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Abstract

The classical variational analysis of curvature energy functionals, acting on spaces of curves of a
Riemannian manifold, is extremely complicated, and the procedure usually can not be completely
developed under such a degree of generality. Sometimes this difficulty may be overcome by focusing on
specific actions in real space forms. In this note, we restrict ourselves to quadratic Lagrangian energies
acting on the space of closed curves of the 2-sphere. We solve the Euler–Lagrange equation and show
that there exists a two-parameter family of closed critical curves. We also discuss the stability of the
circular critical points. Since, even for this class of energies, the complete variational analysis is quite
involved, we use instead a numerical approach to provide a useful method of visualization of relevant
aspects concerning uniqueness, stability and explicit representation of the closed critical curves.
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1. Introduction

Assume that γ : [0, 1] →M is an immersed curve in a Riemannian manifold and
denote its curvature by κ . Curves which are minimizers (under suitable boundary
conditions) of energies depending quadratically on κ ,

F(γ )=
∫
γ

(εκ2
+ λκ + µ) ds, (1.1)

with ε, λ, µ ∈ R, have often been employed to construct useful models in physics.
Thus, if ε = λ= 0, then F is basically the length of the curve, and unit speed critical
points are nothing but geodesics, the trajectories of particles when no external forces
act on them. If ε = 0, then, according to a well-known model [18], critical curves of
F represent relativistic particles (both massive and massless) in pseudo-Riemannian
ambient spaces (see also [5] and the references therein). On the other hand, if λ= 0
critical curves of (1.1) correspond to the Euler–Bernoulli classical model for the elastic

This research has been partially supported by grants GIC07/58-IT-256-07 of Gobierno Vasco and
MTM2007-61990 of Ministerio de Ciencia e Innovación. Spain.
c© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00

496

https://doi.org/10.1017/S0004972709001142 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001142


[2] Quadratic curvature energies in the 2-sphere 497

curves (or simply, elasticae) which has been widely studied in real space forms by
means of various approaches [6, 8, 10, 11, 13, 14, 16]. In this setting, extremals of
F can be interpreted in physics not only in terms of the elasticity theory [12], but
also in connection with the effective action of the relativistic kink model around the
solitonic solution [9]. Elasticae in Riemannian manifolds with nonconstant curvature
are not so well understood. The analysis of the elasticae in Lie groups equipped with
bi-invariant Riemannian metrics was recently initiated in [17], where the authors
focused on the group of rotations of R3 with a view to applications in robotics,
engineering and computer graphics.

Our purpose here is to focus the variational problem associated with the energy
F given in (1.1) when ε2

+ λ2
6= 0. Of course, boundary conditions need to be

established and we will consider the energy F acting on the space of closed curves.
As a consequence of the rotation index theorem, closed critical points of (1.1) in R2

are nothing but the closed planar elasticae already known to Euler: circles and figure-
of-eight curves. In the 2-sphere S2(1) the situation is much more interesting. If ε = 0,
then it is easy to see that the only critical curves are circles [1]. Actually, taking in
addition µ= 1 and considering F as acting on the space of closed embedded curves
in S2(1), one can use the Gauss–Bonnet formula to see the critical points of F as
extremals of the length, for variations with fixed enclosed area (whose minimizers
are circles as a consequence of the isoperimetric inequality). If λ= 0, critical points
of F are closed elasticae in S2(1), which have been classified in [13] using classical
techniques of the calculus of variations. When ε = 1, µ= (λ/2)2, then extremals of
F correspond to elasticae which are circular at rest [4].

Arbitrary curvature energy actions on S2(1) have been studied in [3], by extending
the ideas contained in [13] (see also [2]). However, the program can not be fully
developed for such a general choice of the Lagrangian. In this note we choose µ= 0
and ελ 6= 0 in (1.1). Then, considering these parameters as Lagrange multipliers,
extremals of F can be seen as critical points of the elastic energy for variations
with fixed total curvature or, alternatively, as critical points of the total curvature for
variations with constant elastic energy. Notice that, in the previous sentence, ‘total
curvature’ can be replaced by ‘enclosed area’, for closed embedded curves. Observe
also that there are no critical curves for the total curvature in S2(1), since they must
lie within the set of flat points of a surface [1]. The remaining choice µ 6= 0, ελ 6= 0
in (1.1) would impose an additional penalty on the length of the curve, and can be
treated similarly.

The Euler–Lagrange equation associated with F can be expressed in terms of the
curvature of the potential critical curves. In Section 2 we explicitly solve the Euler–
Lagrange equation and find its periodic solutions. They give rise to corresponding
curves which are the candidates to be closed extremals. In Section 3 we give a
condition that these candidates must satisfy in order to close up, and show that there
exists a two-parameter family of critical curves that fulfills it. The procedure described
here allows us to obtain explicit parameterizations of the closed critical curves (at least
by quadratures). The stability of the circular critical points for F is also analyzed in
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this section. Further formal investigation concerning uniqueness, classification and
stability is extremely hard even for λ= 0 [15]. In Section 4 we use a numerical
approach to deal with these relevant aspects and gain some insight into the family
of closed extremals for F .

2. Solving the Euler–Lagrange equation

Let γ (t) be regular closed curve in S2(1), that is, γ : S1(1)→ S2(1) is a C∞

immersion in the two-dimensional standard unit sphere. The arc-length parameter
of γ (t) is denoted by s. As usual, we denote by γ (s) and κ(s) the corresponding
reparameterization and the curvature function of γ (t), respectively. As already stated,
we take µ= 0 and ελ 6= 0 in (1.1), and, without loss of generality, we can choose
ε = 1, λ > 0. We are concerned with the variational problem associated with the
energy functional

Fλ(γ )=

∫
γ

(κ2
+ λκ) ds, (2.1)

acting on the space of closed immersed curves in S2(1). The first variation formula of
Fλ can be computed by using standard arguments, and the boundary operator vanishes
identically for closed curves. Consequently, closed curves of S2(1), which are critical
for Fλ, are characterized by the Euler–Lagrange equation (for details, see [3])

2κss + κ
3
+ 2κ + λ= 0, (2.2)

where the subscript s denotes differentiation with respect to the arc-length. Notice that
geodesics are not critical points since λ > 0. Circles of constant geodesic curvature

κo =$
1/3
−

2
3$
−1/3, (2.3)

where $ = (
√
λ2 + 32/27− λ)/2, are trivial closed solutions of (2.2). Assume, then,

that κ(s) is not constant. It is easy to see that a first integral of (2.2) is given by

κ2
s =

1
4 Qd(κ), (2.4)

where Qd(κ) := d − κ4
− (λ+ 2κ)2 and d > 0 is a real constant. A phase portrait

analysis would reveal that almost any solution of (2.4) is periodic. For our purposes,
however, we will need to solve (2.4) explicitly. When solving

∫
(dκ/Qd(κ)

1/4)=

±1/2
∫

ds, one can discuss the solutions of (2.4) in terms of the roots of the
polynomial Qd(x), its multiple roots being those which affect the integrability.
If Qd(x) has no multiple roots, then it admits two simple roots. Observe that Qd(x)
takes its maximum at κo (2.3). Thus, Qd(x) admits two simple roots α > β when
Qd(κo) > 0. This happens precisely if

d > do := (λ+ 2κo)(λ+ κo), (2.5)
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and in this case equation (2.4) reduces to

κ2
s =

1
4 (α − κ)(κ − β)((κ − m)2 + n2), (2.6)

where m, n are determined by

α + β + 2m = 0, αβ + 2m(α + β)+ m2
+ n2
= 4,

αβ(m2
+ n2)= λ2

− d, 2mαβ + (α + β)(m2
+ n2)=−4λ.

(2.7)

Our first task will be to explore the set of solutions of (2.6). Remember that
λ > 0 and that d satisfies (2.5). Then, by considering the Jacobi elliptic functions
and invoking the formulas I.3.145 and I.3.147 of [7], one can see that the periodic
solutions of (2.6) are given by

κ(s)=
(qα + pβ)− (qα − pβ)cn(rs, M)

(p + q)+ (p − q)cn(rs, M)
, (2.8)

where cn(·, ·) stands for the Jacobi elliptic cosine function and the parameters involved
in (2.8) are determined by

p2
= (m − α)2 + n2, q2

= (m − β)2 + n2,

M =
1
2

√
(α − β)2 − (p − q)2

pq
, r =

√
pq/2.

(2.9)

Thus, the functions κ(s) are periodic with period ρ = 4K (M)/r , where K (M) denotes
the complete elliptic integral of the first kind of modulus M .

3. Closed critical points

Next, we wish to determine under what conditions a curve of S2(1), associated
with a periodic solution to the Euler–Lagrange equation (2.2), is closed. For that
purpose, we introduce a coordinate system adapted to the problem. Let κ(s) be a
periodic solution of (2.2) as given in (2.8) and denote its period by ρ. Take γ (s)
to be the curve in S2(1) with curvature κ(s) (which is unique up to isometries) and
denote by {T (s), N (s)} its Frenet frame. Then the vector field along γ (s) defined by
J = κ2T + 2κs N can be extended to a Killing field on S2(1), which we also denote
by J (s). Choose geographic coordinates, x(θ, φ)= (cos θ sin φ, sin θ sin φ, cos φ),
such that the equator gives the only integral geodesic of J (s): xθ = bJ . The
advantages of choosing this coordinate system are various. For instance, not only
will it be useful for numerical computations, but also it allows us to compute by
quadratures the coordinates of a critical curve of Fλ, γ (s)= x(θ(s), φ(s)), in terms
of its curvature. To be more specific (for details, see [2, 13]), we can write

θs(s)=
κ2

b(d − (λ+ 2κ)2)
,

b2(d − (λ+ 2κ)2)= sin2 φ.

(3.1)
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Hence, we can express the clousure condition for critical curves associated with
periodic solutions of the Euler–Lagrange equation in a simple manner. In fact, defining
the angular progression of γ (s) by

3λ(d) :=
√

d
∫ ρ

0

κ2

d − (λ+ 2κ)2
ds, (3.2)

one can establish the following result.

PROPOSITION 3.1. Let γ (s) be a curve in S2(1) corresponding to a periodic solution
of (2.2), κ(s), with period ρ. Then γ (s) is a closed critical curve for Fλ if and only if
3λ(d)/2π ∈Q.

Our next step will be to verify whether or not this condition is satisfied for any
λ > 0, and to examine the family of closed critical curves. We have the following
proposition.

PROPOSITION 3.2. Let λ be any positive real number. Then, for any pair of natural
numbers m, n ∈ N, (m, n)= 1, satisfying

m

n
<−

2
√

doκo

(λ+ 2κo)
√

6κ2
o + 4

, (3.3)

where κo and do are given by (2.3) and (2.5) respectively, there exists a closed critical
curve of Fλ in S2(1), γm,n(s), which closes up after traveling n periods of its curvature
and m trips around the equator.

PROOF. We analyze the range of variation of the angular progression of γ (s) when
the curvature is given by (2.8). By using (2.4) and (3.2) we get

3λ(d)= 4
√

d
∫ α

β

κ2dκ

(d − (λ+ 2κ)2)
√

Qd(κ)
, (3.4)

which is always positive since, from (2.4), d ≥ (λ+ 2κ)2. Equality holds when the
largest root of Qd vanishes and, therefore, d = λ2. The behavior of 3λ(d) as d→ do
can be studied by using the relations (2.7). One can check that

κo + m = 0, κ2
o + 4mκo + m2

+ n2
= 4,

mκ2
o + κo(m2

+ n2)=−2, κ2
o (m

2
+ n2)= λ2

− do.
(3.5)

Hence, as d→ do, we have m =−κo, n2
= 4+ 2κ2

o and p2
= q2

= 4κ2
o + n2

=

6κ2
o + 4. Also the period of the curvature, ρ, and the derivative of the longitude,

θs(s), satisfy limd→do ρ = π/r = 4π/p and limd→do θs(s)=−(
√

doκo)/(λ+ 2κo),
respectively. Therefore,

lim
d→do

3λ(d)=−

(
4π
p

) √
dκo

(λ+ 2κo)
=−

4π
√

doκo

(λ+ 2κo)
√

6κ2
o + 4

. (3.6)
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Analogously, after some lengthly computations,

lim
λ→+∞

κo(λ)=−∞, lim
λ→+∞

κ3
o (λ)

λ
=−1, lim

λ−→+∞

do(λ)

λ2 = 1,

lim
λ→0

κo(λ)= 0, lim
λ→0

κo(λ)

λ
=−

1
2
, lim

λ−→0

do(λ)

λ2 = 0,

(3.7)

and, consequently, we obtain

lim
λ−→0

3λ(do)= 2π, lim
λ−→+∞

3λ(do)=
√
(2/3)2π.

On the other hand, notice that limd→+∞(−β/α)= 1, and that α = O( 4
√

d), n =
O( 4
√

d). Moreover, the function f (κ)= κ2/(d − (λ+ 2κ)2) takes its maximum
value, f (α)= 1/α2, at κ = α > 0. The previous considerations lead us to the
following estimation: for d large enough,

3λ(d) ≤
4
√

d

nα2

{∫ 0

β

dκ
√
(α − κ)(κ − β)

+

∫ α

0

dκ
√
(α − κ)(κ − β)

}
≤

4
√

d

nα2

{
1
√
α
[2
√
(κ − β)]0β +

1
√
−β
[−2

√
(α − κ)]α0

}
=

8
√

d

nα2

{√
−β
√
α
+

√
α

√
−β

}
= O

(
1
α

)
= O

(
1

4
√

d

)
.

Thus, since the angular progression 3λ(d) varies continuously as d moves in
(do,∞), its range of variation contains the interval(

−
4π
√

doκo

(λ+ 2κo)
√

6κ2
o + 4

, 0
)

(for a numerical estimation, see Figure 4). This finishes the proof. 2

Proposition 3.2 can be used in combination with (2.8) and (3.1) to obtain explicit
parameterizations of closed critical points of Fλ in the unit 2-sphere. See Figures 1–3
and Section 4.

As for the stability of the critical curves, the second variation formula for (1.1) can
also be computed following [2]. However, its application to the stability analysis of
the critical curves is quite limited due to its complexity. Nevertheless, there is one case
in which this analysis can be fulfilled: critical circles. We say that a critical curve γ of
Fλ is stable if, for any variation γ (w, s) of the curve, (d2Fλ(γ (w, s))/dw2)|w=0 ≥ 0
is satisfied.

As already observed, circles γε of curvature ε, where ε = κo is given in (2.3),
are critical points of Fλ. Denote by γm

ε the m-covering of γε . Then, according to
Proposition 6 of [2], γm

ε will be stable if and only if the two conditions

P ′′(ε) > 0, 2λ(ε, m)≤ 1, (3.8)
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FIGURE 1. Closed extremals for F 1/4: these close up in 3 and 4 curvature periods, respectively.

FIGURE 2. Closed extremals for F 4: these close up in 4 and 2 curvature periods, respectively.

are satisfied, where

2λ(ε, m) :=

∣∣∣∣m(1−

√
1−

P(ε)

P ′′(ε)(ε2 + 1)2

)∣∣∣∣,
and P(x)= x2

+ λx . In our case P ′′(ε)= 2 for any λ and lengthly but straightforward
computations show that 2λ(ε, 1) will always be less than 1. To summarize, we state
the following proposition.

PROPOSITION 3.3. For any λ > 0, the once covered circle γε with curvature (2.3) is
stable.
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FIGURE 3. Closed extremals for F 10: these close up in 5 and 2 curvature periods, respectively.

FIGURE 4. Variations of 3λ(d) for various values of λ.

4. Numerical experiments

In connection with the angular progression 3λ(d) and the statement of Proposi-
tion 3.2, a couple of interesting questions remain open. The first concerns the potential
existence of other closed critical curves of Fλ, not included in Proposition 3.2. The
second is related to the uniqueness of the closed critical curve (up to multiple coverings
of the γm,n(s)) associated with any pair of natural numbers n, m satisfying the
conditions of Proposition 3.2. Our numerical experiments suggest that both questions
can be answered in the positive. Figure 4 shows the angular progression for different
values of λ. The angular progression for λ= 0.01 and λ= 0.1 can be seen at the
bottom of the picture, while the curve at the top corresponds to λ= 100. In between
are curves for λ= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50. This figures illustrates
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Θ

Θ

FIGURE 5. Stable m-coverings of γε .

FIGURE 6. Number of periods of closed extremals.

the answer to the first question, since it indicates that 3λ(d) varies continuously in
(−4π

√
doκo/((λ+ 2κo)

√
6κ2

o + 4), 0) as d moves in (do,∞).
As for the second question, monotonicity of 3λ(d) in terms of d , for a fixed λ > 0,

would imply a positive answer to it. It seems very involved and difficult to prove
this fact. Even for λ= 0 it is a formidable task [13]. Nevertheless, our numerical
computations (see Figure 4) suggest that this is apparently the case for any λ > 0.

On the other hand, in order to obtain explicit parameterizations of the closed
critical curves for Fλ, we need first to find a real number d > 0 and natural numbers
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FIGURE 7. Energy values of closed extremals.

m, n satisfying the conditions of Propositions 3.2 and 3.1. Then we have to use
(2.7)–(2.8) to obtain their curvature, substitute in (3.1) and, finally, integrate the
corresponding equations. Of course, this is not possible in general, but the procedure
can be implemented by a numerical algorithm allowing us to graphically obtain these
examples. Figures 1–3 show the outcome of the algorithm in a few cases.

Another interesting question has to do with the stability. The value for the number
of stable coverings given in Proposition 3.3 is quite conservative (m = 1). Figure 5
shows an estimation, depending on λ, of the maximum number of coverings of the
critical circle γε which are stable. It indicates that the number of stable coverings
increases as λ approaches 0 and that 4-coverings are stable for any λ.

Our final experiments are shown in Figures 6 and 7. Figure 6 shows the number of
closed critical curves which close up in less than 600 periods of their curvatures. For
a given λ, the dots on the vertical line x = λ correspond to closed critical curves for
Fλ(γ ). For any dot, its height on the vertical axis gives the number of periods needed
for the critical curve associated with it to close up. Apparently, although for any λ > 0
there exists a two-parameter family of closed critical curves, there are certain values
of λ for which the extremal curves with nonconstant curvature require a huge number
of periods of their curvature to close up. Figure 7 shows the energy value Fλ(γ ) for
the closed extremals considered in Figure 6, when evaluated over the arc of curve
corresponding to just one period of their curvature.
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