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Abstract

Steady magnetohydrodynamic flow of an incompressible micropolar fluid through a
pipe of circular cross-section is studied by considering Hall and ionic effects. The fluid
motion is due to a constant pressure gradient, and an external uniform magnetic field
directed perpendicular to the flow direction is applied. Expressions for the velocity,
microrotation, skin friction and flow rate are obtained. The effects of the micropolar
parameter, magnetic parameter, Hall parameter and ion-slip parameter on the velocity,
microrotation, skin friction and flow rate are discussed.
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1. Introduction

In recent years, several simple flow problems associated with classical hydrodynamics
have received attention within the more general context of magnetohydrodynamics
(MHD). Several investigators have extended many of the available hydrodynamic
solutions to include the effects of magnetic fields for those cases where the fluid is
electrically conducting. Also, the study of non-Newtonian fluid flows has received
much attention from researchers because of the variety of applications in biology,
physiology, technology and industry, such as blood flow through arteries, vasomotion
of small blood vessels, drilling of oil and gas wells, production of synthetic fibers,
foodstuffs, the extrusion of molten plastics, liquid metals and alloys, plasma, clay
coating and emulsions and elastomers. In addition, the effects of a magnetic field
on a non-Newtonian fluid have great importance in engineering applications, such
as MHD generators, accelerators, aerodynamic heating, electrostatic precipitation,
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polymer technology, the petroleum industry, purification of crude oil and fluid droplet
sprays, plasma studies and geothermal energy excitations.

Unlike many non-Newtonian fluid models which describe the nonlinear relationship
between stress and the rate of strain, the fluid model introduced by Eringen [7] allows
for some microscopic effects arising from the local structure and micromotion of
the fluid elements. The micropolar fluids sustain couple stresses and include the
classical Newtonian fluid as a special case. The model of a micropolar fluid represents
fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a
viscous medium where the deformation of the particles is ignored. Fluids containing
certain additives, polymeric fluids and animal blood are examples of micropolar fluids.
A detailed survey of microcontinuum fluid mechanics with several applications has
been presented by Ariman et al. [2]. The mathematical theory of micropolar fluids and
applications to the theory of lubrication and the theory of porous media are presented
by Lukaszewicz [9].

Several investigators have made theoretical studies of micropolar fluid flow in the
presence of a transverse magnetic field. Kasiviswanathan and Gandhi [8] studied a
class of exact solutions for the MHD flow of a micropolar fluid confined between
two infinite, insulated, parallel, noncoaxially rotating disks. Bhargava et al. [5]
analysed the effect of temperature-dependent heat sources on the fully developed free
convection of an electrically conducting micropolar fluid between two parallel porous
vertical plates in a transverse magnetic field. Ahmadi and Shahinpoor [1] studied the
criteria for universal stability of the unsteady motion of an incompressible, electrically
conducting linear micropolar fluid.

The Hall and ion-slip terms in Ohm’s law have been ignored in most of the MHD
flow problems considered thus far. However, in the presence of a strong magnetic
field, the influence of Hall current and ion slip is important. Tani [12] studied the
Hall effect on the steady motion of electrically conducting viscous fluid in channels.
Hall and ion-slip effects in MHD Couette flow with heat transfer have been considered
by Soundelgekar et al. [11]. Attia [3, 4] analysed the Hall effects on velocity and
temperature fields of unsteady Hartmann flows and on the transient flow of dusty
viscous incompressible electrically conducting non-Newtonian Bingham fluid through
a circular pipe. Seddeek [10] studied the effects of Hall and ion-slip currents on a
magneto-micropolar fluid and heat transfer over a nonisothermal stretching sheet with
suction and blowing.

In this paper, the steady incompressible electrically conducting micropolar fluid
flow in a circular pipe is studied by considering Hall and ion-slip current effects. The
expressions for velocity, microrotation component, flow rate and skin friction (shear
stress at the wall) are obtained and their variation with respect to various parameters is
studied.

2. Formulation of the problem

Consider the steady axisymmetric flow of an incompressible electrically conducting
micropolar fluid through an infinitely long circular pipe of radius a driven by a constant
pressure gradient. Choose the cylindrical polar coordinate system (r, θ, z) with z-axis
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in the direction of motion. A uniform magnetic field is applied perpendicular to the
flow direction. The Hall and ion-slip current is taken into consideration. A very small
magnetic Reynolds number is assumed and therefore the induced magnetic field is
neglected. Within the framework of these assumptions, the equations that govern the
MHD flow in the absence of both body force (force per unit volume) and body couple
(moment per unit volume) are
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+
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dr
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where u(r) is the velocity component, ω(r) the component of microrotation, ρ the
density, p the fluid pressure, µ the viscosity coefficient, κ the vortex viscosity,
γ the spin-gradient viscosity, σ the electrical conductivity of the fluid, Bi the ion-slip
parameter, B0 the magnetic induction, and for Hall factor η, the Hall parameter is
Bh = σηB0.

In the limit as κ→ 0, Equation (2.1) is uncoupled from (2.2) and reduces to the
case of a Newtonian fluid.

Defining p0 = dp/dz, introducing the nondimensional variables
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ũ, ω =

p0a

µ
ω̃,

into Equations (2.1) and (2.2) and dropping tildes, we obtain
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where N = κ/(µ+ κ) is the coupling number (0≤ N < 1) [6], which defines the
coupling of the linear (2.3) and angular momentum equations (2.4). When N is
identically zero, the equations of linear and angular momentum are decoupled and
the equation of linear momentum reduces to the classical Navier–Stokes equation.
The Hartmann number, Ha = B0a

√
σ/µ, describes the effective strength of the

magnetic induction and, following Eringen [7], m2
= a2κ(2µ+ κ)/(γ (µ+ κ)) is the

micropolar parameter.
The boundary conditions are the usual no-slip and hyper-stick conditions

u = 0 at r = a, (2.5)

ω = 0 at r = a, (2.6)
du

dr
= 0 at r = 0, (2.7)

and u and ω are finite at r = 0.
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3. Solution of the problem

Differentiating Equation (2.3) with respect to r and substituting in Equation (2.4),
we get

ω =
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Substituting Equation (3.1) in Equation (2.3), we obtain[
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The solution of Equation (3.2) is

u(r)= C1 I0(α1r)+ C2K0(α1r)+ C3 I0(α2r)+ C4K0(α2r)−
2(1− N )m2

α2
1α

2
2(2− N )

, (3.4)

where I0 and K0 are modified zeroth-order Bessel functions of the first and second kind
respectively and C1, C2, C3 and C4 are arbitrary constants. Substituting Equation (3.4)
into Equation (3.1) gives

ω(r)= Cα[C1 I1(α1r)+ C2K1(α1r)] + Cβ [C3 I1(α2r)+ C4K1(α2r)], (3.5)

where
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and I1 and K1 are modified first-order Bessel functions of the first and second kind,
respectively. The arbitrary constants C2 and C4 are both zero as we require ω to be
finite for r = 0. Constants C1 and C3 are determined using Equations (2.5) and (2.6)
and the solutions are
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FIGURE 1. Effect of N on (a) velocity given by (3.6) and (b) microrotation given by (3.7) of a fluid with
Bi = 0.2, Bh = 2, Ha = 0.2 and m = 2.5.

From Equation (3.7) we observe that ω = 0 on r = 0, which is consistent with the
expectation that microrotation is zero on the z axis [7].

The dimensionless flow rate defined as Q =
∫ 1

0 2ru(r) dr can be obtained from
Equation (3.6) in the form
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The nonzero dimensionless shearing stresses are given by
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1
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∂u
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+
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∂u

∂r
−

N
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4. Results and discussion

The effects of coupling number (N ), magnetic parameter (Ha), Hall parameter (Bh)
and ion-slip parameter (Bi ) on velocity, microrotation, flow rate and skin friction
of a fluid are evaluated numerically and the results are presented in Figures 1–4
and Tables 1–3. The coupling number N characterizes the coupling of linear and
rotational motion arising from the micromotion of the fluid molecules. Hence N
signifies the coupling between the Newtonian and rotational viscosities. With N
close to 1 the effect of microstructure becomes significant, whereas with N close to 0
the individuality of the substructure is much less pronounced. As κ tends to zero
N also tends to zero, micropolarity is lost and the fluid is expected to behave as a
nonpolar fluid, and the expression for the velocity obtained in this paper reduces to its
counterpart in classical Newtonian theory.

The predicted variation of velocity and microrotation with radius (r ) for different
values of N and for Bh = 2, Bi = 0.2, Ha = 0.2 and m = 2.5 is shown in Figure 1.
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FIGURE 2. Effect of Ha on (a) velocity given by (3.6) and (b) microrotation given by (3.7) of a fluid with
Bi = 0.2, Bh = 2, m = 2.5 and N = 0.4.
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FIGURE 3. Effect of Bi on (a) velocity given by (3.6) and (b) microrotation given by (3.7) of a fluid with
Ha = 5, Bh = 2, m = 2.5 and N = 0.4.

Velocity and microrotation decrease as N increases. In the limit as N → 0,
Equations (2.3) and (2.4) reduce to the corresponding equations for a viscous fluid.
Hence, it can be observed that the velocity in the case of micropolar fluid is less than
that of viscous fluid. Furthermore, for fixed N the microrotation increases and then
decreases as radial distance from the axis increases.

The effect of Ha on the velocity and microrotation is shown in Figure 2. Figure 2(a)
shows that the velocity, as expected, becomes small for large values of Ha . This
happens because the applied magnetic field gives rise to a resistive force and slows
down the movement of the fluid in the pipe. Figure 2(b) shows decreasing angular
velocity with increasing Ha .
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FIGURE 4. Effect of Bh on (a) velocity given by (3.6) and (b) microrotation given by (3.7) of a fluid with
Ha = 5, Bi = 2, m = 2.5 and N = 0.4.

TABLE 1. The skin friction (F) and flow rate (Q) for Ha = 5, N = 0.4, m = 2.5 and Bh = 2.

Bi skin friction flow rate

0.2 0.21 0.049
2.0 0.23 0.054
5.0 0.26 0.064
7.5 0.27 0.068
10 0.28 0.070

TABLE 2. The skin friction (F) and flow rate (Q) for Ha = 5, N = 0.4, m = 2.5 and Bi = 2.

Bh skin friction flow rate

0.2 0.15 0.028
2.0 0.23 0.054
5.0 0.26 0.066
7.5 0.27 0.069
10 0.28 0.071

Figure 3 shows the velocity and microrotation profiles for different values of
the ion-slip parameter Bi . Both velocity and microrotation profiles increase as Bi
increases. As Bi increases the effective conductivity decreases, which in turn decreases
the damping force on velocity, and hence the velocity increases.

Figure 4 shows the predicted effect of the Hall parameter Bh on velocity and
microrotation of a fluid. Velocity and microrotation both increase with Hall parameter.
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TABLE 3. The skin friction (F) and flow rate (Q) of a fluid with Ha = 5, Bh = 2, m = 2.5 and Bi = 2.

N skin friction flow rate

0.1 0.32 0.069
0.3 0.26 0.060
0.5 0.20 0.048
0.7 0.13 0.033
0.9 0.047 0.013

Inclusion of Bh in the model reduces the predicted effective conductivity of the fluid,
resulting in a decrease in the resistive force caused by the magnetic field.

Table 1 presents the values of the flow rate and skin friction coefficient predicted
for a fluid for a range of values of the ion-slip parameter. The flow rate and the skin
friction increase as Bi increases. These effects are consequences of the increase of the
velocity of the fluid with increasing Bi .

Table 2 presents the values of the flow rate and skin friction coefficient predicted
for a fluid for a range of values of Bh . The flow rate and the skin friction increase as
Bh increases. This is a consequence of the increase in the fluid velocity resulting from
increasing Bh .

Table 3 anticipates that a micropolar fluid has reduced skin friction compared to
that of a Newtonian fluid (N → 0). As N increases, flow rate decreases.

5. Conclusions

The steady flow of conducting micropolar fluid through a pipe under the influence
of an applied uniform magnetic field has been studied, considering Hall and ion-slip
effects. Analytical solutions for the equation of motion have been obtained. The effects
of magnetic field, the Hall parameter, the ion-slip parameter and Hartmann number
on the velocity and microrotation have been investigated. Our results predict that
increasing the magnetic field intensity decreases the velocity and the microrotation,
while increasing the Hall and ion-slip parameter leads to an increase in both the
velocity and the microrotation. It is predicted that as the ion-slip parameter and Hall
parameter increase, both the flow rate and skin friction coefficient increase.
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