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Abstract

Accurate prediction of laminar-turbulent transition is a critical element of computational fluid dynamics simulations for
aerodynamic design acrossmultiple flow regimes.Traditionalmethods of transitionprediction cannot be easily extended
to flow configurations where the transition process depends on a large set of parameters. In comparison, neural network
methods allow higher dimensional input features to be consideredwithout compromising the efficiency and accuracy of
the traditional data-driven models. Neural network methods proposed earlier follow a cumbersome methodology of
predicting instability growth rates over a broad range of frequencies, which are then processed to obtain the N-factor
envelope, and then, the transition location based on the correlatingN-factor. This paper presents an end-to-end transition
model based on a recurrent neural network, which sequentially processes the mean boundary-layer profiles along the
surface of the aerodynamic body to directly predict the N-factor envelope and the transition locations over a two-
dimensional airfoil. The proposed transitionmodel has been developed and assessed using a large database of 53 airfoils
over a wide range of chord Reynolds numbers and angles of attack. The large universe of airfoils encountered in various
applications causes additional difficulties. As such, we provide further insights on selecting training datasets from large
amounts of available data. Although the proposedmodel has been analyzed for two-dimensional boundary layers in this
paper, it can be easily generalized to other flows due to embedded feature extraction capability of convolutional neural
network in the model.

Impact Statement

The recurrent neural network (RNN) proposed here represents a significant step toward an end-to-end prediction
of laminar-turbulent transition in boundary-layer flows. The general yet greatly simplified workflow should
allow even nonexperts to apply the proposed model for predicting transition due to a variety of instability
mechanisms, which is a significant advantage over traditional direct computations of the stability theory. The
encoding of boundary layer profiles by the convolutional neural network and sequence-to-sequence mapping
enabled by the RNN faithfully represent the amplification of flow instability along the surface, exemplifying the
direct correlation of the proposed model with the underlying physics. Finally, we use a very large dataset and
provide insights and best-practice guidance toward the practical deployment of neural network-based transition
models in engineering environments.
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1. Introduction

Laminar-turbulent transition of boundary-layer flows has a strong impact on the performance of flight
vehicles across multiple flow regimes due to its effect on surface skin friction and aerodynamic heating.
Predicting the transition location in computational fluid dynamics (CFD) simulations of viscous flows
remains a challenging area (Slotnick et al., 2014). Transition to turbulence in a benign disturbance
environment is typically initiated by the amplification ofmodal instabilities of the laminar boundary layer.
Depending on the flow configuration, these instabilities can be of several types, for example, Tollmien–
Schlichting (TS) waves, oblique first-mode instabilities, and planar waves of second-mode (or Mack-
mode) type.

A description of transition prediction methods based on stability correlations can be found in a
variety of references (Smith and Gamberoni, 1956; van Ingen, 1956, 2008), but we provide a brief
description here tomake the paper self-contained. A somewhat expanded descriptionmay also be found
in Zafar et al. (2020). The transition process begins with the excitation of linear instability waves that
undergo a slow amplification in the region preceding the onset of transition. The linear amplification
phase is followed by nonlinear processes that ultimately lead to turbulence. Since these nonlinear
processes are relatively rapid, it becomes possible to predict the transition location based on the
evolution of the most amplified instability mode. The linear amplification ratio, eN , is generally
computed using the classical linear stability theory (Reshotko, 1976; Mack, 1987; Reed et al., 1996;
Juniper et al., 2014; Taira et al., 2017). The local streamwise amplification rates (σ) along the
aerodynamic surface can be determined by solving an eigenvalue problem for the wall-normal velocity
perturbation, which is governed by the Orr–Sommerfeld equation (Drazin and Reid, 1981). These local
streamwise amplification rates corresponding to each frequency (ω) are then integrated along the body
curvature to obtain the logarithmic amplification of the disturbance amplitude (N-factor) for each
disturbance frequency (ω). The eN method assumes that the occurrence of transition correlates very well
with the N-factor of the most amplified instability wave reaching a critical value N tr . For subsonic and
supersonic flows, the critical N-factor (denoted herein as N tr) has been empirically found to lie in the
range between 9 and 11 (Bushnell et al., 1989; van Ingen, 2008). Such a prediction process may be
schematically illustrated as shown in Figure 1a.

Linear stability computations rely on highly accurate computations of the mean boundary-layer flow.
Solution of the linear stability equations is also computationally expensive and often leads to the
contamination of the unstable part of the spectrum by spurious eigenvalues. The nonrobust nature of
the stability computations requires a significant degree of expertise in stability theory on the user’s part,
making such computations inapt for nonexpert users. For these reasons, transition prediction based on
stability computations has been difficult to automate and renders its direct integration in CFD solvers
rather impractical. Several aerodynamic applications involving flow separation also entail viscous–
inviscid interactions. Such interactions lead to a strong coupling between transition and the overall flow
field, which requires an iterative prediction approach. Hence, the integration of the transition prediction
method in the overall aerodynamic prediction method remains an important area of research (Slotnick
et al., 2014).

Several methods have been proposed as simplifications or surrogate models of the eN methods,
including database query techniques (Drela and Giles, 1987; van Ingen, 2008; Perraud and Durant,
2016) and data fitting techniques (Dagenhart, 1981; Stock and Degenhart, 1989; Gaster and Jiang, 1995;
Langlois et al., 2002; Krumbein, 2008; Rajnarayan and Sturdza, 2013; Begou et al., 2017; Pinna et al.,
2018). These methods are generally based on a small set of scalar input parameters representing the mean
flow parameters and relevant disturbance characteristics. However, these methods do not scale well with
larger sets of parameters, which tends to limit the expressive power of the transition model based on these
traditional methods (Crouch et al., 2002). In particular, the shape factor is a commonly used scalar
parameter to correlate the disturbance amplification rates to the mean flow of the boundary layer.
However, the shape factor cannot be easily computed for many practical flows such as high speed flows
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Figure 1. Comparison of transition prediction methodologies.
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over blunt leading edges, which results in a poor predictive performance of the databasemethods (Paredes
et al., 2020).

Neural networks provide amore generalizedway of predicting the instability characteristics, while also
accounting for their dependency on high-dimensional input features in a computationally efficient and
robust manner. Fuller et al. (1997) applied neural network methods to instability problems in predicting
the instability growth rates for a jet flow. Crouch et al. (2002) used scalar parameters and the wall-normal
gradient of the laminar velocity profile as an input of neural networks to predict the maximum instability
growth rates. They demonstrated the generalizability of the neural networkmethod for both TSwaves and
stationary crossflow instabilities. The data for the gradient of the laminar velocity profile were coarsely
defined at six equidistant points across the boundary layer. A fully connected neural network was used,
which assumes no spatial structure on the input data. Such treatment of boundary-layer profilesmay not be
well suited for other instability mechanisms involving, for instance, Mack-mode instabilities in high-
speed boundary layers that require input profiles of thermodynamics quantities along with the velocity
profiles (Paredes et al., 2020) or the secondary instabilities of boundary-layer flows with finite-amplitude
stationary crossflow vortices that include rapid variations along both wall-normal and spanwise coordi-
nates.

By utilizing recent developments in machine learning, Zafar et al. (2020) proposed a transition model
based on convolutional neural networks (CNNs), which has the ability to generalize across multiple
instabilitymechanisms in an efficient and robustmanner. CNNswere used to extract a set of latent features
from the boundary-layer profiles, and the extracted features were used alongwith other scalar quantities as
input to a fully connected network. The hybrid architecture was used to predict the instability growth rates
for TS instabilities in two-dimensional incompressible boundary layers. The extracted latent feature
showed a strong, nearly linear correlation with the analytically defined shape factor (H) of the boundary-
layer velocity profile. The model was trained using a database of Falkner–Skan family of selfsimilar
boundary-layer profiles. This CNN-based method is applicable to various instability mechanisms with
higher-dimensional input features, since the boundary-layer profiles are treated in a physically consistent
manner (i.e., as discrete representation of the profiles accounting for their spatial structures). It has been
applied to predict the instability growth rates of Mack-mode instabilities in hypersonic flows over a
moderately blunt-nosed body (Paredes et al., 2020). This particular application requires additional input
features in the form of boundary-layer profiles of thermodynamic quantities such as temperature and/or
density, where the CNN-based model demonstrated highly accurate predictions of the instability growth
rates.

Despite clear advantages over earlier neural network-based models, the CNN-based transition model
shares a few significant shortcomings with the direct integration of linear stability theory toward transition
prediction. Similar to the stability theory, the CNN-based transition model is based on the predictions of
the instability growth rates corresponding to each selected disturbance frequency ω (and/or the spanwise
wavenumber β in the case of three-dimensional instabilities) and every station from the input set of
boundary-layer profiles. The instability growth rates for each individual disturbance are integrated along
the aerodynamic surface to predict the growth in disturbance amplitude, or equivalently, the N-factor
curve for each combination of frequency and spanwise wavenumber. Finally, one must determine the
envelope of the N-factor curves to predict the logarithmic amplification ratio for the most amplified
disturbance at each station (denoted as Nenv herein), which can then be used in conjunction with the
critical N-factor (Ncr) based on previous experimental measurements to predict the transition location (see
Figure 1b for a summary). This overall workflow not only extends over several steps, but also requires the
user to estimate the range of frequencies (and/or spanwise wavenumbers) that would include the most
amplified instability waves corresponding to the envelope of the N-factor curves. The selection of
disturbance parameters for a given flow configuration can be somewhat challenging for nonexpert users.
More important, however, the above workflow requires several redundant growth rate computations
involving subdominant disturbances that do not contribute to the N-factor envelope used to apply the
transition criterion, namely, N¼Ncr. Finally, and similar to the earlier neural network models (Crouch
et al., 2002), the growth rate prediction during the all important first step of the above workflow only uses
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the local boundary-layer profiles, and hence, does not utilize any information about the prior history of a
given disturbance, for example, any previously estimated instability growth rates at the upstream
locations. Since the boundary-layer profiles evolve in a continuous manner, the spatial variation in the
disturbance growth rate represents an analytic continuation along the aerodynamic surface. Thus,
embedding the upstream history of boundary-layer profiles and/or the disturbance growth rates should
lead to more accurate, robust, and computationally efficient models for the onset of transition.

A recurrent neural network (RNN) is a promising approach for modeling the history effects. The RNN
is a general-purpose architecture formodeling sequence transduction using an internal state (memory) that
selectively keeps track of the information at the preceding steps during the sequence (Graves, 2012).
RNNs provide a combination of multivariate internal state as well as nonlinear state-to-state dynamics,
which make it particularly well-suited for dynamic systemmodeling. Faller and Schreck (1997) exploited
these attributes of RNNs to predict unsteady boundary-layer development and separation over a wing
surface. The RNN architectures have also been used for the modeling of several other complex dynamic
systems ranging from near-wall turbulence (Guastoni et al., 2019), the detection of extreme weather
events (Wan et al., 2018), and the spatiotemporal dynamics of chaotic systems (Vlachas et al., 2020),
among others.

The feature extraction capability of CNN and the sequence-to-sequence mapping enabled by RNN
provide a direct correlation with the underlying physics of transition, exemplifying the machine learning
models motivated by the physics of the problem, for example, in the modeling of turbulence (Wang et al.,
2017; Wu et al., 2018b; Duraisamy et al., 2019). Transport equation-based models, such as the well-
known Langtry–Menter 4-equation model Menter et al. (2006), are based on empirical transition
correlations that are based on local mean flow parameters, therefore the connection with the underlying
physics of the transition process is significantly weaker as compared to stability-based correlation,
whether it involves direct computations of linear stability characteristics or a proxy thereto as represented
within the proposed RNN model. This paper is aimed at exploiting the sequential dependency of mean
boundary-layer flow properties to directly predict maximum growth rates among all unstable modes at a
sequence of stations along the airfoil surface. Such sequential growth rates can then be integrated along
the airfoil surface to determine the N-factor envelope and corresponding transition location, as has been
schematically illustrated in Figure 1c. To this end, an extensive airfoil database has been used that
documentsmean flow features and linear stability characteristics for a large set of airfoils at a range of flow
conditions (Reynolds numbers and angles of attack). Furthermore, we provide insight on the similarity of
stability characteristics among different families of airfoils and how a neural network trained on one set of
airfoils can generalize to other ones, possibly at different flow conditions.

The rest of themanuscript is organized as follows. The proposedRNNmodel is introduced in Section 2
along with the input and output features. Section 3 presents the airfoil database used to develop and
evaluate the proposed transition model. Section 4 presents the results and discussion for different training
and testing cases, which provide insight toward subsampling of training datasets for achieving a
reasonable predictive performance from the RNN model. Section 5 concludes the paper.

2. Recurrent Neural Network

A neural network consists of successive composition of linear mapping and nonlinear squashing
functions, which aims to learn the underlying relationship between an input vector (q) and an output
vector (y) from a given set of training data. The series of functions are organized as a sequence of layers,
each containing several neurons that represent specific mathematical functions. The mathematical
functions in each layer are parameterized by the weight (W) and bias (b). Intermediate layers between
the input layer (q) and output layer (y) are known as hidden layers. The functional mapping of a neural
network with a single hidden layer can be expressed as:

y¼W 2ð Þ f W 1ð Þqþb 1ð Þ
h i� �

þb 2ð Þ, (1)
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whereW lð Þ and b lð Þ represent the weight matrix and bias vector for the lth layer, respectively, and f is an
activation function. Activation functions enable the representation of complex functional mapping by
introducing nonlinearity in the composite functions. The training of a neural network is a process of
learning the weights and biases with the objective of fitting the training data.

RNNs are architectures with internal memory (known as the hidden states), which make them
particularly suitable for sequential data such as time series, spatial sequences, and words in a text. The
RNN processes the sequence of inputs in a step-by-step manner while selectively passing the information
across a sequence of steps encoded in a hidden state. At any given step i, the RNN operates on the current
input vector (qi) in the sequence and the hidden state hi�1 passed on from the previous step, to produce an
updated hidden state hi and an output yi. Figure 2 shows the schematic of a recurrent neural network.
Multiple RNNs can be stacked over each other, as shown in Figure 3, to provide a deep RNN. The
functional mapping for an architecture with L layers of RNN stacked over each other can be expressed as:

hli ¼ f W l
hh �hli�1þW l

qh �hl�1
i

h i
, (2a)

yi ¼W hy �hLi , (2b)

where W l
hh, W

l
qh, and W hy are the model parameters corresponding to the mapping from a previous

hidden state to subsequent hidden state, from an input vector to a hidden state, and from a hidden state to
an output vector, respectively. The model parameters (W l

hh and W l
qh) have sequential invariance across

each layer, that is, the input vector and hidden state at each step along the sequence are processed by the
same parameters within a given layer of the RNN architecture. For the first layer, hl�1

i is equivalent to the
input vector qi, while for subsequent layers, h

l�1
i denotes the hidden state from the previous layer at the

current step. In this manner, a multilayer RNN transmits the information encoded in the hidden state to the
next step in the current layer and to the current step of the next layer by implementing Equation (2a). For
the sake of brevity, the bias terms have not been mentioned in these equations.

Figure 2. Schematic of the recurrent neural network (RNN) cell shown as a blue box on the left. Within
each RNN cell, the arrangement of the weight matrices is shown on the right. At any step i of the sequence,
the RNN cell takes input qi and previous hidden state hi�1, and provides updated hidden state hi and

output yi.
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Like deep feed-forward neural networks, deep RNNs can lead to more expressive models. However,
the depth of an RNN can have multiple interpretations. In general, RNN architectures with multiple RNN
layers stacked over each other are considered deep RNNs, as shown in Figure 3. Such deep RNN
architectures have multiple internal memories (hidden states), one in each RNN layer. RNN architectures
with multiple recurrent hidden states, stacked over each other, can model varying levels of dependencies
(i.e., from short-term to long-term) in each hidden state (Hermans and Schrauwen, 2013). These stacked-
RNN architectures can still be considered shallow networks with limited expressivity, as all model
parameters (W hh, W qh, and W hy) are generally represented by single linear layers. To allow for more
complex functional representation, these single linear layers can be replaced bymultiple nonlinear layers.
Pascanu et al. (2014) has shown that introducing depth via multiple nonlinear layers to represent W hh,
W qh, and W hy can lead to better expressivity of the RNN model. For the transition modeling problem
addressed in this paper, multiple nonlinear layers are used within each RNN cell to express the complex
physical mapping between the input features and output, as shown in Figure 2. Such architecture resulted
in better learning and predictive capability of the RNN model.

The underlying physics of transition does not require long term memory, unlike natural language
processing for which more involved models like long short-term memory (LSTM) and transformers have
proved to be very effective. For the transition problem, keeping track of last one or two stations have
proved to be sufficient. In a study at the start of this research work, an informal investigation showed no
advantage of LSTMs over RNNs, despite their added complexity and higher training cost.

With this perspective, the RNNmodel being proposed in this paper maps the sequential dependency of
mean boundary-layer flow properties as input features to instability growth rates corresponding to the N-
factor envelope as output features. Such input and output features, summarized in Table 1, have been
taken at a sequence of stations along the airfoil surface as shown in Figure 3. Mean boundary-layer flow
properties have been introduced in terms of the Reynolds number (Re θ) based on the local momentum
thickness of the boundary layer, the velocity boundary-layer profile (u), and its derivatives (du=dy and
d2u=dy2). Zafar et al. (2020) proposed a convolutional neural networkmodel that encodes the information

Figure 3. Sequences of input features and output for deep recurrent neural network (RNN) architecture
have been illustrated with respect to stations along the airfoil surface.
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from boundary-layer profiles to a vector of latent features while accounting for the spatial patterns in the
input profiles (Michelén-Ströfer et al., 2018; Wu et al., 2018a). Such a treatment of boundary-layer
profiles allows the trained neural network models to generalize to all practical flows with different
instability mechanisms (Paredes et al., 2020).

The RNNmodel presented in this paper builds upon this idea and further combines CNNwith RNN to
account for nonlocal physics in both streamwise and wall-normal directions. This is shown in Figure 4.
The hyperparameters of the proposed neural network have been empirically tuned to yield adequate
complexity for learning all the required information, without causing an overfitting of the training data.
After such hyperparameter tuning of the neural network model, early stopping was not required. With the
boundary-layer profiles defined by using 41 equidistant points in the wall-normal direction, the CNN
architecture contains 3 convolutional layers with 6, 8, and 4 channels, respectively, in those layers. Kernel
size of 3 � 1 has been used in each convolutional layer. Rectified linear unit (ReLU) is used as the
activation function. The CNN encodes the spatial information in the boundary-layer profiles along each
station to a vector of latent features, Ψ. The results are not significantly sensitive to the number of latent
features in the vectorΨ. However, following a sensitivity study on the size of latent features, the number of
elements inΨ has been set to 8. The latent features Ψ extracted from the boundary-layer profiles are then

Table 1. Input features and output for the RNN model.

Feature/output Description Definition

q1 Reynolds number based on edge velocity and momentum
thickness

Re θ

q2 Velocity profile as a function of wall normal coordinate y u j, j¼ 1,2,…,41

q3 First-order derivative of velocity profile du
dy

���
j
, j¼ 1,2,…,41

q4 Second-order derivative of velocity profile d2u
dy2

���
j
, j¼ 1,2,…,41

y1 Slope of N-factor envelope, corresponding to local growth rate
of the most amplified disturbance at that location

dN env=ds

Figure 4. Proposed neural network for transition modeling. Convolutional neural network encodes the
information from boundary-layer profiles (u,uy,uyy) into latent features (Ψ) at each station. RNN

processes the input features (Reθ and Ψ) in sequential manner to predict the growth rate (dN=ds) of the
N-factor envelope.
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concatenated with Re θ at each station, which provides the sequential input features for the RNN
architecture to predict the local growth rate of the most amplified instability mode, or equivalently, the
slope (dN=ds) of the N-factor envelope at a sequence of stations along the airfoil surface. Each RNN cell
(Figure 2) consists of nonlinear mappings from the input to the hidden state W qh

� �
and from the hidden

state to the output (W hy), with each mapping involving two hidden layers with 72 neurons each. The
rectified linear activation function (ReLU) is used to introduce nonlinearity in these layers. The hidden
state is represented by a vector of length 9 and a linear layer is used for the mapping W hh between the
hidden states. The RNN architecture consists of three RNN layers stacked over each other, with
corresponding three internal memories (hidden states), each representing varying level of dependency
(short to long term) between the output at the current station and the input at the current as well as the
preceding stations.

As theCNNarchitecture is intrinsically dependent on the shape of the training data, the architecture can
be tuned to different shapes of training data and the proposed model is expected to maintain its efficiency
and accuracy. Future work will explore the vector-cloud neural network Zhou et al. (2021) which can deal
with any number of arbitrarily arranged grid points across the boundary layer profiles. Since empirical
tuning of hyperparemeters provided good results, we did not undertake an extensive optimization of the
whole model. In a related unpublished work, more extensive hyperparameter optimization resulted in
minor adjustments of the CNN architecture with comparable results.

3. Database of Linear Amplification Characteristics for Airfoil Boundary Layers

A large database of the linear stability characteristics of two-dimensional incompressible boundary-
layer flows over a broad set of airfoils was generated for the training and evaluation of the proposed
model. These boundary-layer flows can support the amplification of TS waves and the most amplified
TS waves at any location along the airfoil correspond to two-dimensional disturbances (i.e., spanwise
wavenumber β¼ 0). This database documents the amplification characteristics of unstable TS waves
under the quasiparallel, no-curvature approximation. A value of N tr ¼ 9 has been empirically found to
correlate with the onset of laminar-turbulent transition in benign freestream disturbance environments
characteristic of external flows at flight altitudes. The airfoil contours were obtained from public
domain sources, such as the UIUCAirfoil Coordinates Database (UIUCApplied Aerodynamics Group,
2020). Linear stability characteristics for laminar boundary-layer flows were computed using a
combination of potential flow solutions (Drela, 1989) and a boundary-layer solver (Wie, 1992). The
computational codes used are industry standard and have been used in number of research works over
the years. Inviscid computations using panel method have been performed with 721 points around the
airfoil. For boundary layer solver, 300–400 grid points have been considered in wall normal direction
using a second order finite difference scheme.We note that the focus of this database is on transition due
to TS waves in attached boundary layers, and therefore, flows involving a separation bubble (which
cannot be computed with the viscous–inviscid-interactive procedure adopted herein) are not considered
in the present work.

Airfoil contours included in the database belong to different categories and were selected randomly to
cover a range of practical applications. These categories include different series of NACA airfoils, natural
laminar flow airfoils, low Reynolds number airfoils, rotorcraft airfoils, and airfoil contours designed for
transonic flows, and so on. Selected airfoils from three of these categories have been plotted in Figure 5,
which illustrates the markedly different airfoil contours included in the database. Data corresponding to
both upper and lower surfaces of the airfoils has been considered, except for the symmetrical airfoil
sections for which the lower-surface data have been excluded to avoid duplication, and hence, a bias in the
data sampling. For reference, all 53 airfoils from the database are listed as well as plotted in Appendix
A. The range of chordReynolds numbers (Re c) included in the database extends over nearly four orders of
magnitude 5�104,2�108

� �
and a broad range of angles of attack (AOA) �6∘,8∘½ � has been considered

for each of these airfoils. However, some of the boundary layers within the above range of Reynolds
numbers and angles of attack are either stable or onlyweakly unstable (i.e., corresponding to a rather small
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peak N-factor, N < 3). Those flows were excluded from the database, still yielding a total of 31,247 flow
cases corresponding to the 53 airfoils in this database. Although the computational cost of generating such
a database is only few hours, the associated human effort measured in hours are significantly higher since
the process requires manual interventions and expert judgements to avoid spurious modes in linear
stability computations. Furthermore, preprocessing of geometrical data to ensure smooth surface curva-
ture also added significant human effort cost to the database generation.

The database documents the mean flow features and the relevant linear stability characteristics in a
sequential manner along 121 streamwise stations, starting from a station close to the onset of instability
and extending up to either the point where the N-factor envelope reaches Nenv ¼ 25 or to the end of the
chordwise domain (which can be upstream of the trailing edge if the boundary-layer solution terminates
due to an incipient flow separation). We keep the sequence length fixed at 121 for all airfoils and flow
conditions, which makes it more efficient in handling the data during the training and testing of the RNN
model. The location of each station is defined in terms of the arc length along the airfoil surface (s).
Besides the parameters given in Table 1, sequential information for several other relevant parameters has
also been included in the database, such as the chordwise location of each station (x=c), local edge velocity
(Ue), local boundary-layer edge density (ρe) and viscosity (μe), boundary-layer momentum thickness (θ),
and so on.

The present work is aimed at developing an RNN model, which is trained over a subset of the
complete dataset, and has the ability to predict the transition location for any boundary-layer flow from
the complete dataset with reasonable accuracy. Computational constraints limit the size of the training
dataset for RNNs, since they are more expensive to train as compared to simple feedforward neural
networks. Reducing the size of the training data via subsampling of the overall database would require
the sampling process to avoid any bias toward any specific subset of the database. Such bias can have a
dominant effect on the efficacy of the loss function used for training, resulting in a potential overfitting
across certaint parts of the training data, and worse predictive performance for other subsets of the
database. Hence, a large database of this type requires adequate sampling procedures for the selection
of the training data so that the resulting model can provide a balanced representation of the entire
database.

NACA 4-digit Airfoil Series 
NACA-MPXX: 4 digits designate the camber (M), position of the maximum camber (P), and thickness (XX)

Symmetric airfoils:
0006, 0012, 0015, 0018, 0021

Cambered airfoils:
 2412, 2415, 4412, 4418

Natural Laminar Flow Airfoils 
Last two digits represent the maximum thickness

Rotorcraft Airfoils 

NLF(1)-1015, NLF(1)-0115, NLF(1)-0414F, NLF(2)-0415 VR-7, VR-12, VR-15, OA212

Figure 5. Airfoil sections for three airfoil families in the database. A complete list of airfoils along with
their geometries is given in Appendix A.
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4. Results

The proposed RNN model predicts the sequence of growth rates of the most amplified disturbances, that
is, the slope values of the N-factor envelope as a function of distance along the airfoil contour. The
N-factor envelope can then be determined as the cumulative integral over this sequence, with the lower
limit of integration corresponding to the airfoil location where the boundary-layer flow first becomes
unstable (or, equivalently, the station across which the slope first changes in sign from a negative value to a
positive one). The transition onset location can then be estimated as the location where the envelope
reaches the critical N-factor determined via correlation with a relevant set of measurements. The
sequential data are defined at a fixed number of stations for each flow, but the physical domain length
can vary from case to case due to the potential onset of flow separation in a laminar boundary-layer
computation. The loss function used for the training process includes a weighting function corresponding
to the cell size (ds) in the vicinity of each station. Specifically, the loss function used for training the neural
network is defined in terms of a weighted sum over the square of the local error:

L¼
Xm
j¼1

l j
� �

where l j ¼
Xn
i¼1

Yi� bYi

� �2
�dsi

	 

, (3)

where m denotes the number of sequences in the dataset, n denotes the number of stations in a sequence,
and Y and bY represent the true and predicted values, respectively, corresponding to the output quantity.
The weighting function serves to reduce the bias due to a nonuniform streamwise grid used in the
boundary-layer calculation.

The primary performance indicator of the proposedmodel is the prediction of the chordwise location of
the laminar-turbulent transition. However, besides its obvious dependence on the stability characteristics
of the airfoil boundary layer, the transition location also depends on the disturbance environment via the
correlating N-factor value, N tr. The measured transition locations in a broad range of flows typically
correlate with a finite band of N-factor values in the vicinity of N tr ¼ 9 under a benign disturbance
environment, such as those encountered by external flows at typical flight altitudes. For this reason, the
predictive performance has been assessed considering the flow cases for whichN-factor envelope reaches
values of upto Nenv ¼ 13: To help provide a meaningful assessment of the model accuracy across a broad
range of flows and correlating N-factors, three different error metrics have been defined separately from
the loss function, as indicated below.

Eenv ¼ 100� 1emX~mj¼1

kNenv� bNenvkds
Nenvk kds

 !
j

, (4)

Etr ¼ 100� 1emX~mj¼1

x=ctr�ex=ctr
x=ctr

���� ����
j

, (5)

Ex=c ¼ 100� 1emX~m
j¼1

x=ctr�ex=ctrj j j, (6)

where em denotes the number of sequences in the dataset for which the N-factor envelope reaches values of
upto Nenv ¼ 13. The first error metric (Eenv) is based on the L2 norm to evaluate the accuracy of the
predicted N-factor envelope (Nenv), determined by integrating the predicted slope values dN=ds. To
emphasize a finite band of N-factor values in the vicinity of N tr ¼ 9, only the range of 5<Nenv < 13 has
been considered for each flow case. The second error metric (Etr) corresponds to the relative discrepancy
between the true and predicted chordwise locations of transition onset for the case of N tr ¼ 9. The third
error metric (Ex=c) relates to the absolute error in the predicted transition location, scaled by the airfoil
chord length.
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4.1. Demonstration of predictive performance

Selection of training data for the development of a general purposemodel for the airfoil universe requires a
balance betweenmultiple requirements that may conflict with each other. It is clearly desirable for the size
of the training data to be moderate enough to minimize the training cost. However, the training data must
also be large enough in scope to represent the broad application space and must be designed to avoid an
unfair bias toward specific subregions from the parameter space of latent features. Translating these
requirements into a practical procedure is not a straightforward task. Given the availability of the large
database of stability characteristics as described in the previous section, we have evaluated several
different strategies for the selection of an appropriate subset of that database for the training process.

We begin using a smaller portion of the available database for training purposes. This baseline case is
representative of less ambitious efforts at database generation, as well as being better suited for the case
involving a broader application space that includes additional flow parameters such as, for instance,
nonzero Mach numbers, nonzero surface transpiration, surface heating/cooling, and so on. The baseline
training set consists of five out of the total 53 airfoils, with each of these five airfoils representing a
different subgroup of airfoils from Table A1, namely, the NACA0012, ONERAM6, NACA2412,
NACA63-415, and NLF(1)-0416 airfoils. These airfoils correspond to airfoil indices of 2, 44, 6, 15,
and 25, respectively. Here, the first two airfoils have symmetric contours whereas the latter three
correspond to asymmetrical airfoil sections. Table 2 lists the various flow conditions at which bound-
ary-layer solutions are available for each airfoil in the database. To assess the RNNmodel for interpolation
and extrapolation with respect to the angle of attack and chord Reynolds number, respectively, flow
conditions marked in red have been included in the testing dataset, while the remaining flow cases
constitute the training dataset. Such an arrangement of the total available cases from these five airfoils
results in a 60–40% split between the training and testing data.

The sequential information corresponding to the evolution of mean boundary-layer profiles along the
airfoil surface has been documented in the database, with a uniform sequence length of 121 stations for all
flow cases. An initial assessment was conducted to ascertain the effect of different sequence lengths. The
results of this assessment are shown in Figure 6, wherein the error metrics defined in Equations (4) and (5)
have been plotted for different sequence lengths. Significant improvements can be observed by reducing
the sequence length from 121 to 60, the reason for which is not entirely clear. It could be one of the areas
for future investigations of such models. In general, however, this trend may be related to the fact that
more information sometimes lead to diluting of information and, consequently, to worse results. Further
shortening of the sequence length yields relatively little benefit in terms of model accuracy for either
training or test data. In fact, the accuracy of predicting the transition location worsens when the sequence
length is reduced beyond 60. This observation is likely to be related to a poorer resolution of the shape of
the N-factor envelope achieved when fewer stations are used across the same physical domain length
along the airfoil surface. Looking at the similar trends for both errormetrics, it was decided that a sequence
length of 60 stations would provide an optimal choice for all of the results to be presented in this paper.
Figure 6 shows that the predictive performance for the testing dataset is comparable to that for the training

Table 2. Flow conditions for all the cases in the airfoil database.

Angles of attack (deg) Reynolds numbers

�6∘, �5∘, �4:5∘, �4∘, �3:5∘, �3∘, 3:5�104, 5:0�104, 7:0�104, 1:0�105, 1:4�105,
�2:5∘, �2∘, �1:5∘, �1∘, �0:5∘, 0∘, 2:8�105, 4:0�105, 5:6�105, 8:0�105, 1:1�106,
0:5∘, 1∘, 1:5∘, 2∘, 2:5∘, 3∘, 3:5∘, 4∘, 1:6�106, 2:3�106, 3:2�106, 4:5�106, 6:4�106,
5∘, 6∘, 7∘,8∘ 9:0�106, 1:3�107, 1:8�107, 3:6�107, 5:1�107,

7:2�107, 1:0�108, 1:4�108

For evaluation of the RNN model, flow conditions used for model testing are marked in red color whereas the flow conditions used for training are
indicated in black color.
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dataset, demonstrating the interpolating and extrapolating capability of the proposed RNN model with
respect to both AOA and Re c.

Next, we assess the effect of the size of the RNN model on the prediction error. Figure 7 displays the
variation in error percentage as a function of the number of learnable parameters in the RNNmodel.While
the error metric Eenv decreases as the number of learnable parameters is increased up to 5,500, the error
remains nearly constant with a further increase in the number of parameters. One may deduce from these
results that an RNN model with 5,500 learnable parameters provides near-optimal learning capability
without causing overfitting. Consequently, this model size will be maintained for all the results presented
for the current dataset. We note that the training dataset for this baseline case is of much smaller size in
comparison to the complete airfoil database and that the use of a larger training dataset will most likely
require a larger number of learnable parameters to enhance the learning capacity of the RNNmodel. Thus,
the selection of model size will be discussed again when we work with somewhat larger training datasets
in the following subsections.

The architecture of the proposed neural network model has direct correlation with the underlying
physics of flow transition. Previously proposed fully connected neural network-based transition models
(Fuller et al., 1997; Crouch et al., 2002) did not distinguish the evolution of flow in wall-normal and
streamwise directions. At any station along airfoil surface, propagation of boundary layer flow in wall-
normal direction is instantaneous (analogous to elliptic behavior of diffusion equation). Hence, Zafar et al.

Figure 6. Comparison of prediction error percentage for training and testing datasets with different
sequence lengths. Training and testing datasets have been defined based on flow conditions as given in

Table 2.

Figure 7. Training and testing errors for a range of sizes of the recurrent neural network (RNN) model
indicated by the number of learnable parameters. The number of layers is kept the same while the

parameters are varied proportionately in all three mappings, W hh, W qh, and W hy.
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(2020) used CNN to encode the information from the boundary layer profiles in wall-normal direction in a
vector of latent features. Such treatment of boundary layer profiles provides a stronger correlationwith the
underlying physics of the flow and also allows the application of CNN-based transition model to various
instability mechanisms (Paredes et al., 2020). These characteristics were clearly lacking in previously
proposed neural network-based transition models.

The current work uses both CNN and RNN in tandemwhere the RNN has been used to encapsulate the
underlying physics of streamwise evolution of flow instability along with CNN which process the
boundary layer profiles in wall-normal direction. Along the streamwise direction, elliptic behavior has
already been taken care of in the stability theory however hyperbolic nature of the instability amplification
from upstream to downstream requires sequence-to-sequence modeling, for which RNN has been used.
To assess the benefit of sequence transduction in the RNN model, its predictive performance has
compared with that of a previously proposed model which does not account for the sequence information
among the inputs at different stations (Zafar et al., 2020). For a fair comparison, almost equal number of
learnable parameters was used for both networks. The comparison is presented in Figure 8, wherein we
include the error percentages for both training and testing datasets. The testing cases have been further
categorized in terms of interpolation and extrapolation with respect to the flow conditions. The results
corresponding to each dataset show a clearly superior predictive performance for the RNNmodel vis-a-vis
the fully connected neural network.

We also note that, in comparison to transitionmodel based on fully connected neural network, the RNN
model has a moderately higher training cost associated to it. For the given training data (comprising of
5 airfoil datasets with sequence length of 60) and a given model size (�5,500 learnable parameters), the
RNN model took 29 GPU hours to train as compared to 19 GPU hours for the fully connected neural
network. A single NVIDIAV100 GPU was used for training purposes.

In comparison to direct stability computations, the RNN model can estimate the transition location
three to four orders of magnitude faster. Actual times for direct computations of linear stability can vary
depending on various factors, including the specific flow and the level of resolution (in terms of the
number of stations in a sequence and the number of frequencies used to determine the N-factor envelope).
In that regard, the above estimate is believed to provide a reasonable, if somewhat conservative, estimate
of the speed-up due to RNN.

4.2. Evaluation of predictive performance for complete database

We now perform a comparative assessment of the accuracy of the RNN models based on different
selections of training datasets. These training datasets have been summarized in the Table 3. The rationale

Figure 8. Comparison of results for the recurrent neural network and fully connected network. Testing
cases have been subcategorized as: Interpolation with respect to both angles of attack (AOA) and

Reynolds number (Re) IAOA,Reð Þ, Extrapolation with respect to AOA (EAOA), Extrapolation with respect
to Re (ERe), Extrapolation with respect to both AOA and Re (EAOA,Re ).
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behind the selection of each training dataset fromTable 3will be outlined in the course of the discussion of
the results, especially as the results for Case I provide the baseline for the selection of training data for the
subsequent cases. Since the analysis is focused on the performance of the RNN model in predicting the
transition location over an arbitrary airfoil, no distinction has been made between the airfoils and flow
conditions used for training and testing, and all the flow cases included in the training dataset are
considered alongside the cases that were not used during training. Because the sizes of the training sets
from Table 3 are comparable to each other and always less than 24% of the total available data, the error
metric based on the entire database was deemed to be a meaningful measure of the model’s predictive
accuracy.

Case I (denoted as “Five Airfoils”) from Table 3 involves a training dataset that is comprised of the
same five airfoils that were used in the earlier assessment of the RNN model size, comparison with fully
connected network, and so on. Results for the RNN model trained using the Case I dataset are shown in
Figures 9 and 10. Figure 9 presents the mean error percentages for the predicted N-factor envelope and
transition location corresponding to all airfoils from the overall database. The figures have been shaded to
distinguish between the different groups of airfoils belonging to the airfoil families included within the
overall database. Airfoil names corresponding to the indices from Figure 9 are given in Table A1. In
general, the mean error percentage for most of the airfoils is below about 3%, which demonstrates the
general capability of the RNN model based on the Case I training data. Even though the model has been
trained with a significantly smaller subsample of airfoils from the overall database, it is still able to predict
theNenv and transition location for the entire set of airfoils including different categories with a reasonable
accuracy. Laminar to turbulent transition due to TS amplification within the attached flow region is
achieved at varying numbers of flow conditions across the different airfoils, and the markers for each
airfoil in the figure have been colored on the basis of the dataset size of that airfoil. This feature will be
used to gain additional insights during the subsequent discussion as we describe the results for the
remaining cases from Table A1.

Predictive performance as a function of the angle of attack and chord Reynolds number is shown in
Figure 10, which indicates the distribution of error percentage across the overall database via a color map
for the kernel density estimate. In addition, 1% of randomly sampled data points from the overall database
have also been included as green dots within the figure. No bias in predictive errors toward specific flow
conditions may be observed within the figure, indicating that the model is able to yield comparable

Table 3. Summary of training dataset cases.

Index Label Training dataset Number of flow cases

I Five airfoils NACA-0012, NACA-2412, NACA-63-
415, NLF(1)-0416, and ONERA-M6

2,624

II Random
augmentation

Case I þ 100 random flow cases from each
of the other airfoils

7,026

III Augmented airfoils
set

Case I þ Five more airfoils with largest
mean error (LRN(1)-1007, NACA-6712,
NLF(1)-1015, NLF(2)-0415, and
CLARK-Y)

4,455

IV Error-based
augmentation

Case Iþ Specific flow cases of other airfoils
with Eenv%> 3 in Case I

5,024

V-A Random selection
(%)

Randomly selected 20% flow cases of each
airfoil

6,233

V-B Random selection (#) Randomly selected 100 flow cases of each
airfoil

5,300

Flow cases corresponding to the mentioned airfoils are included in the training dataset.
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accuracy across the entire range of flow conditions. The transition locations for most of the flow cases is
predicted with a relative error percentage of (Etr) < 2%, as shown by the higher density region with a
darker color in the color map from Figure 10.

Results for Case I, shown in Figure 9, indicate a few outlying airfoils corresponding to a high error
percentage in the predictions of the RNN model. In particular, the average error in the prediction of the
N-factor envelope for the LRN(1)-1007 airfoil is significantly higher (Eenv > 30%) as compared to that for
most of the other airfoils. LRN(1)-1007, designed for high lift and low drag at Re = 5�104,1:5�105

� �
,

(a) Mean error ( env) percentage for N-factor envelope

(b) Mean relative error ( tr) percentage for transition location prediction

(c) Mean absolute error ( / ) percentage for transition location prediction

Figure 9. Mean error percentage for each airfoil in the database, corresponding to training dataset of
Case I (five airfoils) given in Table 3. Airfoils corresponding to training dataset have been encircled in red
color. Markers’ color represent the dataset size (number of flow cases) of each airfoil in the database.
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has a peculiar airfoil contour and aerodynamic behavior, which is markedly different with respect to the
other airfoils in the training dataset. This may explain why the predictive error percentage for the LRN(1)-
1007 airfoil is higher by almost an order of magnitude. Similarly, theNACA 6712 airfoil with a highly aft-
cambered airfoil section also has a significantly higher error percentage (Eenv > 20%). In comparison, the
predictive performance for the other NACA airfoils is reasonably good, with the average absolute error in
predicting the transition location below 1% for most of those airfoils.

Augmenting the training dataset from Case I with additional data provides the most obvious way of
improving on the predictive performance of the above RNN model. Several different strategies for data
augmentation were evaluated in the course of this work, and they are denoted as Cases II, III, and IV in
Table A1. For Case II, 100 randomly selected flow cases from every other airfoil have been added to the
training dataset fromCase I. Even though these data augmentation causes the size of the training dataset to
increase almost threefold with respect to that in Case I, the inclusion of flow cases for every airfoil within
the training dataset leads to significantly improved predictive performance of the RNNmodel. The results
for Case II are shown in Figure 11. The overall prediction error percentages have decreased significantly
in comparison with Case I, and the maximum absolute error in predicting the transition location Ex=c

� �
for

any airfoil has reduced from 6:5% in Case I to approximately 1% in Case II.
For Case III, the training dataset has been augmented by including an additional set of airfoils for which

the average error (Eenv) is greater than 3%. Five such airfoils, mentioned in Table 3, alongwith the original
five airfoils fromCase I constitute the training dataset for Case III. Results for this training case are plotted
in Figure 12. The figure shows that, despite a larger size of the training dataset with respect to that in

(a) Relative error ( tr) percentage of flow cases at different angles of attack

(b) Relative error ( tr) percentage of flow cases at different Reynolds number

Figure 10. Relative error (Etr) percentage for all flow cases, corresponding to training dataset of Case I
(five airfoils) given in Table 3. Green markers (filled circles) show only 1% of the randomly sampled flow
cases. The contour shows the kernel density estimated from all the flow cases. Darker region indicates
higher probability density. The horizontal lines appearing in the contour plots such as that near an error
of 0.2% are due to technical reason (bins have been defined in linear-scale while the vertical axis of the

plot is in log-scale) and do not depict any real discontinuity.
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Case I, the predictive performance for Case III has worsened. The overall trend can be summarized by
looking at the group of natural laminar flow airfoils in Figure 12, for which the model predictions are now
significantly worse (7% < Etr < 13%), except for those airfoils that have been included within the training
dataset (0.7% < Etr < 2%). This observation points to a possible overfitting of the data by the RNNmodel
under consideration. Hence, one may conclude that the augmentation of the original set by five additional
airfoils does not provide a good representation of the overall database.

(a) Mean error ( env) percentage for N-factor envelope

(b) Mean relative error ( tr) percentage for transition location prediction

(c) Mean absolute error ( / ) percentage for transition location prediction

Figure 11.Mean error percentage for each airfoil in the database, corresponding to training dataset of
Case II (random augmentation) given in Table 3. Airfoils corresponding to training dataset have been
encircled in red color. Markers’ color represent the dataset size (number of flow cases) of each airfoil in

the database.
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For Case IV, the training dataset from Case I has been augmented with the flow cases from overall
database that correspond to the highest predictive error percentage (Eenv > 3%) associated with the RNN
model from Case I. A significant improvement can be observed in the overall predictive performance of
the RNNmodel as compared to all of the previous cases. Based on this error-based data augmentation, the
absolute error percentage in the predicted transition location Ex=c

� �
over any airfoil from the database is

(a) Mean error ( env) percentage for N-factor envelope

(b) Mean relative error ( tr) percentage for transition location prediction

(c) Mean absolute error ( / ) percentage for transition location prediction

Figure 12.Mean error percentage for each airfoil in the database, corresponding to training dataset of
Case III (augmented airfoils set) given in Table 3. Airfoils corresponding to training dataset have been
encircled, where airfoils already in the training dataset fromCase I have been encircled in red color, while
the augmented set of airfoils have been encircled in blue color. Markers’ color represent the dataset size

(number of flow cases) of each airfoil in the database.
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less than approximately 0.7%. Figure 14 shows the distribution of the error percentage as a function of the
flow conditions. Due to the kind of data augmentation used for this case, one finds that most flow cases
tend toward smaller error values in comparison to those in Case I (Figure 10).

The selection of training data for the Cases II, III, and IV was based on the results of Case I, which
consisted of five airfoils chosen somewhat arbitrarily (except for the attempt to include some represen-
tation from five different groups of airfoils). Although Case IV provides quite good results, such that the

(a) Mean error ( env) percentage for N-factor envelope

(b) Mean relative error ( tr) percentage for transition location prediction

(c) Mean absolute error ( / ) percentage for transition location prediction

Figure 13.Mean error percentage for each airfoil in the database, corresponding to training dataset of
Case IV (error-based augmentation) given in Table 3. Airfoils corresponding to training dataset have
been encircled in red color.Markers’ color represent the dataset size (numberof flow cases) of each airfoil

in the database.
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absolute error percentage associated with the prediction of the transition location (Ex=c) over any airfoil is
0.7% or less, the selection of the training dataset has been made in an indirect manner on the basis of the
results obtained in Case I.

A more direct strategy for subsampling a training dataset from the entire database has been assessed in
CaseV,where a completely random subset of varyingmagnitudes has been selected from the overall database.
Two subcases (V-A andV-B) have been assessed in this regard, as summarized in Table 3. Case V-A involves
the selection of a fixed percentage of flow cases corresponding to each airfoil, which results in a different
number of flow cases for each airfoil in the training dataset. As mentioned earlier, this uneven number of flow
cases in the database results naturally from the fact that different airfoils achieve laminar to turbulent transition
at different flow conditions and the fact that only upper surface boundary layers are retained in the case of
airfoils with symmetric contours. For Case V-B, a fixed number of flow cases corresponding to each airfoil
have been selected as training data in order to provide a uniform weighting to each of the airfoils. With this
arrangement to define the two subcases, different sizes of training datasets have been used to analyze the
variation of error percentage with respect to the size of the training dataset. The results of this study are shown
in Figure 15. The figure shows that, in both cases (V-A andV-B), there is an optimal size of the training dataset
that leads to aminimumprediction error. ForCaseV-A, a training dataset size of�6,200 (20% flow cases from
each airfoil) provides the best predictive performance. Similarly, for Case V-B, a training dataset size of
�5,300 (100 flow cases of each airfoil) provides the best predictive performance.

Comparing the results for both subcases in Figure 15 shows that Case V-B provides a better prediction
accuracy, which can be explained based on the error percentages of three airfoils, NLF(1)-1015,

(a) Relative error ( tr) percentage of flow cases at different angles of attack

(b) Relative error ( tr) percentage of flow cases at different Reynolds number

Figure 14.Relative error (Etr) percentage for all flow cases, corresponding to training dataset of Case IV
given in Table 3. Green markers (filled circles) show only 1% of the randomly sampled flow cases. The
contour shows the kernel density estimated from all the flow cases. Darker region indicates higher

probability density. The horizontal lines appearing in the contour plots such as that near an error of 0.2%
are due to technical reason (bins have been defined in linear-scale while the vertical axis of the plot is in

log-scale) and do not depict any real discontinuity.
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NLF(2)-0415, and LRN(1)-1007. These three airfoils with the highest percentage of error in Figure 16a
correspond to a relatively smaller number of flow cases in the database, as seen from the colors of their
respectivemarkers. Because the training set in CaseV-A includes a fixed percentage of flow cases for each
airfoil, the above three airfoils remain relatively underweight with respect to the other airfoils with a larger
number of flow cases. On the other hand, using a fixed number of flow cases for each airfoil provides a
more balanced representation of the various airfoils within the training dataset, which results in a better
overall predictive performance.

Results for all of the cases discussed in this section are summarized in Table 4. It is interesting to note
that the results of Case V-B, which provides a more direct approach for selecting the training dataset, are
very comparable in terms of prediction accuracy with the results from Case IV, which uses an indirect
approach to select the training dataset and provides the best results among all of the cases discussed herein.
Moreover, the training dataset for both of these cases is of almost equal size. Hence, Case V-B provides a
direct and convenient approach for selecting a subset from a large database as the training data, while also
yielding a good predictive performance over the entire database. Sample plots of theN-factor envelope for
arbitrary combinations of airfoil contours and flow conditions are shown in Figure 17. These plots
illustrate a qualitative comparison of the N-factor predictions based on the different training cases. One
may clearly see that the predictions for certain flows in Cases IV and V-B are accurate even if the
corresponding predictions for Cases I-III include significantly larger error.

4.3. Working with limited database

The database of airfoil flows generated during the present effort is relatively extensive in comparison to
what may be generally available in a majority of practical situations. For this reason, assessments have
been made to understand the predictive performance of the RNN model in selected possible scenarios.

(a) Maximum error percentage for any airfoil dataset

(b) Average error percentage for whole airfoil database

Figure 15. Case V: Variation of error percentage with respect to training dataset size
(number of flow cases).
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Such assessments are based on interpolation and extrapolation with respect to the airfoil contours, under
the assumption that a relatively smaller training dataset based on just a fewNACA four-digit series airfoils
is available. Table 5 outlines a summary of these cases and the corresponding results. Cases VI and VII
provide an assessment with respect to the interpolation of airfoil contours within a family of selected
symmetric and asymmetric airfoils, respectively. The resulting predictions are seen to be reasonably
accurate for the testing dataset with average error of 0.12 and 0.04% of the chord length for both

(a) Case V-A with randomly selected 20 percent flow cases from each airfoil

(b) Case V-B with randomly selected 100 flow cases from each airfoil

Figure 16. Comparison of mean error (Eenv) percentage for N-factor envelopes in Case V-A and V-B.
Markers’ color represent the dataset size (number of flow cases) of each airfoil in the database.

Table 4. Results for different training dataset cases.

Maximum error Average error

Index Label
Number of
flow cases Eenv (%) Etr (%) Ex=c (%) Eenv (%) Etr (%) Ex=c (%)

I Five airfoils 2,624 39.2 30.2 6.52 2.95 2.24 0.42
II Random augmentation 7,026 8.95 5.66 1.40 1.92 1.64 0.26
III Augmented airfoils set 4,455 14.5 37.4 5.15 2.71 4.14 0.43
IV Error-based

augmentation
5,024 5.38 3.82 0.70 1.53 1.17 0.15

V-A Random selection (%) 6,233 10.1 35.0 1.51 1.66 2.04 0.22
V-B Random selection (#) 5,300 5.49 4.22 0.70 1.60 1.38 0.19

Data-Centric Engineering e17-23

https://doi.org/10.1017/dce.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.11


symmetric and asymmetric airfoils, respectively. Similarly, Case VIII targets the evaluation of model
performance with respect to the extrapolation of the airfoil thickness, and again, the predictions for the
testing dataset are found to be reasonably accurate with average error of 0.06% of the chord length for the
given airfoil. Hence, it appears that the RNNmodel is able to predict well for previously unknown airfoil
sections within the same family, regardless of whether the test data involves an interpolation within the
distribution of the training data or an extrapolation beyond its boundaries. These findings support the
selection strategy underlying Case I, which included five airfoils representing multiple groups from the
overall database.

These cases have been studied to understand the model performance when a limited training dataset is
available.

Assessment in Case IX involves a training dataset of five NACA four-digit series airfoils, and the
predictive performance is evaluated using a testing dataset based on the rest of the airfoils. Results for this
case have been shown in Table 6, where it can be observed that the predictive performance in this case is
far worse in comparison to Case I, where five airfoils were taken from a different family of airfoils. Hence,
a model trained using just a single family of airfoils does not extrapolate well to the other families of
airfoils. Results for Case IX have also been shown in Figure 18, wherein themean error percentages for the
remaining families of airfoils are seen to be an order of magnitude higher than the error magnitudes

Figure 17. N-factor envelope plots for arbitrarily chosen flow cases to illustrate the comparison of
prediction by different training cases. Corresponding airfoil name and flow conditions (AOA, Re cÞ have

been mentioned for each plot.

Table 5. Assessment cases for different training cases based on NACA four-digit series airfoils.

Index Training dataset Testing dataset

Testing error %

Eenv (%) Etr (%) Ex=c (%)

VI NACA-0006, NACA-0018 NACA-0012 0.97 0.55 0.12
VII NACA-2412, NACA-4412 NACA 2415 0.34 0.17 0.04
VIII NACA-0006, NACA-0012 NACA-0018 0.56 0.24 0.06
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associated with airfoils included in the training dataset. This finding reinforces the method adopted in
Case I, namely, that a balanced training dataset should contain representation from different families of
airfoils to achieve reasonably accurate predictive performance for the overall database.

5. Conclusion

A sequence-to-sequence modeling approach based on a recurrent neural network has been proposed to
predict the location of laminar-turbulent transition via linear amplification characteristics of hydrody-
namic instabilities in boundary-layer flows. This approach provides an end-to-end transition model,
which maps the sequence of mean boundary-layer profiles to corresponding growth rates along the
N-factor envelope, and then, to the estimated transition location. In this regard, a large database
comprised of the linear growth characteristics of over 33,000 boundary-layer flows over 53 airfoils
from a disparate range of applications has been used to train and test the proposed model. The results
demonstrate that the RNNmodel is able to predict the transition location at various test flow conditions
and for the entire range of airfoil contours with good accuracy (average error of less than 0.70% of the
chord length for any given airfoil) despite being trained by a small subsample (about 16%) of the
complete database. To the best of our knowledge, the database used herein is one of the largest of its
kind, presumably representing a significant cross-section of the airfoil universe. To assess the tech-
niques to facilitate the selection of representative yet computationally efficient training data, several
alternate strategies have been investigated to provide insights into working with large amounts of data.
The more easily realizable training set based on a small group of five airfoils (one each from five
different groups of airfoil contours) forms the baseline for the selection of training data. A limited
database of this type is found to result in substantial errors in transition prediction for a number of other
airfoils, with average errors in transition location prediction across multiple test conditions for a single
airfoil approaching as much as 6.52% of the chord length for the given airfoil. Data augmentation with
additional cases from other airfoils that correspond to worst prediction errors from the baseline model is
found to provide the best choice for improving the predictive performance of the RNNmodel, reducing
the average error across all flow conditions in predicting transition location to 0.7% of the chord length
for any airfoil. An alternate strategy of using a training dataset consisting of an equally weighted
representation of each airfoil was also evaluated and was found to provide equally good predictive
performance. Further assessments also showed that the RNN-based model is able to extrapolate/
interpolate well within a family of similar airfoils and the predictive performance worsened while
extrapolating the predictions to airfoil from other families.

Transition estimates based on the RNN model are easily three to four orders of magnitude faster than
those based on direct stability computations. However, the main benefit of the deep learning models is an
improved robustness of the prediction process, making it easier for nonexperts in laminar-turbulent
transition to perform such computations. On the other hand, the deep learningmodels are restricted in their
generalizability and this paper has addressed some of the issues related to the development of models that
cover a broad space of flows. We believe the two types of models to be complementary in nature.

Table 6. Results for a training dataset comprised of a single family of airfoils and a testing dataset
comprised of the rest of the airfoils in the database.

Index Training dataset
Number of
flow cases

Maximum error Average error

Eenv

(%)
Etr

(%)
Ex=c

(%)
Eenv

(%)
Etr

(%)
Ex=c

(%)

IX NACA-0006, NACA-0018,
NACA-2412, NACA-4412,
NACA-6712

2,841 67.5 44.8 9.51 9.55 9.43 1.52
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A significant advantage of the proposed RNN model over the previously proposed neural network-
based transition models is that using the sequential information of the underlying mean flow, the RNN
model is able to directly predict the required information of the N-factor envelope and the transition
location, without requiring the user to define a range of critical frequencies and predicting the instability
growth rates at a number of frequencies in this range. On the other hand, since the RNNmodel predicts the
growth rates of the N-factor envelope in a sequential manner, it cannot be applied in a parallel manner,

(a) Mean error ( env) percentage for N-factor envelope

(b) Mean relative error ( tr) percentage for transition location prediction

(c) Mean absolute error ( / ) percentage for transition location prediction

Figure 18.Mean error percentage for each airfoil in the database, corresponding to training dataset of
Case IX given in Table 5. Airfoils corresponding to training dataset have been encircled in red color.

Markers’ color represent the dataset size (number of flow cases) of each airfoil in the database.
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unlike conventional methods or previously proposed neural networks that can predict the local growth
rates at each station in a parallel manner.

The proposed architecture processes the boundary-layer profiles at each station in a physically
consistent manner using the convolutional neural network. This attribute enables its generalization to
other instability mechanisms involving three-dimensional boundary-layer profiles involving crossflow
velocity components or second-mode instabilities in high speed flows involving the profiles of thermo-
dynamic quantities such as density and/or temperature. Future work could involve the application of the
proposed architecture to one of the other instability mechanisms. Furthermore, since the RNNmodel uses
input data for the boundary-layer profiles, that depends on the airfoil contour and flow conditions, future
explorations could involve airfoil contours along with angle of attack and Reynolds number as global
inputs to predict the N-factor envelope. Use of a vector-cloud neural network can also be explored, as it
would allow the user to employ boundary layer profiles defined at any arbitrary and variable number of
grid points (Zhou et al., 2021).
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List of Airfoils
A listing of the 53 airfoils included in the database of stability characteristics is given in Table A1. Furthermore, a graphical catalog
of all airfoil contours is also included, since that may be of interest to the readers.

Table A1. List of airfoils in the database.

Index Airfoil Index Airfoil Index Airfoil Index Airfoil

1 NACA 0006 15 NACA 63-415 29 VR-15 43 S8052
2 NACA 0012 16 NACA 64-215 30 OA209 44 ONERA M6
3 NACA 0015 17 NACA 63(2)-615 31 OA212 45 RAE 2822
4 NACA 0018 18 NACA 66(1)-212 32 E374 46 GA(W)-1
5 NACA 0021 19 NLF(1)-1015 33 E387 47 CLARK Y
6 NACA 2412 20 HSNLF(1)-0213 34 E472 48 LNV109A
7 NACA 2415 21 NLF(1)-0115 35 LRN(1)-1007 49 S8055
8 NACA 4412 22 NLF(1)-0215F 36 SD7003 50 S805a
9 NACA 4418 23 NLF(1)-0414F 37 SD7032 51 PSU 94–097
10 NACA 6712 24 NLF(1)-0414D 38 SD7062 52 SA7036
11 NACA 23015 25 NLF(1)-0416 39 SD7080 53 SA7038
12 NACA 23017 26 NLF(2)-0415 40 SD8020
13 NACA 23024 27 VR-7 41 S8036
14 NACA 63–215 28 VR-12 42 S8037
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NACA 4-digit Airfoils - Symmetrical

NACA 0006 NACA 0012 NACA 0015 NACA 0018 NACA 0021

NACA 4-digit Airfoils - Cambered

NACA 2412 NACA 2415 NACA 4412 NACA 4418 NACA 6712

NACA 5-digit Airfoils

NACA 23015 NACA 23017 NACA 23024 NACA 63-215 NACA 63-415

NACA 64-215

NACA 6-digit Airfoils

NACA 63(2)-615 NACA 66(1)-212

General Aviation Airfoils

LS(1)-0417 (GA(W)-1) CLARK Y

Low Reynolds number Airfoils

E374 E387 E472 LRN(1)-1007 SD7003

SD7032 SD7062 SD7080 SD8020

Natural Laminar Flow Airfoils

NLF(1)-1015 HSNLF(1)-0213 NLF(1)-0115 NLF(1)-0215F NLF(1)-0414F

NLF(1)-0414 Drooped NLF(1)-0416 NLF(2)-0415
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Rotorcraft Airfoils

VR-7 VR-12 VR-15 OA209 OA212

High Lift Airfoils

LNV109A

Transonic Airfoils

RAE 2822 ONERA M6

Wind Turbine Airfoils

S8055 S805A

Miscellaneous Airfoils

PSU 94-097 SA7036 SA7038 S8036 S8037

S8052
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