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FREE COMMUTATIVE SEMIFIELDS

B.J. GARDNER
In memory of Otté Steinfeld

A description is obtained of the free semifields with both fundamental operations
commutative.

A semiring (A, #, *), where * is distributive over #, is called a semifield if either
(A, %) is a group or # has an identity (zero) e and (A \ {e}, *) is a group. For many
purposes there is no great loss of generality in restricting attention to the case where
(4, x) is a group (see [4, 5]) and that is what we shall do here. Another reason for
imposing this restriction is that the class of algebras so obtained (called proper semifields
in [2]) is equational. Accordingly, we shall call an algebra (4, +, -) a semifield if (4, +)
is a group, (4, ‘) is a semigroup and + distributes over -. (It is perhaps more common
to assign names to the operations in the opposite way; we prefer to have the group
operation called + because of ring-theoretic usage and because this is the natural
notation in lattice ordered groups which constitute an important class of semifields.)
We shall call a semifield commutative if both its operations are commutative. We shall
obtain a description of the free commutative semifields and indicate some connections
between these and free lattice ordered abelian groups.

PROPOSITION 1. Let X be a non-empty set, F' the free abelian group on X
(operation: + ), S the free commutative semigroup on F (operation: -). Extend + is
S by defining

a1a2"'am+blb2"'bn=H

=1y

(ai +b;).
=1
Then(S, -, +) is a commutative semiring.

ProOF: We have

(a102 - - @m +b1by---bp) +crca - ck
= II(a; +bj) +eyp---ep =I((as +bj) +¢r)
= (a; + (b; + ¢»)) = @102 - - - an + I(bj + ¢;)

=183 @ + (b1b2 -+ bn + c162 -+ - i),
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42 B.J. Gardner (2]

so + 1s associative, while

@183 - G + b1by - - - by = II(a; + b;) = II(b; + a;)

=b162"'bn+ala2"’am,
so + is commutative. Finally,

a1az - am + (bibs - - bpercy- - - c) = IM(a; + b;){a; + ¢,)

(a1a2 - -am + b1bz -+ - bp)(a1az - - - @m + €162 - - - c1),

so + distributes over -. O
PROPOSITION 2. Addition in S is cancellative.

PROOF: Let a;---ap +b;---b, =@, @y, +¢; - ck, where all factors are in F.
Then

(*) I (e +8;) = [] (@i +¢0).

ij i

As F is torsion-free abelian, it carries a linear order, <, and we can assume that
a1 < a2 € ...<am, by by < ... <b,and ¢; € ¢z €... < ck. Since we have free
generators, the same factors occur on each side of (*). Since clearly a; + b; < a; + b;
for all 7, j and a3 +¢; € ai + ¢, forall ¢, 7, we have a; +b; = a; +¢;, 50 by = ¢;.
Thus we can re-write (*) as

H(ai+b1) H (ai +b;) = H(a.-+bl) H (ai + ¢+,

i P> * r>1;i

and on cancelling, we get

ay...0m +by... b, = H (ai +b;) = H (gi+cr)=@1...0m +c2...Cke
i>1; r>1;i

Repeating this argument, we see that the products b, ...b, and c; ... c; have the same
factors with the same multiplicities. 0

As the semiring (S, -, +) has cancellative addition, we can form its semifield of
differences D(S). (We use this term rather than “semifield of quotients” as our dis-
tributive operation is called addition.) For details of this construction see Rédei [3,
Theorem 93, p.160]. This is our free semifield.

THEOREM. Let X be a non-empty set, F the free abelian groupon X, S the free
m n
commutative semigroup on F. Define [[a; + [] bj = [[(a: +b;) for all a;,b; € F.

i=1 i=1 3,J
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(3] Free commutative semifields 43

This makes (S, -, +) a commutative semiring with cancellative addition and D(S) is a
free commutative semifield on X .

PROOF: Let A be a commutative semifield, f: X — A a function. Then there is
a group homomorphism f;: F — A defined by

h (Z ni’-’?i) =Y nif(z:).
But then as § is free on F, there is a semigroup homomorphism f,: S — A given by
f2(alag? .-~ al*) = fi(@1)™ fu(a2)™ -+~ fi(ax)™,

where a3, az, --- , ax € F. Now consider f; in relation to + on S. If a;, a3, -+ , am,
bl,bz,"' ,bneF,then

fa(araz - am + b1by - by)
— (T o +83)) = T futos + 85) = T] (aCas) + £o(8)

i, i,
= TI(IT Ate + 269) = [T futas) + T )
j i i j
= fa(a18z2 - - am) + fa(brbz2- - - bg).
Thus f, preserves +. Finally, we define f5: D(S) — A by setting
fs(u —v) = fau) — fa(v)
for all u,v € S. It is clear that f; is well-defined. For u,v,w,z € S, we have

f3((u —v) + (w = 2)) = fs((u + w) — (v +2)) = fa(v + w) — fa(v +2)
= f2(u) + f2(w) — fa(v) — f2(2) = fo(u) — f2(v) + fo(w) — f2(2)
= f3(u —v) + fs(w - 2)

and

fs((w = v)(w — 2)) = fs((u + 2)(v + w) — (v + 2))
= fo((u + 2)(v + w)) - f2(v + 2) = (fo(u) + f2(2))(f2(v) + fo(w)) — fo(v +2)
= (fo2(v) + fa(z) — fo(v + 2))(f2(v) + fo(w) — fa(v + 2))
= (f2(u) — £2(v))(fo(w) — f2(2))
= fs(u — v)fa(w — 2).

https://doi.org/10.1017/5S0004972700015446 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015446

44 B.J. Gardner [4]

Thus fs is a semifield homomorphism. For z € X, we have

fs(z +z—2) = fi(z +z) - fa(2)
= fi(z) + f2(z) - fo(2)
= fi(z) = fo(z) = f(=).

But z 4+ z — z is the copy of ¢ in D(S). This completes the proof. a

Let 1 denote the minimum semilattice congruence on (D(S), -). Then unv if and
only if each of u, v divides or equals a power of the other [1, p.131]. Since, for example,
uw = v™ implies (t +u)(t+w) =t +vw=1¢+v™ = (t+v)", 5 is in fact a semifield
(semiring) congruence on D(S), the minimum congruence for the variety defined by
the identity z? = z, that is the class of lattice—ordered abelian groups (see [4, Section
3, Satz 1]). Thus D(S)/7 is a free lattice-ordered abelian group. Let us examine a bit
more closely the relationship between the two free objects D(S) and D(S)/n.

The original zero, 0, of F is an additive identity for S: if a;, ...a,, € F, then

a1...¢m+0=(a14+0)...(am +0)=ay...am.

We can thus identify each u € S with the corresponding ©—0 in D(S). Thus everything
in D(S) has the form u — w, where u,w € S, so everything in D(S)/n has the form
un —wn, where v,w € §. If u,v € § and unv, then either u(r — s) = v™ or u = v™ for
some 7,z € §, n € Z*. In the former case we have (v+ )" =v" +s=u(r —s)+s=
(u+38)(r—s+3s) = (u+s)r and in the latter, (v +0)" = v + 0. Thus there exists
s € S such that u+s divides or equals a power of v+s in S. Similarly there exists £t € §
such that v+t divides or equals a power of v+t in §. But if (v + s)" = (u + s)r and
(u+t)" =(v+t)g,then (v+s+t)" =(w+s8)"+t=(u+s)r+t=(u+s+t)(r+1t)
and (u+s+t)" =(u+t)"+s=(v+it)g+s=(v+s+1t)(g+s) whileif (v+3s)" =
(u+s)r and (u+t)" =v +¢, then (u+s+t)" = (u+t)" +s5=v+s+t, and so
on. Thus in the above we can replace s,t by s + ¢, that is assume s = t. We define
the relation #* on § as follows:

un*v and only if there exzists s € S such that each of u+ 3, v+ s divides or equals
a power of the other in S.
This is the congruence induced on S by 7, so D(S)/n = D(S/n*). Suppose
now ai...a, = un*v = bj...b,, where the factors are in F'. Then there exist
€1y -+ Cky €1, ..., p € F and £ € Z* such that

(u-{—cl...ck)(el...e,)=(‘v+c1...ck)t

or (u-}-cl...ck):(v+c1...ck)l,
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that is II(b, + c;.)l = M(a; + ¢;)¢1...ep or O(a; +c;). Thus every a; + ¢; is equal
to some by + cp. The converse holds also. On the other hand, if {a; +¢1,..., 0, +
Cky ooy @mtce}={bi+eci,...,b1+¢cky ..., bn+eci} then utecy...ce (=1(a; +¢;j))
divides a power of v + ¢1...cx (= H(bg + ¢1)). This gives us another description of
S/n*.

Let P;(F) denote the set of finite non-empty subsets of F. Let + denote com-
plex addition in Py(F) (A+ B ={a+b:a€ A, be B}). Then (Ps(F), +,U) is a
semiring. Let p be defined on Py as follows:

ApB if and only if A+ C = B +C for some C.

Then S/n* = Py(F)/p; D(S)/n is then the semifield of quotients of this. Note that
P4(F) is the maximum semilattice (band) homomorphic image of (F, -) and p is the
minimum cancellative congruence on (Ps(F), +). Each of these congruences is com-
patible with the “other” operation.

The congruence p can be simply described when |X| = 1, thatis F = Z. If
a,n€Z,n >0, then

{a,a+1,...,a+n}+{a,a+1,...,a+n}
={2a,2a+1,...,2a+n,2a+n+1,...,2a+2n}
={a,a+1,...,a+n}+{a,a+n},

so {a, a+1, ..., a+n}p{a, a+n}. It now follows that {a, ..., a+1i, ..., a+n}p{a, e+
n} for any set of a+i€ {a+1,...,a+n— 1} and thus that Ap{min(A4), max(4)}
for all A € Py(Z). i a,b,c,d € Z,a <b, c<dand {a, b} +C = {c,d} + C, then
a+min (C) = min ({a, b} + C) = min({¢, d} + C) = ¢+ min(C) so a = ¢ and similarly
b=4d. Thus {a, b}p{c, d} if and only if {a, b} = {¢, d} and we have

Py(Z)/p = {(a, b): a,b€ Z,a < b}
where addition is componentwise and (a, b)(¢c, d) = (min{a, ¢}, max{b, d}).

The semifield of differences of this, that is the free lattice ordered group on one
generator, has an additive group which is free of rank two - an old result of Birkhoff.

The congruence p appears to be more difficult to describe for larger X .
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