = s2 = 0 using the fact C3 e CG(f1) and C4 e CG(£2). Except
for the unknown e ^ 0, we have determined the structure of P completely. In
particular we see that Z(P) = <<rx>. The fact implies that NG(P) CiVG<o-x>
and therefore P is a Sylow 3-subgroup of G. By the structure of iVG<ax>,
we see that NG{P) = V • (NG(a2) n S2(v}) = (v, t> • P. Collecting the
results found so far, we have proved the following lemma.

(4.2) LEMMA. A Sylow Z-subgroup P of G and its normalizer B = NG(P)
in G have the following structures.

P=T
where

Y

1 2 —

•

c,

B = N,

(t) = <

(vt) = <

i{P) =

(Ci, C2>
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M = T • T2 is elementary abelian

[C3, d ] = 1 = [Ct, C2]2]
= [f

5. Final characterization

We shall now determine the structure of NG(v, t}. First we note
by (4.1) that the element tazeCG(tu) satisfies the following relations:
(taz)2 = v; (taz^ttyaz) = vt and (taz)^v(taz) = v. Therefore taz eNG(v, t}.
Also using (4.1), we show that

Because <C3> = CG(v) n Vx, we get (taz)-1 £3(taz) = d1 where (31 = 1 or —1.
Next consider the element uaz in CG(tu). Again we verify that (uaz)2 = v,
(uaz)~1t(uaz) — vt, and (uaz)~1v(uaz) — v. So (uaz) eNG(v, t}. Also we
check that uaz e iVo<ff1( £2> = -^G(^G(CTI. £2)) = NG(V3). So we get once
more (uaz)~1Ci(uaz) = ££> (52 = 1 or — 1.

We can now construct the following table using (4.1) and the results
just found to show the actions of the elements taz, a2, uaz on V1, V2(= V),
V3 respectively by conjugation.

T A B L E I

taz do uaz (taza<>)

al Cl 01 C2 ^i1 °i

( 7 2 ^ 2 — Cl — —

Cl "x C3 C2 C j l —

C2 S1 C4 ^ r 1 — ^2

Cs Cf1 Cr 1 - C^1

C4 C2 ^4 C4'

If ^ is equal to (—1), then we have

(taza2)
3v eNG(v, t) n CG{alt Cx>

and (taza2)
3v inverts £3, a contradiction since

Nn(v, ty n C«<CT, , Ci) = 1.
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Hence we must have dt = 1 and consequently (taza2)
3 = 1. Similarly,

we obtain 62 = 1 and (a2uaz)3 = 1. Since uaz = tu • taz and taz e CG(tu),
we have that taz and uaz commute. Thus we have shown that

(taz, a2, uazy Q NG(v, ty

and the following relations hold for the group (taz, az, uazy;

(taz)2 = a* = (uaz)2 = (taza2)
3 = (a2uaz)3 = 1

(mod <v, ty); (taz)(uaz) = (uaz)(taz). By Moore's result, we get

(taz, a2, uazy I (v, ty ~ S4

(the symmetric group in 4 letters). Since CG(v, ty is of order 16, we have
also proved that (taz, a2, uazy = Na(v, ty. Therefore we have proved the
following lemma.

(5.1) LEMMA. We have

N = NG(v, ty = (taz, a2, uazy

where NG(v, tyj(v, ty ~ S4. Moreover, the actions of the elements taz, a2, uaz
on V1, V2, V3 respectively are shown in Table I with <5X = d2 = 1.

We shall next show that the set of elements in BNB i.e. the set of
elements of the double cosets BxB with xeN, forms a subgroup of G.
Moreover we shall compute the order of BNB. But first we want to define
a few notations.

Put W = Nl(v, ty and taz(v, ty = r1, a2(v, ty = r2, uaz(v, ty = r3.
Then elements of W are generated by the involutions rlt r2, rs. For any
w eW, let l(w) = I be the smallest non-negative integer such that
w = r,- • r{ • • • rf where rtj e {rx, r2, r3}. Let a>(r-y) = taz, w(r2) = a2 and
(o(r3) = uaz. For any w e W and w = r( rt • • • rt , let

io(w) = oj(r)coh(ri2) • • • co(rt).

For notational convenience, we shall denote BwB (a> e W) to mean Bco(w)B.

(5.2) LEMMA. The set of elements in Gi = B u BrtB (i = 1, 2, 3) is
a subgroup of G.

PROOF. Representing the elements taz, £4 on the 'vector space'
M = (alt a2, Ci, C2> over GF(3), we get

1
0

0
1

— 1
0

0
— 1

We note that since CG(M) = M, the representation is faithful.

https://doi.org/10.1017/S144678870000690X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000690X


72 Kok-Wee Phan [22]

Consider the element taz£t • We have

f—e

—e

Suppose e = l , then we have v(tazCt)
3 e CG(alt f j = Vlt a contradiction.

Therefore e = — 1. Then we get (toC4)3 e M n CG{v) = 1. So (toC4)
3 = 1.

Similarly we get (uazt3)
3 = 1 and we know that (a2a2)

s = 1. Therefore,
we have putting £4 = Xx, a2 = X2, f3 = X3,

(*) (a,(rf)X<)»=l (*=1 ,2 ,3 )

Suppose that we have gt = &<o>(r€)6̂  6 Br f 5 with &,-, £< in B. Then the
element g[ = {b'^1 • cofo^eofo)"2 • 671) e BrtB and we have gt • g't = 1.

Clearly to show that Gt- is a subgroup of G, we need only to show that
to(yj)Xj«w(f1) e G,- (5 = 0, 1, or —1), since for any b e B, we can write
b = vtX{ with v( e (v, t)>Vt where v{ is normalized by ft)(r4). We have three
cases to consider.

(a) 6 = 0. Then we have a>(r,) • co(rt) e (v, t} C B.
(b) 6=1. Then ^(r,.)^^^,.) = X^coir,) • coir^Xj1 e BrtB by (*).
(c) 6 = —1. Then wfoJ-X^cofo) = co^ ) 2 ^^^ . )^^^ , . ) 2 e Br.fi

by (*).

Therefore we have shown that Gt is closed under taking inverses and
multiplication. Thus G{ is a subgroup of G.

(5.3) LEMMA. For any i and W E W, ifl(r{w) ^ l(w),thenriBw Q BrtwB.

PROOF. Since W ^ S4, and rf satisfies the Moore's relation, we may
identify r1, r2, r3 with the transposition (12), (23), (34) in 54 respectively.
Let Co = {1}, Cx = {rlt r2, r3}. We shall give a method of constructing Cn

for n ^ 2. Suppose that the sets Co, • • •, Cn_x have been constructed. Let
Cn be the set of all 'words' of length n. Define Cn = Cn— UogiSn-iC,. Then
clearly elements w in Cn has /(w) = n.

To check that for those w eW with l(r(w) ^ £(z0), we have

we need only to see that r^^ Q Br(wB. It is easily verified that for those
w eW such that / ( r ^ ) ^ l(w), we can always write ffX^ = r^Yt with
Yj e S using Table I.

The computations are summarized in Table II, which is self-explana-
tory.
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w

(12)

(23)

(34)

(132)

(123)

(12) (34)

(243)

(234)

(13)

(1432)

(1342)

(1243)

(1234)

(24)

(143)

(142)

(13) (24)

(134)

(124)

(1423)

(14)

(1324)

(14)(23)

n
'2

rs

ri'2

ni
nr3

r2n

nnn
nr2r3

ranrz

win

r2r3r2

rir2nr3

WM

rtrtnn
r2r3r2ri

rir2nr3r2

t% y% t\ ^2 ̂ i

y% t% Y% v% t\ f 2

l(n

1

1

1

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

5

S

5

6

Characterization

TABLE II

,) i(nw)

0

2

2

1

3

1

3

3

2

2

2

4

4

4

3

3

5

3

5

4

4

6

5

of Z.4(3)

/(f2»)

2

0

2

3

1

3

1

3

2

4

4

2

4

2

3

5

3

5

3

4

6

4

5

/fa*)

2

2

0

3

3

1

3

1

4

4

2

4

2

2

5

3

5

3

3

6

4

4

5

Yl

u

Oft

Cs

Ci

Cs

1-2

t4

C3

cr2

73

Y3

01

02

C2

£2

?4

C4

(5.4) LEMMA. The set BNB = Go is a subgroup of G and the double coset
Bwx B is different from Bw2 B if w1 = w2.

PROOF. It follows from (3.1), (5.2), (5.3) and Tits [8].
We shall next compute the order of Go. We check that

w0 = coir^rgr^r^) e CG(v, ty

and so is an involution. The group (v, t, wo> is elementary and different
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from (y, t, u) = (y, t, co{r1)~
1o>(r3)'). Consider the group I — P n w0Pw0.

It is acted on by (y, t}. By Brauer-Wielandt [10], we get

Now we have CT(t) = T n w0Tw0. Since (t, v, wo~} ^ it, u, i>>, we get
either (t, v, woy = (t, v, ^> or (t, v, ut^y. In either case, by the structure
of H, we get T n w0Tw0 = 1. Since T2 = cofrJ^Tcofa), we obtain

T2 n w0T2w0 = (T n rw<ri)w»w<r>>"y'ri».

We have again that

cofoja'ooofo)-1 e CG(w, f) and <t, u, v} ^ <i, v, o)(c1)a'o'B(»'i)"1)-

So we get T2 n z^orgj^o = C/(wi) = 1. Lastly, by exactly the same reason,
we prove that T3 n w0T3w0 = Cx(v) = 1 showing that 7 = 1 .

TABLE III

1

(12) <C4>
(23)
(34)

(132) <(T2,C2>
(123) <f 2 , f 4 >
(12) (34) <C3.C4>
(243) <f1; f3>
(234) <(Ta, Ci>

(13) <<T2.f2,f4> <<T1.f1.f3>
(1432) <<Ti,fi,C3> <ff,,CC4>
(1342) <<r,.Cx.C> <<T1.C3.C4>
(1243) <ffx,:,,C4> <(Ta,d,f2>
(1234) <<Ti,fa.C4> <(Ta.f1.f3>
(24) <CT2,fi,f3> <(Ti,f2,f4>

(143) <ffx.Cx.C8.C4> <ff2.fa>
(142) <ffi.ff,,Cx.C> <f2,f4>
(13) (24) <<Ti, (Ta, f i , C»> <Cs. f4>
(134) <CT1, (T2, fa, f4> <Ci. Cs>
(124) <ffx.CC3.C4> <ffj.Cx>

(1423) V1 <f4>
(14) V2 <02>
(1324) F 3 <fs>

(14)(23) P 1
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Define for any w eW, the group Bw generated by all elements x in P
such that co(w)xa>(w)~1 is in w0Pw0. Using the informations obtained so
far and taking advantages of the identification of W with 54 in Table II,
we can construct the group Bm for all w eW, and these groups Bw are
shown in Table III.

We observe that for every Bw, there exists the subgroups (Bm)' such
that Bw(Bay = P and Ba n (£„)' = 1.

(5.5) LEMMA. Every element of Go can be written uniquely in the 'normal'
form h • pco(w) • pw with h e (v, ty, p e P and pw e Bw. The order of Go is
27 • 38 • 5 • 13.

PROOF. By (5.4), the group Go is the set of elements in BNB. Hence
for any element x e Go, we get that X = b1co(w)b2, bt e B. We have that
P = Bw • (Bw)'. We may write b2 = hp'2p2 with h e (v, t}, p2 e Bw and
p'2e(Bw)'. Since, we have co(w)ha)(w)^1 e (v, ty and co(w)p'2co(w)~1 e P,
we get x = b • co(w) • p2 showing the existence of the 'normal' form.

To prove uniqueness, suppose that we have bu>(w)bw = Va>(w'){bw,).
By Tits [8], we get w = w' and so we have bu>(w)bw, = b'(o(w)(bw)'. There-
fore we get (b')-xb — ai(w)bw(bV),)-

1ai(w)-1. Since we have (b')~lbeB and
o){w)bv,{bV),)-

1co{w)-1 e Pw°, we obtain [b'^b e BnPw°QP. The uniqueness
follows from the fact P n Pw» = 1.

By Tits [8], the 24 double cosets BwB are distinct. Therefore we have

\G0\ = J \BwB\ = \B\ 2 \BW\ = 2' • 3« • 5 • 13.
to is

The proof of this lemma is now complete.
Before the final proof of the theorem we need the following result of

Thompson [7].

LEMMA B (Thompson). Let JK be a subgroup of the group 2C such that

(a) | ^ | is even
(b) ^ contains the centralizer of each of its involutions.

(c) U»6S- <^' is of odd order.

Then i{2£) = 1 where i(9?) is the number of conjugate classes of involu-
tions of 3C.

Conclusion of the proof of the theorem

Using the informations of our tables (I, II and III), we can multiply
any two elements of Go in the 'normal' form to get the product uniquely
in the 'normal' form. (Uniqueness of product since we have determined
e, <5X, d2). Now if X is any finite group satisfying (a) and (b) of the theorem,

https://doi.org/10.1017/S144678870000690X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000690X


76 Kok-Wee Phan [26]

then X has a subgroup Xo of order |£4(3)| with uniquely determined multi-
plication table. Hence taking X to be Z.4(3), we see that Xo = Z.4(3) and so
L4(3) ^ Go. Consequently Go satisfies conditions (a) and (b) of lemma B.
If condition (c) of this lemma were true for Go, then we would get i(G) = 1,
a contradiction to (2.11). So n»eG^o is e ven and normal in G. By (3.2)
we get immediately that G = Go. The proof of the theorem is now complete.
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