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QUADRATIC REVERSES OF THE TRIANGLE INEQUALITY FOR
BOCHNER INTEGRAL IN HILBERT SPACES

SEVER S. DRAGOMIR

Some quadratic reverses of the continuous triangle inequality for the Bochner integral
of vector-valued functions in Hilbert spaces are given. Applications for complex-
valued functions are provided as well.

1. INTRODUCTION

Let f : [a,b] = K, K = C or R be a Lebesgue integrable function. The following
inequality is the continuous version of the triangle inequality

l%mm

and plays a fundamental role in Mathematical Analysis and its applications.
It seems, see [6, p. 492], that the first reverse inequality for (1.1) was obtained by
Karamata in his book from 1949, [4]:
b
[ 1@
a

|arg f(z)| < 8, z € [a,b),

b
(L1) s/ 1£(2)| de

(1.2) cosO/blf(x)|dz <

provided

where 6 is a given angle in (0, 7/2).
This integral inequality is the continuous version of a reverse inequality for the
generalised triangle inequality

n

>

=1

H

(1.3) cosf D |z| <
i=1

provided
a—0<arg(z)<a+6, for ie{l,...,n},
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where a € R and @ € (0,7/2), which, as pointed out in [6, p. 492], was first discovered
by Petrovich in 1917, [7], and, subsequently rediscovered by other authors, including
Karamata (4, p. 300-301], Wilf (8], and in an equivalent form by Marden [5].

The first to consider the problem for sums in the more general case of Hilbert and
Banach spaces, were Diaz and Metcalf [1].

In our previous work [2], we pointed out some continuous versions of Diaz and Met-
calf results providing reverses of the generalised triangle inequality in Hilbert spaces. We
mention here some results from [2] which may be compared with the new ones obtained
in Sections 2 and 3 below.

We recall that f € L([a, b; H ), the space of Bochner integrable functions defined on
[a,b] and with values in the Hilbert space H, if and only if the function f : [a,b] — H is
Bochner measurable on [a, b] and || f|] is Lebesgue integrable on [a, b] (see for instance [9,
pp. 132 et seq.]).

THEOREM 1. If f € L([a,b}; H) and there exists a constant K > 1 and a vector
e € H, |le|| =1 such that

(1.4) |F®)|| < KRe(f(t),e) for almost allt € [a,b],

Lo}

The case of equality holds in (1.5) if and only if

(1.6) /abf(t) dt = %(/ab”f(t)” dt)e.

As particular cases of interest that may be applied in practice, we note the following
corollaries established in [2].

then we have the inequality:

(1.5) / IIf @) dt < K

COROLLARY 1. Let e be a unit vector in the Hilbert space (H; (., 3), pe(0,1)
and f € L([a,b]; H) so that

(1.7) |£(t) — €|l < p_ for almost every t € [a,b].
Then we have the inequality

b b
(1.8) \/1—p2/ || £ ()] dt < / f(t)dt“,
with equality if and only if

(1.9) /abf(t) dt = M(/ab”f(t)“dt) ‘e
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COROLLARY 2. Lete be a unit vector in H and M > m > 0. If f € L([a, b}; H)
is such that

(1.10) Re(Me ~ f(t), f(t) —me) > 0

or, equivalently,

M+m“

(1.11) £ - 5 (M —m)

for almost every t € [a,b], then we have the inequality

i | olas| [ e

(1.12)

or, equivalently

[ o] < S

T M+m

/a 1) dt“.

The equality holds in (1.12) (or in the second part of (1.13)) if and only if

[ roa= S ([1sola)e

The case of additive reverse inequalities for the continuous triangle inequality has

(1.13) / @] dt -

been considered in [3].
We recall here the following general result.

THEOREM 2. If f € L([a,b]; H) is such that there exists a vector e € H, ||ef| = 1
and k : [a,b] — [0,00) a Lebesgue integrable function such that

(1.14) |£()|| — Re(f(t),e) < k(t) for almost every t € [a, b],

then we have the inequality:

b b b
(1.15) (0 s)/ ||f(t)||dt—”/ f(t)dt” s/ k(t) dt.
The equality holds in (1.15) if and only if
b b
(1.16) /||f(t)||dt;/ k(t) dt
and

(1.17) / (/”ft)“dt / t)dt)e.
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This general result has some particular cases of interest that may be easily applied
(3]-

COoROLLARY 3. If f € L([a,b]; H) is such that there exists a vector e € H,
lefl =1 and p € (0,1) such that

(1.18) ||f( - e|| p for almost every t € {a, b],
then
(1.19) / 170 [dt f dt“

Re</ (t) dt, e>
SV (1+,/1- ) 1)

COROLLARY 4. If f € L([a,b]; H) is such that there exists a vector e € H,
llelt =1 and M > m > 0 such that either

(1.20) Re (Me — f(t), f(t) - me) > 0
or, equivalently,
' ‘ M + m
(1.21) £ = T2 < 500~ m)
for almost every t € [a,b], then
b b
(1.22) 0< / |£(®)]| dt - N/ F@@) dtH
2 b
< (\/2_\/_\/_—) e</ f(t)dt,e>.
COROLLARY 5. If f € L([a,b]; H) and r € Ly([a,b]), e € H, |le|| = 1 are such

that
(1.23) ||£(t) — €]l < r(t) for almost every t € [a, b],
then

b b b
(1.24) ( s)/a | £ @)} dt = /a f(t)dt“ < %/ﬂ r3(t) dt.

The main aim of this paper is to point out some quadratic reverses for the continuous
triangle inequality, namely, upper bounds for the nonnegative difference

(/ab”f(t)“ dt)z— /abf(t)dt 2

under various assumptions on the functions f € L([a, b; H ) Some related results are
also pointed out. Applications for complex-valued functions are provided as well.
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2. QUADRATIC REVERSES OF THE TRIANGLE INEQUALITY

The following lemma holds.

LEMMA 1. Let f € L([a,b]; H) be such that there exists a function k : A C R?
— R, A:={(t,s) | a <t<s<b} with the property that k € L(A) and

(2.1) O O]l — Re (£(2), F(5)) < k¢, 5),

for almost every (t,s) € A. Then we have the following quadratic reverse of the contin-
uous triangle inequality:

(2.2) (/ab||f(t)|| dt)2 < /abf(t) dt 2~x~2//A k(t,s) dtds.

The case of equality holds in (2.2) if and only if it holds in (2.1) for almost every (t, s) € A.

PROOF: We observe that the following identity holds

(2.3) (/ab||f(t)||dt)2— /abf(t)dt
=/ab/ab||f(t)||||f(s)||dtds— </abf(t)dt,/abf(s)ds>

b rb b pb
=/ /a “f(t)””f(s)” dtds—/ / Re(f(t),f(s»dtds
b pb
= [ [ romsol -re (@, s6)] ards = 1.

Now, observe that for any (¢, s) € [a, b] X [a, b], we have

£ @O £ (s)]| = Re(f(t), F()) = || F()]}]| F®)]| = Re (£ (s), £(2))

2

and thus
(2.4) I=2 / /A (£ @£ - Re (£(2), £(s))] deds.

Using the assumption (2.1), we deduce

JL s re - Regr, p(e)] deds < [[ ko) eas,

and, by the identities (2.3) and (2.4), we deduce the desired inequality (2.2).
The case of equality is obvious and we omit the details. 0

REMARK 1. From (2.2) one may deduce a coarser inequality that can be useful in some

/abf(t) dt“ < ﬁ(//A k(t,s) dtds) 1/2.

applications. It is as follows:

(0<) / 17(6)]| dt -
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REMARK 2. If the condition (2.1) is replaced with the following refinement of the
Schwarz inequality

(2.5) (0 <Yk(t,8) < [ F@IIF ()] — Re(£(2), £(9))

for almost every (t,s) € A, then the following refinement of the quadratic triangle in-

equality is valid
b 2
/ f(t)dt +2/ k(t, s) dtds
a a

(26) (f 170l dt)z
G| [ roa).

The equality holds in (2.6) if and only if the case of equality holds in (2.5) for almost
every (t,s) € A.

The following result holds.

THEOREM 3. Let fe L([a, bl; H) be such that there exists M > 1 > m > 0 such
that either

(2.7) " Re(Mf(s) = f(t), f(t) —mf(s)) > 0 for almost every (t,s) € A,

or, equivalently,

1
(2.8) “f(t) - < §(M —-m)||f(s)|| for almost every (t,s) € A.
Then we have the inequality:
21 (M -m)?

b 2 b b
e ([Wole) <| [ rod) +5- G52 [ also) o
The case of equality holds in (2.9) if and only if

(2.10) IFONI£(s)]] = Re (f(2), £()) = ﬁ “‘,{4 +’,’; [F{elk

for almost every (t,s) € A.
PRrOOF: Firstly, observe that, in an inner product space (H ; (-,-)) and for z, z,
Z € H, the following statements are equivalent
(i) Re{(Z—z,z—2)>0and
le = (2 +2)/2]| < 112 = =ll/2
This shows that (2.7) and (2.8) are obviously equivalent.
Now, taking the square in (2.8), we get

IO + (M) 1@ < 2Re (100, 25

() + 1 (M~ mP[ £,
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for almost every (t,s) € A, and obviously, since

2(M—%—m

Yol < 161+ (52) ol

we deduce that

2(M~!—m < )M+m

FCIIHOIRS: £9)) + 3 = mP£Gs)|*

giving the much simpler inequality:

(M —

(2.11) @£ - Re (£ (), £(5) < i llf( I

for almost every (t,s) € A.
Applying Lemma 1 for k(t,s) :=1/4- (M — m)?/(M + m)||f(s)||2, we deduce

(212) (/ab||f(t)||dt)2< /;bf(t)dt2+1 Gl [P as

2 M+m
with equality if and only if (2.11) holds for almost every (¢, s) € A.

J[usentas= ([ 1ol a) as = [ - alsolf as

then by (2.12) we deduce the desired result (2.9). 0

Another result which is similar to the one above is incorporated in the following

Since

theorem.

THEOREM 4. With the assumptions of Theorem 3, we have

(2.13) ( /ab"f(t)"dt)z— ‘/_ mz / fyat|

or, equivalently,
(2.14) /”f(t)” dt < M+m / 10 dt”.

The case of equality holds in (2.13) or (2.14) if and only if

b (t) dt

<

219 lr@ls @) = 3 Re (70, £6))

for almost every (t,s) € A.
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PROOF: From (2.7), we deduce
IFOI + Mm| £(5)||° < (M +m) Re (£(2), £(5))

for almost every (t,s) € A. Dividing by vMm > 0, we deduce

||f ]k L+ Vitm| 6 < LD Re (700, £(5))

and, obviously, since

a

2l sl < S+ amm s,

hence

@@ < T2 Re (0, £(6))

for almost every (¢,s) € A, giving

) ¢ WM - v/m)?

[F O F ()] - Re {£(2), £(s)) < T RS0, £(s)).

Applying Lemma 1 for k(t, s) := (\/H - \/_)2/\/ mRe (f(t), f(s)), we deduce

b 2
e ([lrol«) < + LN__Q Re ((0), £(5).
On the other hand, since

Re (f(t), f(s)) = Re(f(s), f(t)) forany (t,s) € [a,b]?

//A Re(f(t),f(s»dtds=%/ab/abRe(f(t),f(s))dtds
| =%Re</abf(t)dt,/abf(st)ds>
1

b 2
(t) dt

hence

and thus, from (2.16), we get (2.13).
The equivalence between (2.13) and (2.14) is obvious and we omit the details. 0
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3. RELATED RESULTS

The following result also holds.
THEOREM 5. Let f € L([a,b]; H) and ,T € R be such that either

(3.1) Re(Tf(s) — f(t), f(t) — vf(s)) > 0 for almost every (t,s) € A,

or, equivalently,

62 |10 - 2506

Then we have the mequallty:

(3.3) /ab[(b—s)+'yl"(s—a)]"f(s)”zds P+7”/f

The case of equality holds in (3.3) if and only if the case of equality holds in either (3.1)
or (3.2) for almost every (t, s) € A.

< %IF — || £(s)|| for almost every (t,s) € A.

PROOF: The inequality (3.1) is obviously equivalent to

(3.4) I£@U + T £)|° < (T +7) Re(£(2), £(5))
for almost every (i, s) € A.
Integrating (3.4) on A, we deduce

(3.5) /ab </:||f(t)||2dt> ds +4T /ab(||f(s)||2/’ dt) ds

<(TC+9) /(/ Re (f(t), f ))dt)ds.
It is easy to see, on integrating by parts, that

/ab(/as“f(t)ﬂzdt) ds=s [ &, - /:snf(s)”zds

—p / )| ds - / s £()|2ds

b
- / (b= 9)||f ()| ds

[ Qo [ a)as= [o-alrolas
/a,, soa) = [ 10w [ r0a)

= <f(s),/a’f(t) dt> + </aaf(t) dt,f(5)>
=2Re</:f(t)dt,f(3)>,

and

Since

a4
ds
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hence

/b(/ Re<f(t),f(s))dt) ds=/:Re</:f(t)dt,f(s)>ds
- %/;%( /:f(t)dtllz) ds

/,, b £(t) dt )

Utilising (3.5), we deduce the desired inequality (3.3).
The case of equality is obvious and we omit the details. 0

1
T2

REMARK 3. Consider the function ¢(s) := (b — s) +~I'(s — a), s € [a,b]. Obviously,
o(s) = (Cy~-1)s+b—~Ta.
Observe that, if 'y > 1, then
b—a=¢p(a) < p(s) <o) =1C(b~a), s€]lab

and, if 'y < 1, then
Y'b—a)<p(s)<b—-a, s€la,b]

Taking into account the above remark, we may state the following corollary.

COROLLARY 6. Assume that f,~,I" are as in Theorem 5.

b b
b-a) [ @I as< 52| [ s(s)as

(b) If0 < I'y <1, then we have the inequality

(a) IfT+y = 1, then we have the inequality

2

2

w-a) [Nl es < 2 [ s

4. APPLICATIONS FOR COMPLEX-VALUED FUNCTIONS

Let f : [a,b] = C be a Lebesgue integrable function and M > 1 > m > 0. The
condition (2.7) from Theorem 3, which plays a fundamental role in the results obtained
above, can be translated in this case as

(4.1) Re[(Mf(s) - 1(6) (F® - mF(s)] > 0

for almost every a <t < s < b.
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Since, obviously
Re[(M1(s) - £()) (F®) — mF(5))] = [(M Re £(5) - Re £(1)) (Re f(t) — mRe £ (5))]
+[(M1m £(5) = 1m 1 (1) (1m £ (2) — m1m £ (s))]
hence a sufficient condition for the inequality in (4.1) to hold is
(42)  mRef(s) <Ref(t) < MRef(s) and mIm f(s) < Im f(t) < M Im f(s)

for almost everya <t < s < b.
Utilising Theorems 3,4 and 5 we may state the following results incorporating
quadratic reverses of the continuous triangle inequality:

PROPOSITION 1. With the above assumptions for f,M and m, and if (4.1)
holds true, then we have the inequalities

([1rota) <|[ roa] +3- G2 P ajsfas,
[so]a < (L)

/ £0) dt‘

/b[(b—s)+mM(s—a)]lf(s)lzdsg M+ m /sf(s)ds 2.

REMARK 4. One may wonder if there are functions satisfying the condition (4.2) above.
It suffices to find examples of real functions ¢ : [a,b] — R verifying the following double

and

inequality
(4.3) ve(s) < 9(t) < Tp(s)
for some given v,I' with 0 £ v < 1 £ I' < oo for almost every a <t < s < b.

For this purpose, consider ¥ : [a, b] = R a differentiable function on (a, b), continuous
on [a,b] and with the property that there exists © > 0 > 6 such that

(4.4) < ¥'(u) < © for any u € (a,b).
By Lagrange’s mean value theorem, we have, for anya <t < s<b
P(s) - (t) = ¢ (§)(s — t)
with t < £ < 5. Therefore, for a < t < g < b, by (4.4), we have the inequality
8(b—a) <O(s—t) < Y(s) — () <O(s —t) < B(b—-a).
If we choose the function ¢ : [a,b] = R given by
o(t) := exp[—¥(t)], t € [a,b],

and v = exp[8(b — a)] <1, T :=exp[B(b — a)] > 1, then (4.3) holds true for any a < ¢
<s<b
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