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1. Introduction. Sylvester [7] proposed the following
question in 1893. If a finite set of points in a plane is such
that on the line determined by any two points of the set there
is always a third point of the set, is the set collinear?
Equivalently, given a finite planar set of non-collinear points,

does there exist a line containing exactly two of the points?

Irterest in the question was revived by Erdds [3] and
othersin1933 and was answered in the affirmative by Gallai
(Grinwald) [4], Steinberg [4], Steenrod [+], A. Robinson [5],
Motzkin [6], L. M. Kelly [5] and others in the 1930's an
1940's.

Motzkin showed that the analogous statement in three
space is invalid. That is, the statement, ""Given a finite set
of non-coplanar points in a 3-space, there is a plane spanned
by three points of the set which contains only these three points
of the set, ' is false. Motzkin noted this in [6, p. +52] by
observing that a set of six points in 3-space, 3 on each of two
skew lines, is a counterexample.

Motzkin did conjecture a generalization of Sylvester's
Theorem to R”, an n-dimensional real affine space:
Upn(n>1): Given a finite subset K of R® which is not contained
in any hyperplane, then there is a hyperplane H spanned bv
points of K such that all but one of the points of H M K are in
one (n-2)-flat. (The empty set will be considered a flat of
dimension -1.)
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Motzkin proved U3‘ In this paper U 1is proved for
n

1 <n<5 and a new proof is given for n=3.

h lidity of U implies V :
The validity o nlple -

V (n>2): If K isa finite subset of R™ lying in no hyperplane,
n'l = =

then through each pe€ K there are an (n-2)-flat F and a line L
each determined by points of K and spanning a hyperplane P
suchthat KN PC LU F.

The statements U and V are discussed in section 3.
n n

In section 2 another generalization of Sylvester's Theorem
is proved for spaces of arbitrary finite dimension:
W (n>2): Let K be a finite subset of R™ such that
nt 2

(a) every subset of K having at most n points is affinely
independent, (b) any hyperplane spanned by points of K
contains at least n+ 1 points of K. Then K 1is contained

in a hyperplane. 2

A set of points po,pi, Py is affinely independent if
and only if pi-po, pZ-pO, o, pk-po is a linearly independent
set. Since a set of 2 distinct points is affinely independent,

W _ generalizes Sylvester's Theorem. The statement W
n n

is also an extension of Dirac's 3-dimensional version [2, p.227]
of Sylvester's Theorem.

2. The proof of Wn. For the case n =2, WZ is

Sylvester's Theorem. Assume W " is true and let p bea
o

point of K. Since K is a finite set of points, choose a hyper-
plane H not containing p such that every line through p
o o

2
Following the notation and terminology in [5], W, could be

stated in language motivated by Kelly and Moser's definition
of "ordinary line'.

The definition is independent of the order in which points are
enumerated.
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and any other point of K intersects H. For each p# p
o

in K, let p' denote the point of intersection with H of the
line through P and p, and let K' denote the collection of

points p' for p in K. By the assumption of affine
independence this projection determines a 1 - {1 correspondence
between points of K ~{po} and K'. The proof will be com-
pleted by showing that K' satisfies the hypotheses of W n
n=-
That is, (a') every subset of K' having at most (n-1) points
is affinely independent, and (b') on the (n-2)-dimensional flat
in H determined by any (n-1) points of K' there is an

n-th point of K'.

To prove (a'), suppose there is a subset of p’i, Pys- P,

2 m

consisting of m <n-1 points of K' which are affinely dependent

For each j=1,2,...,m, let p be a pointin K which projects
J

from p0 onto p-;. Then it is readily verified that the set
P pi, ce, pm is an affinely dependent subset of K having at

most n points, contradicting (a) of Wn'

To prove (b'), let J be an (n-2)-dimensional-flat

determined by (n-1) points q'i,q'z,. .. ,q; " of K' and let

qi'qz' - ,qn 1 be the corresponding pre-images in K. Then

by (b) applied to P qi, RO | there is an (n+1)-st point

n-1
r of K on the hyperplane spanned by these points and since r’
is distinct from each of q'i,q'z, .. ,q;l it follows that r'

i’
is the desired n-th point of K' in J.

Thus, by the inductive hypothesis, all the points of K!'
lie in an (n-2)-flat F in H. Hence K lies in the hyperplane
spanned by F and P Statement Wn is proved.

A finite set B in R.n is an affine basis of Rn if and
only if B is affinely independent and affinely spans RZ.
(B affinely spans R™ if and only if every element of R" is
a linear combination of elements in B where the sum of the
coefficients is equal to one.)
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Then an algebraic formulation of W is:
n

. n
Let K be a nonempty finite set in R (n > 2) such that
(A) Every subset of at most n points of K is affinely

independent and (B) K is not contained in a hyperplane.
Then, there exists a subset A of K with n points such that
for every xe¢ K ~A, A U {x} 1isan affine basis for R

3. Motzkin' s Conjecture. The generalization of
Sylvester's Theorem to dimensions greater than 2 conjectured
by Th. Motzkin [6] and proved by Motzkin in spaces of
dimension 3 is proved here to be valid up to and including
5 dimensions. A new proof is presented for Motzkin's
conjecture for spaces of dimension 3.

The proof of the generalization will follow by induction
on the dimension n. In order to make clear the difficulties
encountered when the dimension is greater than 5, the argument
will be presented for arbitrary dimension to the place where
our argument requires that the dimension be less than 6. The
question of the validity of Motzkin' s conjecture in spaces of
dimension more than 5 is still open.

Definition. Let K be a subset of Rn, an n-dimensional
affine space over the real number field. A j-dimensional flat
M spanned by points of K is called a (K, j)-motzkin if and only
if there is a (j-1)-flat G M and a point p€e KN M so that p
is the only point of KM M notin G. In this situation M will
be denoted by p:G. If j=n-1, M will be called a K-motzkin.

With this terminology, Motzkin's conjecture for a space
of dimension n, becomes:

Un(n_>_1): If K is a finite subset of R” contained in no hyper-

plane, then there is a K-motzkin in Rn. (The empty set will
be considered to be a flat of dimension -1.)

THEOREM 3.1. Statement Un is true for 1 <n< 5.

For A and B subsets of Rn, the flat spanned by A
and B will be denoted by AB. The singleton {a} will be
denoted without brackets, a.
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The following lemma is clear. It is basic in the proof of
Theorem 3.1 and in Steinberg's [4] and Motzkin's [6, p. 452]
elegant proof of Sylvester's Theorem.

LEMMA 3.2. Let x, a', b', ¢' be 4 distinct points on
a line H' such that a' separates x and b' but c¢' does not.
Let p be a point off H' and r' be a point on the line pb’
such that r' # p, r' # b'. Then either r'a' or r'c’
intersects the open segment (p, x).

Let K be a set of points of R™ satisfying the hypotheses
of Un. Choose a point pe K. An easy argument shows that

there is a line X through p so that X intersects every
hyperplane spanned by points of K each in a single point.

By the finiteness of K there is a hyperplane H spanned
by points of K which intersects X in x# p so that no hyper-
plane spanned by points of K intersects the open segment
(p,x). Choose a line H' in H and through the point x so
that plane XH' intersects every (n-2)-flat spanned by points
of (KN H) each in a single point. It can be proved that H'
exists.

LEMMA 3.3. Consider p, H, H', X and x as before.
Assume there is no K-motzkin in RB®. Then, (a) there is an

(n-3)-flat H 3 in H spanned by points of K and there are
n-

3 points a, b, and ¢ of KN H not in Hn 3 so that

[ - 1 [ I— i [ v

a' =H' N aHn_3, b' =H'N an-3’ c H N CHn-3 are

situated as in Lemma 3.2 with respect to x. Also, (b) there

is an 1.-er‘\1:>bHn 3,r#p, rﬁan 3’ (c) all the r's as in
i , d i : .
(b) are in PHn-3 and (d) an-?’ is not of the form b Hn-3

Proof of 3.3. (a) Assume there is no (n-3)-flat Hn

, bH
n-3 n-3

and cH 3 are distinct. There must be at least 2 distinct
n

with associated points a, b, and c so that aH

flats, e.g., aH # bH , for otherwise H would have
n-3 n-3

dimension n-2, a contradiction. Thus, since H is not a

K-motzkin, there must bea ce¢ K NaH 3 or ce KN an

n- -3’
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say ceaHn 3’ and c # a, c#I—In 3

Let B={ko,...,k 3}

be an affine basis of H 3’ BCK. Let ko € B be such that
n

¢ depends on a and ko, i.e.,

n-3 n-3

c=Xa+ = XNk, where A\ + T X\, =1
. i1 . i
i=0 i=0

and N #0, XN #0.
o

Consider H ;o the affine hull of {b,k ...,k .}
n—

1 n-3
Then, aH , k H , cH are distinct. Since
_ n-3 o n-3 n-3 _ _
k H =bH , it follows that cH +k H and
o n-3 __n-3 _ _ n-3 o n-3
aH #k H If cH =aH , then
n-3 o n- n-3 n-3
n-3
() c = Xa+A'b+ = Nk,
. ii
i=0
n-3
where X\ + \' + A. =1,
) i
i=0
and A =0.
o
Also, since c € aH ,
n-3
n-3 n-3
(B)c =pa+ Z pk , where p+ ZT p, = 1.
. i1 i
i=0 i=0

Subtracting () from (a),
n-3
()0 = (X-p)a+ X'b+ = (N -u)k, .
i=p o

Since c¢ depends on ko, from (&) it follows that \' # 0.
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Solving for b in (y), it follows that b€ aHn 30 2 contradiction.

(b) If there is no re prn-?’, rf an_3, r # p, then
p:bH 3 is a K-motzkin.
(c) If re prn_3, r#p, rf an_3, T pHn_3, consider

r' =rH 3ﬂ XH'. The point r' is on the line pb' and ' # p,

n

r' # b'. Thus, by Lemma 3.2, either r'a' or r'c' inter-

sects the open segment (p,x). Hence, either the hyperplane

arH 3 or crH intersects (p,x), contradicting the choice
n- n-

of H.

Statement (d) follows directly from (c) since if

bH =b:H , then bpH =b:pH , a K-motzkin.
n-3 n-3 n-3 n-3

LEMMA 3. 4. Assume that there is no K-motzkin in R.n
and Uk is valid, k<n. let a, b, ¢, H 3 be as in

Lemma 3.3. Let UU V C K be an affine basis of Hn 3 so

that U and V are disjoint and

* i n R , .
(*) if reK prn-3 r # p, and r;éan_3 then r e pV

It Hn a, b, ¢, U and V are such that V has minimal

3'
cardinality with respect to property (*) and if UU V is
nonempty, then (a) both U and V are nonempty and
(b)if 2e KN H and—a)éHn 3 then a € abU.

Proof. (a) Observe that V # #, for otherwise
= p:an a K-motzkin. By assumption, K O H

bH ,
PoH 3 -3

satisfies Un 1 in H. Thus, thereisa (KN H, (n-2))-motzkin

'r:HI1 3(0) in H. Since, by assumption, H 1is not a X-motzkin,

by Lemma 3.3, it may be assumed that there are three points
a,b,c eKNH with a or ¢ =T, so that
o o o o o

a't =H'N a H (0), b =H'N b H (0), ¢ =HNc H (0)
o o n-3 o o n-3 o o n-3
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are distinct points situated as in LLemma 3.2. For if

a', b', ¢’ were not distinct, then, for some de¢ K N H,
o o

[¢]

H=T1:dH 3)(O) is a K-motzkin and, by 3. 3(d), bo #T1. Let
n

k,k, ..., k be an affine basis for H (0). Then
e} 1 n-3 n-3

b,k, ..., k is an affine basis of b H (0). By
o o

n-3 _ o n-3
Lemma 3. 3(d), there is a b0 e KN boH
n-3 n-3

40, B_#H__(0),

D #b. Thus, b =Ab + = X k , where
[o] (o] .

Consider the (n-3)-flats H (1) =b k ...k and
n-3 o1

. n-3
H _(1)=b k. ...k Then either a H _(1), k H _(1),
n-3 o1 fe} on

n-3 n-3 -3
c H (1) are distinct (n-2)-flatsin H or a H (1),
o n-3 o n-3

k H
(o]

(1), ¢ H (1) are distinct. For assume not. (It may
n-3 o n-3

be assumed without restriction that a0 =T.) Then,

n-3 n-3
(1) C =BT + p' bo+ =z p.iki, where p+ p' + p, =1
i=4 i=1

and

(2) cozﬁ'r +u'b 4+ .k, where p+p' + T J, =1.

Subtracting (2) from (1),

o]
1
w

3) 0 = -R)T +p'b -u'b 4+ - k, .
(3) (g - )T +u'b -u'b_ . (e, - 1)k
Since T ¢ bOHn 3(0), p =H. Further, from (1) and (2), since
T:Hn 3(0) is (K, (n-2))-motzkin, p' and @' are not zero.
Thus, solving (3) for b, wehave b €b k,...k _, which
o o} o1 3

contradicts )\o #0.
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Thus, it may be assumed that the line H' intersects

a H (1), k H (1), ¢ H (1) in 3 distinct points
o n-3 o n-3 o n-3

a'i, b’i' c' where a , bi' c:1 are ao, .<o, cO renamed so

that a'1 is in the open interval (x,b'i) but c’1 is not.

(1),

(1) is in pH (1) and there is such an r .
n-3 1

By Lemma 3.3, every r, ¢ KN pbiH
Ty PP AR H
But, if r, € pHn_3(1), then, 1:1 € pboHn-

n-3

(0), and, again by
3 g 3

Lemma 3. 3, rie pH (0). Thus, every z:1 is in

n-3

pHn_ 3(0) n pHn_3(i) = Pki' .. kn-3' Hence, U 1is nonempty.

= S U v={k L,k _,...
(b) Let U={b_,b, bj} and {‘jn 2

It may be assumed from 3. 3 (d) that there is a beKN qu 3

j n-3 n-3
b=Ab+ Z Ab .+ = Xk , where A\ + = X_=1, X 20

. 11 .. 11 . 1

i=0 i=j+1 i=0

and some A_# 0. It will be shown that all such b's are in bU.
i

Suppose that Xj+1 #0.

Let G =b ...bbk, _...k d
_ © n-3 o j j+2 n-3 o0

G =b ...bbk. _...k _. Then, either the flats
n-3 o j oj+2 n-3

G .,k G _,cG distinct , k ,
3G, 3" Nj4qCpogr €y Bredistinctor 2G4, k.G 4

cG are distinct. For if not, aG =cG and
n-3 n-3 n-3

aGn 3 can 3 SO ¢ is represented by the following affine

combinations,

j n-3
(1) c=pa+ Z pb +p'b+ =T uk, and
. ii .. ii
i=0 1=J+2
Jj n-3
(2) c=pa+ T pb +p'b+ =T pk .

i=g ' ° i=j+2 7

9
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Subtracting {2) from (1),

]
(3) 0=(p-ma+ T (p -p)b +p'b-pb
. i i
i=0
n-3
+ - R .
Z Gy
i=j+2
Thus, p =W, since af bH 3 If &'# 0, solving (3)
n—
for b, be bo. . 'bjbkj+2' .. kn-3' contradicting that )\j+1 # 0.

Thus, it may be assumed that p' =0 and p' =0. From

] n-3
(2), c=pa+ Z b .+ = uk . This implies that
. 11 .. 11
i=0 i=j+2
cH =aH , a contradiction.
n-3 n-3

Hence, 3 distinct (n-2)-flats exist and will be denoted by

't = ] n s
aicn-3' bicn—3’ CiGn—3 where a1 H aiGn-3

L 1 s LR 1 n d .
x and 1 H ﬂbiGn_'3 but c:1 H CiGn-B oes not

separates

Since it is assumed that there is no K-motzkin, by 3.3

i € ) , b d
there is an r1 Kn pbiGn_ 1'1 #p riﬁ 1G an

3
C pbH
n

n-3’

all such ri' s are in pG Thus, by 3. 3, all

n-3 -3
such ri's are in pH 3 and by (*) are in pV. Hence all
n

of the r1' s are in pV fl pGn_3 = pkj+2. .. kn—3' This

contradicts the minimality of V. Thus b e bU.

Now assume there isan a€ KN\ H, 3¢ bH 3
n—-

which, with respect to the affine basis {a,b} U U UV for H,

depends on an element in V, say k.+1. Thus,
J

a#a,

j n-3 n-3
a=va+v'b+ T vb + I v k where v+v' + v. =1, v # 0,
] i1 . ii . i
i=0 i=j+1 i=0
0.
Vipr t

10
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As above let G =b ...b bk, ...k . Then, the
n-3 o i j+e n-3
F

flats aGn_3, kj+1cn-3’ 5011-3 are distinct.

aG 3 =aG and hence 2 1is represented as the affine
n- n

or otherwise,

] n-3
combination a=pa+p'b+ T pb + T uwk , which
. 11 .. 11
i=0 1=j+2
contradicts the dependency of 3 on k,+1. Repeating the
J
argument as above, it may be assumed that there is an r, n

KN pGn_3, with T, # p, T, £ bicn-3 and all such ri’ 5 are
in pv N pGn.3 = pkj+2. . ‘kn-3' contradicting the miaimality of V.

Thus, every 2 ¢ KN H, 3£ bH 3 isin ab ...b b =abU
n- o j

and part (b) of 3.4 is proved.

The proof of Theorem 3.1 will now be presented. The
notation of Lemma 3.4 is used.

For n=1, Un is trivially true. For n =2, Un is
Sylvester's Theorem. For n =3, Hn 3 is O-dimensional,
so in Lemma 3. 4 either U is empty or V is empty. Hence,

ith =b:aH bH =b:pH
either H =b:a or p n-3 pn_

n-3 3

Case: n=4. For n=4, H 3 is 1-dimensional. Assuming

there is no K-motzkin in R%, by Lemma 3.4(a), U and V
must each have exactly one element, say U = { uo} and

V= {vi} . It will be shown that abuovi =vi:abuo, a K-motzkin,

or that prn 3 =b:pH a K-motzkin. If abuovi does not

n-3’

have the form vi:abuO then there isa we K abuov1 which,

with respect to {a,b} U U UV, is affinely dependent on v,

and abuo. By Lemma 3.4(b), w isin H 3 so w depends
n—

only on v, and u_ Letting U_= {w}, U, U V is an affine
basis for H 3 which satisfies (*) of Lemma 3.4 and more-
n-

over V is minimal with respect to property (*). Thus, all

11
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the a's as in Lemma 3. 4(b) are in abuoﬂ abw =ab. So,

bH has the form b:H , and it follows that
n-3 n-3

bpH 3 = b:pHn_3, a K-motzkin.

Case: n =5. For n=5, H is 2-dimensional. Assuming

-

n-3
that there is no K-motzkin in R2, by Lemma 3.4(a), V has
one or two elements.

Suppose that V has two elements v1 and VZ and that
U={u }. Ifthereisa we K N H which, with respect to
o

{a,b} U UU YV, is affinely dependent on both V and abU,

then by Lemma 3. 4(b), w isin H 3’ so w depends only on
n-

V and U. Letting U ={w}, then, as inthe case n =4,
o

bpH =b:pH 3 2 K-motzkin.
n

n-3

So assume every w in K N H is affinely dependent with
respectto {a,b} U UU V on only one of V or abU. If the

flat aff V spanned by V is a (K, 1)-motzkin, then aff V =V, Ve

so H =v1:v2 abuo, a K-motzkin. If aff V is not a (K, 1)-motzkin,

then there is a w in K which is affinely dependent on v, and
v_, so w:abu , v :abu , and v_:abu are distinct (K,n-2)-
2 o 1 o 2 o

motzkins in H, contradicting Lemma 3. 3(d) unless there is a
K-motzkin.

There remains only the case where V has one element
v2 and U has two, uo and ui. If thereisno w in KN H

which, with respectto {a,b} Y U UV, is affinely dependent
on both V and abU then H=v_:abU, a K-motzkin. So

2
suppose there is sucha w in K N H. Then by Lemma 3. 4(c)
w € abU or weH . If there isno w in H then
n-3 n-3
H=v2:abU, a K-motzkin. If thereisa w in H 3’ w is an
n—
affine combination of v2 and at least one of uo and ui.
If w is affinely dependent on both u and ui, let U ={w,u1}
o o
12
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and U1 ={u ,w}. Then U UV (i1=0,1) is an affine basis
' o i

for H 3 which satisfies (%) of 3.4 and also V is minimal
n-

with respect to property (*). Hence by 3.4, all the

in 3. 4(b) are in abUnN aon N abU, =ab. Thus, pbH = oo

a K-motzkin. So assume that each w in KN H is atfiinely

dependent only on u,. Thus, v_:abu , w:abu , and u :abu
1 2 o o 1 o
are distinct (K,n-2)-motzkins in H, contradicting

unless there is a K-motzkin.

r1

emma 3. 3(<)

The theorem is.proved.

For dimension n > 6, the cases where V has more than
2 elements must be treated in order to verify or disprove U
The question remains open. -

THEOREM 3.6. U implies V .
n n+1i
. X n+1 .
Consider K in R . Let p be a pointof K. Let H

+1
be a hyperplane in Rn not containing p such that each line
through p and any other point k of K intersects H ina
point k' and comsider K' ={k'|ke K}.
If K' lies in an (n-1)-flat, then K lies in a hyperplane

+1
of Rn contradicting the hypothesis. Suppose K' does not
lie in an (n-1)-dimensional subflat of H. Then, by U_l,

there is a (K', (n-1))-motzkin P’ :k(’3 : F' in H. Hence

P=pk'F', h = pk' d = pF"' tisfi v .
poF where L po and F = pF' satisfies _

13
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