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Abstract

Complex systems are challenging to design, particularly when they contain multi-level
organizations with non-obvious relationships among design components. Here, we
investigate engineering students’ capacity to search for optimal nanoscale biosystem
designs with stochastic component and system behaviors. The study aims to characterize
information types that facilitate human learning and improve their complex system
understanding and design proficiency. It is hypothesized that learning parametric system
relationships and/or inter-level causal mechanisms improves design proficiency; these
relationships and mechanisms are teachable through software interfaces. Two contrasting
learning/design interfaces were developed that presented differing information types: an
interface with performance charts that emphasized parametric relationship learning and
an interface with agent-based animations that emphasized inter-level causality learning.
Users improved on pre-/post-learning design tasks with both interfaces; users who
demonstrated inter-level causal relationship understanding, which occurred primarily
with the animation interface, had greater improvement. All users were then presented
contrasting animations of systems with opposing emergent behaviors, resulting in many
more participants demonstrating an understanding of inter-level causal behaviors. These
findings reveal the difficulties in understanding and designing multi-level systems and
that interactive software tools may convey crucial information that supports engineering
design, particularly with respect to the development of reasoning skills for how system
components relate across levels.
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1. Introduction and motivation

Complex systems typically consist of many levels of components and interactions,
which makes them challenging to design (Ottino 2004). Non-obvious inter-level
relationships commonly emerge among components and behaviors across scales
in complex systems, and complex bio-based systems with these properties are
becoming a growing area of design interest (Spatz 2005; Young & Alper 2010;
Cheng & Lu 2012; Korin et al. 2012; Tan et al. 2013; Egan et al. 2015¢). Challenges
for designing complex systems may include difficulties in human understanding
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of the system (Chi 2005; Hmelo-Silver, Marathe & Liu 2007), and application
of knowledge toward optimal design configurations (Egan et al. 20154). In this
study, a cognitive investigation is conducted by collecting measurements detailing
a user’s reasoning processes and studying the influence of external tools on design
proficiency via effects on reasoning processes. Although multi-level system design
is a broad issue in design, we specifically focus on measuring a user’s ability
to optimize multi-level biosystems as an indication of their design proficiency,
and how it is influenced by their multi-level understanding of the system. This
investigation is conducted to determine what types of information may aid
a designer’s learning and understanding of a complex system, and how that
understanding may improve their ability to proficiently design the system.

The investigation is informed by recent cognitive and engineering studies that
demonstrate the usefulness of software tools including multi-level graphical user
interfaces (GUIs) and agent-based renderings in improving human understanding
and design of systems (Chi ef al. 2012; Li & Gunal 2012; Zhang et al. 2012; German,
Feigh & Daskilewicz 2013; Jordan et al. 2013; Woodruff, Reed & Simpson 2013).
Specifically, we seek to demonstrate how differently configured GUIs and agent-
based simulations can facilitate the learning of inter-level causal mechanisms
(Chi 2005) (i.e., how perturbations at one level of organization influence the
system behavior at another level) and parametric relationships (Egan et al.
2015a), and how this information about inter-level causal mechanisms translates
to improved human performance during multi-level design optimization tasks.
Through asking users questions that probe their qualitative understanding of
inter-level casual mechanisms throughout their design tasks, it is possible to
connect measures of a user’s understanding of a system to their performance in
using design tools.

Myosin motor protein systems are chosen as a representative complex
biological system because they possess characteristics general to many complex
multi-level systems such as emergent behavior (Egan et al. 2013). Although there
are many definitions for emergence, in the context of myosins and other biological
systems, emergence may be considered the global system behavior that is a result
of collective interactions of lower-level components (Egan et al. 2013). Using
this definition, myosin systems are quite different than traditionally engineered
complex systems, such as airplanes, that do not rely on collections of highly
redundant parts to function (i.e., myosin-based systems require many myosin
motor proteins to function, while airplanes may operate with one motor; there
are also debates concerning whether airplanes should be considered complex
systems) (Ottino 2004).

Emergence itself is not rare, especially in nature when considering cells
organizing into tissues and the social/group behaviors of organisms; artificial
systems such as Conway’s Game of Life demonstrate that novel behaviors
may emerge from relatively simple systems and components (Standish 2001).
Generally, engineered systems are designed in ways to avoid extreme forms of
emergence that are difficult to control and potentially unpredictable, although
most engineered systems will have some form of emergent states depending on
their inputs. In the traditional fields of systems engineering, a metropolitan light
rail system and an aircraft carrier may both be considered complex systems
with emergent behavior, and analysis becomes even more complicated when
considering a system of systems, such as an entire metropolitan transport system
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(Keating et al. 2003). Systems of systems generally consist of nested subsystems,
which motivates the need for multi-level reasoning and engineering approaches
for bridging local to global levels (Sage & Cuppan 2001).

Further, design with emergent behaviors, especially across levels, often
requires non-obvious changes to a system to improve functioning. For instance,
in traditionally designed systems with direct behaviors, the change in one design
parameter results in a direct change to a performance output coupled to the
design parameter. However, in emergent systems, the direct change to design
components not only affects the individual design component, but also results in
changes to how they interact with collective components that can alter the global
emergent behavior of the system. Myosin-based protein systems that possess such
complex system attributes are particularly relevant to engineering because of their
ubiquity in natural systems (Rome 2005; Huber et al. 2013) and relevance in novel
technologies (Koenderink et al. 2009; Neiman & Varghese 2011).

Myosin-based systems are also well-suited for cognitive studies, because they
are unfamiliar to traditional engineering disciplines, thereby providing an ideal
system for investigating how engineers learn and demonstrate understanding
of inter-level causality that requires specialized domain information not known
by participants prior to the study. It is also possible to model emergent and
highly complex myosin system behavior with three myosin design variables and
one systems design variable, such that the system is presented in a manner
consistent with engineering design paradigms. Such an approach has been
demonstrated in recent agent-based myosin simulations that model complex
inter-level behaviors that extend beyond what is currently achievable through
experimental measurements or analytical predictions (Egan et al. 2015b). In
these studies, parametric relationships refer to relationships such that a change
in a design input results in a measurable change in an output behavior of the
system, and inter-level relationships refer to relationships such that a change
in an individual myosin design parameter alters the behavior of a system as a
whole. Additionally, inter-level relationships exist to describe how differences in
a systems level variable, such as the number of myosins in a system, affect the
behaviors of individual myosins. Further elaborations on these relationships, and
their analogy to designs in the traditional mechanical engineering domain, have
been discussed in past work using structure-behavior-function representations
(Egan et al. 2013).

Previously, we have modeled and designed myosin systems using agent-based
molecular simulations (Egan et al. 2013, 2015b) and developed GUIs to measure
human design proficiency in myosin-based optimization tasks (Egan et al. 2015a).
The GUIs and tasks tested users’ design proficiency with regard to parametric
design; parametric design is representative of an important design activity relevant
to design search and optimization (Sim & Duffy 2003). Parametric design is
also particularly relevant in computer-aided design applications for fine-tuning
designs that have pre-defined forms (Roller 1991; Simpson et al. 2007; Goel et al.
2012; Yassine 2012). Our previous GUI studies focused on parametric design
relationships for how individual myosins and their organization in a system may
influence emergent system performance, but only modeled myosin systems that
operated with a consistent emergent behavior. In this paper, we now consider
two qualitatively distinct emergent system behaviors that are influenced by the
design of individual molecules and the system as a whole. These features lead to
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inter-level causal relationships that influence the sensitivities of design variables
on performance, which is an essential aspect of many complex multi-level systems.
This paper also builds from cognitive-based studies that have demonstrated GUIs
can aid in learning complex system relationships (Chi 2005; Hmelo-Silver et al.
2007), and extends beyond these findings to demonstrate what types of learning
also result in better design of a system.

The primary steps of investigation in this paper are to develop GUIs that
present different types of information to a user, determine what understanding
a user gains through learning with this information, and examine whether such
learning promotes improved design proficiency. The interfaces are extensions of
our past myosin-based design GUI and concentrate on presenting information
to a user that is parametric in nature, through use of the existing interface, or
revealing of inter-level causal relationships, through inclusion of agent-based
simulation renderings. These GUIs facilitate the collection of measurements
from pre-/post-learning assessments of engineering students” design proficiency
and understanding of inter-level causalities, which enable inferences about
user learning and performance from a cognitive perspective. The cognitive
considerations in this investigation extend beyond human-computer interaction
studies by collecting textual responses from participants to determine their
thought processes and understanding beyond purely quantitative measurements
collected with the software interface.

Although we present in-depth details for modeling and designing myosin
systems (particularly in Background Sections 2.4-2.6 and Appendices A.1 and
A.2), the general methods and findings of this study can be understood without a
detailed understanding of how myosins in general or the particular myosin system
modeled here works. The core understanding required of myosins’ behavior is
that the design of myosin-based systems across scales causes the system as a
whole to behave in one of two possible emergent states. These consist of whether
a filament propelled by myosins has a consistent velocity or an intermittent
velocity—the filament velocity is intermittent during periods when all myosins
in a system are momentarily not exerting force on the filament. The couplings
among variables to describe these behaviors across scales are complicated and
counter-intuitive when even a few design inputs are considered (Egan et al.
2015b), which are simplifications of even more complicated biophysical behaviors
(Harada et al. 1990). The outcome of the paper is to demonstrate strategies
for aiding user learning, understanding, and design of complex systems from a
cognitive perspective that could inform the construction of software tools and
design methodologies for supporting complex systems design.

2. Background

The background is divided into seven sections that focus on human understanding
of complex systems, use of agent-based simulations for learning, use of animations
as teaching supports, the complexities of myosin systems with varied emergent
behaviors, modeling of designed myosin systems, and past myosin-based GUI
studies.

2.1. Human understanding of complex systems

Studies in measuring human understanding of emergent systems with micro-
/macrolevels have demonstrated that misunderstandings of emergent behaviors

4/31

https://doi.org/10.1017/dsj.2015.3 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2015.3

Design Science

(e.g., diffusive fluid flow) are more strongly held than misunderstandings
of direct behaviors (e.g., blood flow in the circulatory system) (Chi 2005).
People who lack understanding of emergent systems often have fragmented
system understandings, such as being able to understand aspects of component
behaviors but not how they relate across scales. Most commonly, this fragmented
understanding occurs through attempts to explain emergent systems as direct
processes, rather than distributed behaviors. Studies comparing expert and novice
understandings of ecosystems and lungs have demonstrated that experts have
greater understandings of behaviors within and across levels, which enables them
to more effectively reason about how perturbations affect system functioning
(Hmelo-Silver et al. 2007). Such findings are relevant to design problems because
engineers must be capable of effectively manipulating a system and its components
toward a desirable goal state. These considerations can significantly aid in human
design endeavors concerning parametric design, which is known to be difficult
for humans even when only a few coupled parameters are involved (Hirschi &
Frey 2002). Typically, humans find success in these systems when approaching
them utilizing simple decision-making rules, such as manipulating one variable
at a time while leaving other design variables constant (Kuhn et al. 2008). Using
these strategies, designers may be able to effectively learn and make decisions that
improve design outcomes (Egan et al. 2015a).

2.2. Software interfaces for engineering design

Past engineering design interfaces have been constructed to address the challenges
of complex systems design, especially the need to consider multiple objectives
in searches with visualizations (Zhang et al. 2012; Woodruff et al. 2013) and
trade-offs in multi-dimensional and multivariate data (German et al. 2013).
Progress in effective GUI approaches is relevant to design because engineers must
be capable of effectively manipulating a system and its components toward a
desirable goal state—an effective GUI should enable the engineer to learn essential
aspects of complex systems that aid in design. One successful GUI approach
utilized the parameterization of designs such that engineers could manipulate
design variables to design a system toward an optimal state (Simpson et al. 2007),
which is a strategy adopted in this present study. This study expands on the
findings from these previous studies through considering systems that are highly
stochastic in nature with multiple outputs. These systems are then communicated
to users via an agent-based simulation rendering that can provide parametric
insights to a user in addition to behavior concerning the structures, behaviors, and
functions of a system (Vattam et al. 2011). Such an approach of including cognitive
considerations in the GUI design is similar to previous engineering interfaces for
investigating design trade-offs that pinpoint designs based on human cognitive
principles (Li & Gunal 2012). There is also a need for modeling complex biological
systems, as evidenced by recent GUIs developed for cell and gene modeling
in synthetic biology contexts, which could contribute to engineering design of
bio-based technologies (Villalobos et al. 2006; Chandra, Bergmann & Sauro 2009).
These recent synthetic biology interfaces motivate the need for an effective GUI
approach for myosin-based complex systems as they are mechanical in nature,
which contrasts with these past bio-based GUI approaches that have concentrated
on biochemical system modeling.

5/31

https://doi.org/10.1017/dsj.2015.3 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2015.3

Design Science

2.3. Agent-based simulations as teaching supports

Inter-level causal mechanisms can be learned through software tools, such
as agent-based simulations, which is demonstrated in studies focusing on
users’ understanding of multi-level phenomena relating to fluid diffusion (Chi
et al. 2012) and aquarium ecosystems (Vattam et al. 2011; Jordan et al. 2013).
Agent-based simulations, in this context, operate through graphically rendering
the actions of independent autonomous computational objects in a virtual
environment representative of a physical system (Dessalles, Ferber & Phan
2008). These simulations are particularly well-suited for representing multi-level
phenomena because individual agents can represent the bottom-most level of
a system, such as molecules in the case of fluid diffusion. Agents then perform
actions during each simulation step according to rule-based logic, and the results
of their interactions may produce recognizable patterns of global emergent
behavior, such as two liquids mixing. One of the greatest benefits of agent-based
simulations is that users can manipulate a system by altering parameters among
agents and receive visual feedback of emergent behaviors, which greatly supports
understanding of complex multi-level systems and may be extendible to aiding in
the design of complex bio-based systems.

2.4. Animations as teaching supports

Medical education has had great success in utilizing animations for learning,
which present an alternate route for utilizing software tools to maximize learning
in comparison to agent-based methods (Ruiz, Cook & Levinson 2009; Van
Merriénboer & Sweller 2010). Animations can present users with the critical
information they need to learn, rather than requiring them to actively search
and manipulate a system while learning. Animations are more effective when
optimized through cognitive load theory (Van Merriénboer & Sweller 2010),
which suggests that a user has a restricted amount of information that they can
accommodate at a time, due to possessing a limited amount of working memory.
To optimize learning, intrinsic cognitive load (i.e., complexity of information in
the given problem that must be processed) and extrinsic cognitive load (i.e., any
information that does not contribute to learning) should be minimized while
germane cognitive load (i.e., the resources a user has for learning and building
of cognitive schemas) is maximized. In the case of myosin systems where two
contrasting global behaviors may emerge, side-by-side animations are possibly
an effective tool (Alfieri, Nokes-Malach & Schunn 2013) because they reduce
cognitive load as a user no longer has to compare the current state of a system
to a representation in their working memory, as required in agent-based learning
environments.

2.5. Emergent behaviors of myosin systems

Myosins are nanoscale motor proteins that often work in groups to mechanically
drive emergent behavior in biological systems (Howard 2001). Individual myosins
operate by converting chemical to mechanical energy and stochastically attaching
and detaching to an actin protein filament they propel—the propulsion of the
filament is essential for contracting muscles or moving molecules across locations.
The emergent propulsion behavior depends on how often at least one myosin in
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Figure 1. Simulated (A) continuous and (B) intermittent myosin filament translation. Each frame
consists of an actin filament and myosins anchored on a microscope slide. Animations are available at
http://youtu.be/BEqoOBddtel.

a system is attached to the protein filament it is propelling; during periods of time
when at least one myosin is attached, the filament is assumed to translate due to
the myosin exerting force on the filament, but during times when no myosins are
attached, the filament remains static (Harada et al. 1990; Egan et al. 2015b).

A general finding from biological studies (that may also be considered an
engineering heuristic) suggests that a filament has continuous emergent behavior
when the probability that at least one myosin is attached, Py, is greater than
90%, which generally occurs when at least two myosins are attached to a filament
on average (Harada et al. 1990). This heuristic implies that emergent translation
behavior may be considered continuous when Py > 90% and intermittent
when Py < 90%, thus presenting two contrasting systems level behaviors. In
intermittent systems, the time-average velocity of the system is much lower than
the instantaneous velocity of the filament because of the many periods of time
when no translation is occurring—filament translation occurs less frequently for
lower values of P,;. These assumptions are only valid for myosin systems that
operate in a highly viscous environment; in low viscosity environments, the system
terminates due to diffusion when myosins do not maintain contact with actin.
The contrast in time-average velocity for continuous and intermittent systems is
illustrated graphically with our agent-based simulation (Egan et al. 2013,2015b) in
Figure 1. In the agent-based simulation, myosins obey stochastic rules that enable
their chemical and mechanical interactions with an actin filament in a virtual
environment.

These emergent behaviors present an interesting design challenge, namely
that design parameters have different influences on performance based on the
emergent behavior of the system (Egan et al. 2013,2015b). For instance, designing
myosins with higher chances of attaching to a filament has little effect on
time-average system velocity when emergent behavior is continuous, but greatly
increases time-average velocity for intermittent systems because at least one
myosin is attached more often. Therefore, the ability to recognize a system’s
emergent behavior and understand effects of design variables on performance
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within and across levels may greatly improve a human designer’s proficiency in
optimizing these systems.

2.6. Myosin modeling and design

Biological studies have demonstrated techniques for synthetically altering myosins
(Manstein 2004), which affect their mechanical (Anson et al. 1996) and chemical
(Murphy & Spudich 1998) behaviors, and we recently developed engineering
models for exploring the optimization of myosin systems (Egan et al. 2013,20154).
In our model, myosins were represented through a structure-behavior-function
paradigm, which required design of individual myosin structures to be followed by
agent-based simulations that recreated their behaviors in order to predict global
performance (i.e., function). Three myosin design parameters were considered:
(1) a myosin’s lever arm length I, (2) a myosin’s attachment rate k,,, and
(3) a myosin’s detachment rate ko, in addition to the number of myosins
Nmyo interacting with a filament. It was found that each parameter has unique
effects on performance, for metrics including system velocity, energy use, and
the average number of attached myosins. The agent-based simulations agreed
with predictions from mathematical models and were suggested to offer a more
complete perspective for how changes in myosin structures and behavior affect
emergent system performance. Therefore, it is possible that users exposed to
agent-based simulations could learn inter-level relationships that extend beyond
basic input/output parametric models where underlying behavior is obscured.

2.7. Myosin-based design with GUIs

Parametric modeling of myosin design inputs and influences was analyzed in
our past GUI studies to assess engineering students’ capabilities in searching for
optimal solutions in myosin design tasks (Egan et al. 2015a) (Figure 2). Details
are presented here because we adapt those tools in the current study. In the prior
study, the maximum values for each input were a myosin lever arm length I of
20 nm, myosin attachment rate k,, of 4000 s~ myosin detachment rate ko
of 2000 s~!, and a maximum number of myosins #,,y, of 100. The lever arm,
attachment rate, and detachment rate were represented in a non-dimensionalized
quantity to avoid overly confusing units and values for users unfamiliar with the
system. These variables were weighted from 0.2 to 1.0 of the parameter’s maximum
value according to the five possible input possibilities tied to each slider. The
sliders were tuned such that a user increasing a slider input linearly resulted in
its corresponding myosin design input increasing linearly (e.g., if a slider was at
its lowest value of 0.2 and then moved to its value of 0.8, and the corresponding
myosin input was lever arm length, it would increase from 4 to 16 nm). Because
there were four sliders and five input positions for each slider, 625 designs were
possible, which is a fairly complex search space for a user who is limited by time
and number of total design evaluations. As a user searched for an optimal design,
their search was recorded on plots and tabulated for easy reference.

The resulting design space was quite difficult for users to navigate when
considering the counter-intuitive parameter interactions present and limited time
a user had to search the space during our timed user studies (users were allowed
to input only ten designs). The feedback provided from the GUI improved users’
design proficiency; however, users still improved their design less often than
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Figure 2. Myosin GUI with demonstration available at http://youtu.be/fJTZX1JfRXw.

expected by random chance. The study also demonstrated that users did not
learn parametric relationships across problems. Users had improved performance
when the GUI enforced the utilization of greedy search logic according to
relationships learned while solving a given optimization problem, thus suggesting
that parametric knowledge is beneficial to solving design problems.

3. Aims and significance

The primary aim of the study is to determine from a cognitive perspective what
types of information can improve a user’s learning and understanding of a multi-
level complex system and subsequently improve their proficiency in design tasks.
In studying this aim, a cognitive-based model for how users maylearn information
concerning parametric design relationships and inter-level causal mechanisms
from contrasting software interfaces is presented. These software interfaces are
tuned to provide different information, such that measurements conducted enable
inferences of users’ learning, understanding, and design proficiency according to
the proposed cognitive-based model. The cognitive-based model describes how
exposure of the user to a GUI may enable learning of different types of information
that are beneficial for design. Hypotheses are developed for testing the cognitive-
based model, and findings are expected to lead to significant contributions in
understanding and improving user design proficiency for complex multi-level
systems.

3.1. Aims for investigating proposed cognitive model

Our goals are to investigate from a cognitive perspective how engineers may
learn information to improve their parametric and multi-level understanding
of a system, and whether such understanding translates to improved design
proficiency. Our past myosin GUI study empirically demonstrates that users
may be capable of obtaining parametric knowledge and implementing it within
a design problem for improved performance (Egan et al. 2015a). Additionally,
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Figure 3. Cognitive-based model for how differing GUIs enable learning that aids
design.

past studies with our agent-based simulations have suggested that they could
improve a user’s proficiency in reasoning across levels (Egan et al. 2013), which
is supported by findings from other cognitive studies of agent-based learning
supports for aquarium ecosystems (Vattam et al. 2011; Jordan et al. 2013). These
prior studies did not examine whether inter-level understanding improves a user’s
ability to design a system. We therefore propose a cognitive-based model for
how human design proficiency could be improved through exposure to differing
GUIs that emphasize the learning of parametric design relationships or inter-level
causal mechanisms. Through having two GUIs with different types of information
presented and measurements of the understanding gained by each user, it is
possible to study how each type of information contributes to design proficiency.

In particular, to test parametric learning effects, a GUI could enable users
to explore and learn the parametric relationships among design variables by
demonstrating how inputs affect performance outputs through graphical changes
across many plots in a chart-oriented interface similar to the GUI in Figure 2. To
test inter-level learning effects, a GUI could enable user discovery of how changes
in design inputs affect intermittent and continuous global system behaviors
through an animation-oriented interface, where users could change design inputs
and receive visual feedback of how myosin behavior changes in an agent-based
rendering akin to Figure 1. Both of these types of reasoning are then expected
to lead to improved optimization design task proficiency as suggested by the
cognitive-based model shown in Figure 3. It describes how strategies in presenting
different information via GUIs enables different types of learning that may result
in improved design proficiency.

In Figure 3, large arrows indicate the primary learning tracks targeted
by each GUI interface. However, it is difficult to completely decouple these
types of learning from each other as the exposure to charts could improve
a user’s understanding of inter-level causal mechanisms or the exposure to
animations could improve a user’s learning of parametric design relationships
(as indicated by the small arrows). Because each GUI presents different forms of
information to a user, it is essential to conduct multiple types of measurements
at multiple points in time to determine the types of learning that take place
throughout the study and how they affect design outcomes. A challenge in
our development of hypotheses and testing is to determine the effect of these
phenomena through separate assessments of optimization design task proficiency
and a user’s learning of inter-level causal mechanisms. In Sections 4.1 and 4.2,
we further elaborate on GUI construction and cognitive study protocols for
evaluating the following three hypotheses that test the Figure 3 model: (1) learning
via charts or interactive simulations will improve user design task performance,
(2) users exposed to animated renderings of agent-based simulation behavior
will demonstrate understanding of inter-level causal relationships, while users
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exposed to chart GUIs will not demonstrate such understanding, and (3) users
who demonstrate an understanding of inter-level causalities will perform better
on design tasks.

Through these three hypotheses, all arrows in the diagram representing effects
are evaluated either directly or indirectly, thus validating or refuting the proposed
Figure 3 cognitive-based model. More specifically, the first hypothesis tests the
overall tracks with large arrows stating that exposure to the GUI results in learning
that improves design task proficiency, without regard to whether that improved
performance was a result of learning parametric or inter-level relationships.
The second hypothesis specifically tests whether each GUI leads to learned
inter-level causal mechanisms; here it is only expected that the animation GUI
supports inter-level causal learning because it reveals underlying mechanics that
influence emergent system behaviors hidden in parametric representations. The
final hypothesis tests whether improved design performance is achieved through
learning of inter-level relationships, as opposed to all gains in performance being
due to increased parametric knowledge, which has already been studied and
suggested to improve user design proficiency (Egan et al. 2015a).

The assessment of these hypotheses is essential as it enables the decoupling
of the types of relationships users learned throughout the study (i.e., parametric
or inter-level), which highlights how the different types of information presented
by the contrasting GUIs affect user design proficiency. It is possible to assess
these hypotheses using a combination of between-subject and within-subject
comparisons. Between-subject comparisons among users exposed to different
interfaces enable inferences concerning how information types influence design
proficiency, while within-subject comparisons of users throughout the study can
demonstrate the effects of learning on improvements in individuals’ reasoning.
Through these measurements, it is possible to infer which types of information
users learned, and how it affects their design outcomes.

3.2. Significance

This study seeks to understand how engineers can learn and understand types
of information that result in improved proficiency in designing complex multi-
level systems. Through measuring the effects on GUI exposure on user design
proficiency, it is possible to infer what types of information a user learned and how
specific understandings contribute to searching for optimal solutions in myosin-
based design tasks. Each of the three proposed hypotheses tests the magnitude of
different learning and application pathways in Figure 3, which serves to validate
the Figure 3 cognitive-based model and reveal effective routes for presenting
information through software tools that aid engineers in complex multi-level
system design. If the aims of this study are achieved, then new insights will be
reached concerning learning and design of complex systems from a cognitive
perspective, which could translate toward new strategies for developing software
aids for instructing and improving engineering design performance.

4. Experimental methodology

To test the hypotheses, a parametric-oriented chart GUI and a multi-level-
oriented animation GUI were constructed. An experimental protocol was
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Figure 4. Myosin GUIs for learning with (A) charts with video demonstration available at: http://youtu.be/
6Ke5I-Rm1Co and (B) animations with video demonstration available at http://youtu.be/f0G7uc3Empk.

developed that assesses user understanding and design proficiency as they solve
design tasks and answer questions using their respective GUL

4.1. Graphical user interfaces

Two GUIs that emphasized learning through charts (Figure 4A) and animations
(Figure 4B) were developed to conduct a cognitive study and validate the Figure 3
model. To maintain consistency with past myosin GUI studies (Figure 2) and to
compare effects of learning from each interface, all interfaces were constructed
similar to past myosin design GUIs. Modifications were made to the GUIs to
produce two contrasting interfaces that facilitate the testing of different Figure 3
cognitive-based pathways through altering how graphical output of the GUIs is
presented to a user. These design GUIs consist of four design inputs and up
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to two performance outputs in the chart interface or an agent-based rendering
that updates in real time for the animation interface. All design inputs are
manipulated by users via sliders that have five possible values for each myosin
and systems design input, with maximum values for each parameter being a
myosin lever arm length I of 20 nm, myosin attachment rate k,, of 4000 s~ !,
myosin detachment rate ko of 4000 s™!, and a maximum number of myosins
Numyo of 100 or 30 depending on the task (tasks prior to learning support
have a 100 myosin maximum so that intermittent behavior is uncommon). The
performance of evaluated systems was calculated using mathematical equations
(§ A.1) that predicted the global time-average filament velocity, the energy utilized
via adenosine triphosphate (ATP) use of the myosins, and the average number of
myosins attached to the filament.

The chart GUI was configured through supplying users quantitative feedback
of system performance via plots of independent design inputs and dependent
performance outputs, thus allowing the user to change myosin design inputs
and see measured changes in emergent system behavior, as demonstrated in
Figure 4(A) screen capture (video available at http://youtu.be/6Ke5I-Rm1Co). In
Figure 4(A), directions for learning are in the top left, the time a user is allowed to
utilize the scene before it is advanced automatically is in the bottom left, and the
design inputs with a static graphical representation of the current system are in the
center left. The middle portion of the screen consists of eight plots that represent
each of the four independent design variables and two performance outputs that
are calculated via mathematical equations. On the right of the screen is a summary
that provides users a basis for what parametric relationships they should learn for
their next task, which aids in maximizing a user’s germane cognitive load.

The second GUI configuration presented users animated feedback of the
agent-based molecular simulation when design inputs are varied (video available
at http://youtu.be/f0G7uc3Empk), as demonstrated in Figure 4(B) screen capture.
The animation GUI is similar to the chart GUI of Figure 4(A), except that the plots
and static myosin representation are replaced with an agent-based simulation
that updates in real time as users manipulate design inputs. During periods of
time when no myosins are attached during the simulation, the system becomes
transparent, which should draw the attention of the user to the intermittent system
behavior that occurs when less than two myosins are attached on average, thus
highlighting crucial information indicative of inter-level relationships.

Through each of these two interfaces, a user is expected to learn different
types of information about the system by manipulating inputs and recognizing
their effects on output performance. For instance, with the animation interface,
a user could add more myosins to the system and notice that if the filament
was originally intermittently moving, it would begin moving more often as there
are more periods of at least one myosin being attached. In the chart interface,
a user would see the filament velocity parameter increase on the y-axis as the
number of myosins is increased in the system if it was changing from intermittent
to continuous emergent behavior. However, it may not be obvious to the user
in the chart interface why the velocity increased in this intermittent case, but
not when the system is already continuous since they do not directly observe
simulated myosin and global filament behaviors—such inter-level revelations are
more apparent from the animation interface. Further details about how users may
expect parameter changes to influence the performance of a system are available
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in § A.2. A drawback to the animation interface is that the user must view the
simulation for a period of time before recognizing how a perturbed design input
has affected the behavior of the system. Such a delay leads to a greater effort and
less opportunity for the user to gain insights concerning parametric relationships
within the same time period as a user with the chart interface.

Thus, in each interface, users have some chance to learn both parametric
and inter-level causal mechanisms but the effort required to infer (i.e., cognitive
load) and availability of information differ. These differences in information
presented by the interfaces are an intentional aspect of the experimental design.
Specifically, it enables comparison of how different types of information learned
from the contrasting interfaces influence design proficiency and shows how the
decoupling of parametric learning differs from that of inter-level causal learning
with regard to design outcomes. Without these differences in the GUIs and
experimental approaches, it would be difficult to determine whether users gained
better design proficiency as a result of gained parametric knowledge or inter-level
causal understanding.

4.2. Cognitive study protocol

In order to conduct cognitive studies with the contrasting GUIs, each user follows
a sequence of scenes that present useful information, design tasks, learning
interfaces, or multiple-choice/free response questions. To test the hypotheses
proposed in Section 3.1, there are one of two scene sequences presented to
each user that are identical except for users being exposed to the animation
or chart GUI during particular learning scenes and question/answer scenes. In
our study, 31 mechanical engineering undergraduates in a senior design class
participated for course credit and were randomly assigned to either track, resulting
in 15 participants in the chart condition and 16 participants in the animation
condition. Details concerning each track are illustrated in Figure 5 and elaborated
on throughout this section.

Users in both conditions begin with a software tutorial that explains how to
use the interface to design myosins and answer questions. Next, three baseline
myosin design tasks are presented to the user via generic variable names of Input
A/B/C/D and Output A/B instead of the different myosin design inputs and
outputs they represent. The purpose of the generic variable names is to minimize
learning of parametric relationships prior to exposing users to learning scenes.
The mapping of the generic names to myosin parameters is changed for each
task. The maximum number of myosins for these tasks is set to 100, such that
intermittent filament behavior is not significant and therefore not learned by a
user. Users are allowed to input ten designs within 4 min and receive feedback
immediately upon evaluation of that design. All users throughout this study
successfully input ten designs for all tasks. These design tasks are provided in
Table 1 and consist of the functional requirements considered during a user’s
optimization task that represent a myosin technology.

The table shows the output goal (users are instructed to minimize or
maximize their design performance with respect to this output) and the additional
constraints on output performance (users are instructed that their designs
cannot violate any output constraints) for each design task. If a design violates
a constraint, it is designated infeasible and given a score of zero. Three design
task difficulties were created by increasing the number of output variables and
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Table 1. Six optimization tasks were developed with varied goals and constraints. Solver score is indicative
of results from a random search of the design space (higher scores reflect better designs found)

Optimization design task description and random solver results

Phase Design goal Goal Second constraint # Outputs/ Solver
constraint constraints score
Highest average <5.7 [Nyl None 1-output- 0.93
Baseline  number of 1-constraint
attached myosins
Highest filament ~ None System energy use < 2.3 2-outputs— 0.67
velocity [ATP m~!s7!] 1-constraint
Lowest average >5.4 [Nyy] Filament velocity > 3.2 2-outputs— 0.66
number of [um s~!] 2-constraints
attached myosins
Learning Lowest average >1.6 [Nyy] None 1-output- 0.74
number of 1-constraint
attached myosins
Highest system None Filament velocity < 4.5 2-outputs— 0.49
energy use [ums~!] 1-constraint
Highest filament ~ <5.0 [um s~!] Average number of attached 2-outputs- 0.54
velocity myosins < 0.9 [Nyy] 2-constraints

constraints (although only one output is graded as the goal output, additional
constraints on secondary output variables inherently reduce the set of acceptable
possibilities in the larger design space). The three types of difficulties are
1-output-1-constraint, 2-outputs—1-constraint, and 2-outputs-2-constraints. To
create a benchmark for later comparisons against user scores, a random solver
was used to propose ten unique designs for each task and provided an average
score on a scale of 0 to 1, which is normalized to the global optimum for each
task; the average solution of the random solver was found by having it solve the
task repeatedly until the standard error in the measurement of its mean score for
a given task was negligible. A score of 1 is the highest score possible, and user
scores were also normalized according to this metric (e.g., if the global optimum
solution is a maximum velocity of 4 wm s~!, and a user’s best design has a velocity
of 1 um s~!, they receive a score of 0.25; the reciprocal is taken for minimization
tasks).

A baseline assessment of whether users could demonstrate inter-level causal
reasoning was taken by asking them to answer what would happen to system
velocity if an unloaded system of 100 myosins was redesigned with only 10
myosins or with myosins of a higher attachment rate. This question is an
assessment of their understanding of inter-level causal relations because a system
with many myosins should have a large number of myosins attached on average
(and therefore be continuous), so removing a large number of myosins would
likely slow the system and drive it toward the intermittent regime, while increasing
the myosin attachment rate would have no effect. In all of the qualitative
assessment sections, the inter-level relationship of global velocity to the average
number of myosins attached to a system is used as a metric because it is easily
defined using the heuristic regarding how many myosins are attached on average
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Figure 5. Flow chart of cognitive study protocol.

(two or more lead to a continuous system, less than two leads to intermittent
behavior). Whether a system is continuous or intermittent has profound effects on
parameter sensitivities essential for effectively searching the design space (§ A.2).

Users are then provided one of the learning interfaces based on their
assigned condition before solving their next set of learning tasks with functional
requirements provided in Table 1. The maximum number of myosins in each
design is reduced to 30, which means that the system is much more likely to
become intermittent. Afterward, users’ ability to describe inter-level causalities is
assessed a second time by asking several multiple-choice questions about a system
presented according to their study condition.

These questions are shown in Table 2, and present the user a system either in
the intermittent or continuous regimes and ask how the time-average filament
velocity should change based on perturbing a system from an initial state of
being continuous or intermittent; design perturbations in the questions were
designed to have an obvious effect on a user who understands the inter-level
causal mechanisms of the system. In Table 2, the design input values in the table
reflect the slider value in the GUI for the myosin design variables and how many
myosins were present in the system. At this point in the experimental design, users
who demonstrate an understanding of the inter-level causality are assumed to
have also had that knowledge for their final design task (completed just before
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Table 2. Four qualitative reasoning assessment phases

Qualitative Question Global system Design inputs  Applied Time-average
reasoning presented via  behavior is are initially system filament
phase initially perturbation velocity should

Lev k,, ko # Myo

Assessment (I)  Textual Continuous X x x 100 Reduces Decrease
description number of  notably
myosins

Continuous X X x 100 Increases Stay about
myosin the same
attachment
rate

Assessment (II) GUI condition Intermittent 1 1 1 10 Increases Increase notably
number of
myosins

Continuous 3 3 1 30 Increases Stay about
myosin the same
attachment
rate

Assessment (III) GUI condition Intermittent 5 2 4 10 Increases Increase notably
and parametric number of
relationship myosins
given (hint)

Continuous 5 5 1 10 Increases Stay about
number of the same
myosins

Assessment (IV) GUI condition Continuous 3 5 1 20 Increases Stay about
number of the same
myosins

Intermittent 3 1 5 10 Increases Increase notably
myosin
attachment
rate

the second assessment of inter-level understanding). This assumption enables an
examination of how inter-level causal knowledge affects design task proficiency
(which is necessary for answering the third hypothesis from Section 3.1). A
third qualitative assessment was then conducted in which users were given a
hint through provision of the correct parametric answer to the multiple-choice
questions prior to demonstrating their reasoning in support of that answer. This
hint enables the determination of whether improved parametric knowledge may
support proper description of inter-level causalities (second hypothesis from
Section 3.1).

Questions were designed as in Table 2 for a balance in difficulty across each
assessment, but questions varied in specifics to avoid users becoming familiar
with specific questions being asked. All questions were tuned to test a user’s
inter-level causal reasoning through asking how a change in system design may
result in a change in filament velocity, although the precise variables for each
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question changed. Balancing of questions was controlled through having one
question in each assessment require knowledge that the time-average filament
velocity should change notably, while the other question in each phase required
knowledge that the design perturbation would not significantly alter filament
velocity. Additionally, users were not provided feedback concerning whether
their answer was correct or not at the end of each assessment, which further
promotes the independence of measurements gathered from each phase. The
purpose of having multiple assessment phases is to determine the growth in user
understanding of inter-level causalities throughout the course of the experiment,
and to specifically address the second hypothesis of the study.

Additionally, as a control, parametric questions were asked during the second
and fourth assessment phases to determine whether users properly understood
whether changes in attachment rate or numbers of myosins affected system
outputs. Including such questions enabled an assessment of whether students
misunderstood inter-level causal mechanisms due to the non-obvious nature of
the emergent behavior, or because they did not understand parametrically how
changes in design inputs affect design outputs. Examples of questions for these
controls are ‘Does adding more myosins to a system increase the average number
of attached myosins in a system?” and ‘Does increasing the attachment rate of
each myosin increase the average number of attached myosins in a system?” Users
answered these questions through checkboxes to indicate ‘yes’ or ‘no’ answers.

Last, users in both groups are presented contrasting animations before a final
qualitative reasoning assessment. The animations show users the systems side
by side in the intermittent and continuous emergent behavioral regime, thus
providing a clear distinction to the user for how systems designed in two different
ways produce two different global patterns of behavior. Users are also provided
the engineering heuristic that if about two myosins are attached on average, the
system will remain continuous while systems with much fewer myosins attached
on average have intermittent behavior (and therefore lower time-average velocity).
The purpose of the contrasting animations is to determine what percentage
of users are able to correctly learn and explain these crucial inter-level causal
mechanisms from a learning interface with reduced cognitive load and salient
characteristics highlighted. The question details for this final assessment are
also provided in Table 2. The complete sequence of scenes for the two study
conditions provides an opportunity for testing each proposed hypothesis, through
comparison of effects of each learning interface, as well as how users learn and
apply parametric and inter-level causal knowledge of the system.

5. Cognitive study results

Cognitive study results are reported in three sections that reflect the three
hypotheses proposed in Section 3.1, with the first focusing on the extent that
learning supports from the GUI improve user design proficiency. A measurement
of how many users demonstrated proper understanding of inter-level causal
relationships is then provided. Last, the design proficiency of users who
demonstrated understanding of inter-level causalities is compared to those who
did not. These results are aimed to specifically address and decouple different
aspects of the Figure 3 cognitive-based model, particularly with respect to the
extent that each interface enables learning of parametric and inter-level causal
relationships, and how such understanding translates to improved design.
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Figure 6. Average user solution quality in each learning condition for all tasks.

5.1. Both types of learning improve design proficiency

The first hypothesis was learning via charts or interactive simulations will improve
user design task performance. The hypothesis was analyzed by aggregating data
from each optimization task separately, and then averaging the solution quality
of a user’s best solution for that task with all other users in their condition.
Solution quality was determined by first comparing a user’s goal output value to
the global optimum for a task and providing it a relative score between 0 and 1
(all designs that did not meet constraints had a score of 0; the global optimum has
a score of 1). The solution quality was then calculated by finding the difference
between the user average relative objective function and the average score found
by a random solver (Table 1) to facilitate absolute evaluation and performance
comparison across problem types. Each problem type is defined by the number
of outputs/constraints that describe its design space. Tasks were generated such
that those of the same type are representative of similar search difficulties (Egan
et al. 2015a), thus providing a means of comparison on pre-/post-learning tasks.
The average solution quality of users is presented in Figure 6 for each task and
learning condition.

In comparing baseline and post-learning tasks, the average solution quality
improved post-learning for all tasks, which supports the hypothesis, as
demonstrated by Figure 6 pair-wise comparisons with p-values reported. When
p < 0.05, it is suggested that the error rate in reporting a false positive is less than
5%, which is generally considered as statistically significant. The results suggest
that the information conveyed by each GUI resulted in nearly equal improvement
in design proficiency. Improvement of users increased as task complexity grew,
thus motivating an ever increasing need for software tools as systems grow
increasingly more complex, which remains consistent with previous findings for
myosin GUI studies (Egan et al. 20154). Interestingly, the charts and animations
did not appear to support design performance by changing design strategies, at
least not on the strategies previously shown to improve performance on these tasks
(e.g., only changing one input at a time, searching near their current best design,
minimizing/maximizing inputs), which were assessed through post-processing of
user input data in relation to their received output (Egan et al. 2015a). Thus, the
benefit may occur through the knowledge used in existing strategies rather than
via changing strategies. The difference in performance among those in different
chart/animation conditions is not significant for any pair-wise measurement.

19/31

https://doi.org/10.1017/dsj.2015.3 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2015.3

Design Science

These results demonstrate the overall influence of each GUI for improving
design task proficiency. They demonstrate that agent-based models, which past
studies have shown to improve user understanding of systems (Vattam et al. 2011),
can also improve user design proficiency of the systems. The relatively equal
impact of each method on design quality has limited theoretical importance, as
it does not imply that the two methods have equal influences on users since it is
possible that different underlying cognitive mechanisms of users are affected by
each interface (such as performing better due to gains in parametric relationships
or qualitative understanding). Further analysis of the user performance with
regard to the Figure 3 cognitive-based model is required to determine how gains
in design performance are attained by users in each of the study groups, despite
differing types of information being emphasized by each GUL.

5.2. Animations support inter-level understanding

Throughout the cognitive study, user understanding of inter-level causalities was
assessed to address the second hypothesis: users exposed to animated renderings
of agent-based simulation behavior will demonstrate understanding of inter-level
causal relationships, while users exposed to chart GUIs will not demonstrate such
understanding. In each assessment phase, users were asked two questions of how
tilament velocity of a system would change if redesigned, as presented in Table 2.
The questions were designed such that the perturbations would obviously have a
large effect or negligible effect on system velocity to a user with knowledge of how
inter-level relationships of the system affect its emergent behavior.

Users indicated their answer via a multiple-choice box (either filament velocity
increases notably or remains about the same) and typed their reasoning in a
free response box that was only analyzed for users who correctly answered the
multiple-choice question (with the exception of assessment phase one, where
no multiple-choice question was given). Free response answers were tagged as a
correct demonstration of understanding inter-level causality if users referred to
the stopping/starting behavior of the filament being related to having at least one
myosin attached. Examples of user responses that were tagged as correct were The
increased number of myosins results in more time during which at least 1 myosin is
attached and therefore the filament is being pushed forward and Average filament
velocity increases because when there are more myosins there is less of a chance the
filament will not be moving as a result of no present myosins. These were deemed
as correct because both answers relate the individual myosin level (that one must
be attached) to the emergent phenomenon of continuous or intermittent filament
motion. Some examples of answers tagged as incorrect, despite users indicating
the correct parametric relationship, were Since the amount of force is increased
and On average the filament is going to move at the rate at which the myosin pulls,
which is independent of how often it attaches. The first of these answers is incorrect
because the force of the system has no influence on its velocity in our model where
time-average force among myosins equals zero. The second answer is incorrect
because it fails to take into account the average velocity of the filament, which
requires consideration of times when it is translating and static, despite it having
the same instantaneous velocity every time at least one myosin is attached.

Understanding of inter-level causalities was measured four times through
averaging the percentage of correct free response answers of users in each
condition during each phase. No users indicated a proper understanding during
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Figure 7. Percentage of correct responses from users in both learning conditions for
demonstration of inter-level causal understanding.

the baseline assessment phase prior to learning sessions. The next two assessments
occurred after the learning sessions (the first being directly after, and the second
occurring once users were provided the correct parametric relationship via the
correct multiple-choice answer but still had to provide an explanation). The
final assessment occurred immediately after the contrasting animations were
presented. The percentage of correct answers for users in each condition is
presented in Figure 7.

Users in the animation group correctly demonstrated understanding of
inter-level causality about 33% of the time directly after the learning tasks, thus
indicating that a significant number of users learned (p < .02) as a result of
interacting with the animation interface, when compared to none of the users
demonstrating an understanding during the baseline assessment. No users in
the chart condition demonstrated understanding at this point, thus supporting
the hypothesis that the agent-based simulation supports learning inter-level
relationships while the chart-based GUI does not support learning inter-level
relationships (p < .04). However, despite supporting the hypothesis, only a
small portion of users demonstrated understanding. After the parametric hint was
provided, there was no significant improvement; one user in the chart condition
explained the stochastic system behavior correctly, which suggests that it was not
entirely implausible for users in that condition to formulate theories in line with
correctly explaining the inter-level causal mechanisms. However, such a result
suggests that parametric reasoning processes are not sufficient to teach users
inter-level causal mechanisms.

After the contrasting animations were presented to users, approximately half
of the users in each condition correctly explained the inter-level causality, which is
a significant increase for both the chart (p < .001) and the animation condition
(p < .03). This pattern further supports the hypothesis that agent-based
simulation renderings are effective in teaching inter-level causality, and are more
effective when cognitive load is reduced via contrasting animations (Alfieri
et al. 2013). Because average user score was only about 50%, our findings
reinforce prior reports that emergent systems are difficult to understand (even
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for engineering students) and misconceptions about these systems are robust
to learning interventions. The growth of user understanding in both groups,
however, shows the success in the software interface’s capabilities for producing
a cognitive shift in how some users in each group understand and reason about
inter-level causal mechanisms essential to system performance.

Past research has also found that inter-level causal understanding is
particularly difficult for learners (Chi et al. 2012). In that prior work, most students
were able to learn about molecular diffusion using agent-based simulations along
with other instructional tools. The lower number of learners gaining proper
understanding from simulations in this study may be attributed to shorter overall
learning periods, in addition to the greater complexity of the myosin system in
design contexts when compared to diffusion systems.

Additionally, control questions (Section 4.2) were asked to determine whether
users understood parametric influences of the system, such that they knew
an increase in the number of myosins or their attachment rate resulted in an
increase in the average number of attached myosins in the system. User groups
scored between 73% and 94% correct on these types of questions, which further
demonstrates the difficulties in learning inter-level causal behaviors even when
correct parametric understanding of the system is achieved.

5.3. Inter-level understanding improves design performance

The final hypothesis tested was users who demonstrate an understanding of
inter-level causalities will perform better on design tasks. This hypothesis was
investigated by separating the users in the animation condition into those who
did and did not demonstrate an understanding during the second assessment.
Users in the chart group were ignored for testing this hypothesis because they
demonstrated no inter-level causal understanding immediately after the design
tasks and had access to differing information compared to users in the animation
groups, which would not enable a controlled comparison of how inter-level
understanding influences design task performance independent of a user’s gained
parametric knowledge. Group performance was then compared on the final
design task (Figure 8). Only the final design task was selected because the first
qualitative assessment immediately followed it and thus was the closest measure
of inter-level understanding during design. Performance on the baseline task was
also investigated to rule out variable differences among participants related to
design ability.

The results show that during the baseline, there was not a significant
difference (p < .47) in design performance among the two groups; thus when
no users understood inter-level causality their design task performance was
similar. Afterward, users who had demonstrated understanding of inter-level
causal relationships performed better and found designs very close to the global
optimum when compared to users who had not demonstrated understanding
(p < .01). This finding is statistically significant and supports the hypothesis that
users who demonstrate an understanding of inter-level causality perform better
in design applications related to that understanding. The result is particularly
important because it isolates the understanding of inter-level causal mechanisms
of the system as beneficial to the design process, in comparison to learning
parametric relationships among variables. This finding also highlights inter-level
causal relationships as an important form of information that can improve
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Figure 8. Design performance of users from animation condition who did/did not
demonstrate inter-level causal understanding.

engineers ability to design, as opposed to learning other types of information
about the system that improve a user’s understanding (e.g., learning the detailed
mechanochemistry of myosin motors would improve user understanding, but not
necessarily translate into improvements in designing a system effectively).

6. Discussion

The discussion section focuses on the importance of inter-level causal reasoning,
the two routes for improving design proficiency conducted in this study, and the
support of contrasting animations in promoting inter-level causal reasoning.

6.1. Importance of inter-level causal reasoning

Complex systems are often characterized by multi-level relationships, and our
results demonstrate that when inter-level understanding of a system is isolated
from other forms of knowledge, such as parametric relationships, it has a
significant effect on design search success. It is possible that knowledge of inter-
level relationships was helpful in the case of myosin design because parameter
sensitivities are altered depending on the design of the system as a whole; for
instance, adding more myosins only increases the system velocity when the global
behavior is intermittent. This finding is important because it demonstrates that
through knowledge of how a complex system is organized, designers may become
more proficient. In other words, there are not just levels that make up the complex
system, but inter-level relationships that when identified and understood may
support designers in forming effective decisions in an otherwise intangible system.

These findings reinforce conclusions from other cognitive studies (Hmelo-
Silver et al. 2007; Chi et al. 2012), such that learning underlying behaviors and
connections in a system is beneficial in comparison to more structure—function or
black-box presentations that obscure underlying information that designers could
use effectively. Such findings are important as they isolate the types of information
that directly aid users in designing complex systems effectively, as opposed to
information that aids in understanding other aspects of the complex system, such
as nuances in myosin biochemistry that may not translate to improving user
proficiency in parametric design contexts.
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6.2. Validity of cognitive-based model for improving design
proficiency

A cognitive-based model for improving user design proficiency was proposed via
Figure 3, which suggested that presenting information emphasizing parametric
and inter-level relationships to users could promote learning and understanding
that translates to improved design proficiency. Two contrasting GUIs were
proposed as methods for testing and supporting the model. Both GUIs were
demonstrated to improve user design proficiency equally on pre-/post-learning
tasks; however, they emphasized different aspects of learning parametric and
inter-level relationships. Results demonstrated that only users with the animation
GUI learned inter-level relationships; therefore, results imply that all of the
pre-/post-learning benefits from the chart condition occurred through increased
parametric knowledge. Users in the animation condition were then assessed as two
separate groups: those who demonstrated knowledge of inter-level relationships
and those who did not. The results suggest that users in the animation condition
who only learned parametric relationships did not improve as much as those in the
chart condition, and users who may have learned both parametric and inter-level
relationships improved the greatest.

These results support the Figure 3 cognitive-based model and suggest that
the chart GUI leads to a large effect on parametric relationship learning, which
improves design proficiency but has little influence on user learning of inter-level
relationships. The animation GUI on the other hand has a smaller effect than the
chart GUI for parametric relationship learning and about one third of users gain
the benefit of inter-level relationship learning. Therefore, these results suggest that
the equal overall design performance improvements provided by each interface
(Figure 6) are achieved through differing magnitudes of cognitive-based pathways
illustrated in Figure 3. These findings are also supported by previous study reports
that parametric knowledge supports design proficiency (Egan et al. 2015a), but
these new results now demonstrate that parametric knowledge by itself does not
provide inter-level reasoning (as demonstrated by the third assessment phase),
which is beneficial in complex systems design tasks. Most importantly, both types
of knowledge are important for improved design proficiency and engineers should
learn both parametric and inter-level relationships when confronting complex
multi-level design challenges. Further research could consider whether the fidelity
of interfaces influences user learning and affects design outcomes, such as the
agent-based model demonstrating more realistic representations of the system
when compared to the chart interface. Such investigations would require new
hypotheses and questions that isolate such considerations, and future studies
could also investigate GUIs that are hybrids of the two approaches or convey
information beyond the GUIs considered in this study.

6.3. Support of contrasting animations

Because learning of inter-level relationships is beneficial to the design tasks
beyond what is easily learned through parametric relationships, it is essential to
have effective ways of conveying such information to designers. Such learning can
be facilitated by communicating salient inter-level causal relationships in a system
via contrasting animations. When users were exposed to contrasting animations,
nearly half of all users in the study regardless of their condition were capable
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of demonstrating inter-level system knowledge. Such findings demonstrate the
effectiveness of the contrasting animation approach and also the difficulty for
human designers to learn salient and necessary complex system characteristics.
Future work could consider more effective tools for teaching engineers inter-level
causal mechanisms of complex systems, possibly through reducing the cognitive
load in methods presented in this paper or through teaching important system
characteristics in multiple phases that are easier to understand.

7. Conclusions

This study aimed to determine how different forms of information presented
via GUIs may support engineers learning and understanding of parametric
relationships and inter-level causalities that influence emergent system behavior,
and whether such understanding leads to improved design proficiency for
complex multi-level systems. Users consisted of mechanical engineering
undergraduates and their design proficiency was assessed through completion of
myosin optimization tasks with a design GUI The supports of learning parametric
relationships and inter-level causalities were decoupled by having users exposed
to either a GUI that emphasized learning of parametric relationships through
interactive charts or learning of inter-level causalities through agent-based
simulations rendered in real time as animations. Qualitative assessment tests were
utilized to determine whether users had identified and understood inter-level
causal mechanisms crucial to the design space. The experimental design
enabled inferences regarding cognitive-based learning of individuals through a
combination of selective exposure to different GUI interfaces and the resulting
effects on measured performance.

The results for pre-/post-learning tasks demonstrated that both GUIs improve
user design proficiency nearly equally, although about a third of the users in
the animation condition also demonstrated a correct understanding of inter-level
causalities while no users in the chart group demonstrate such understanding.
The users in the animation group that correctly identified inter-level causalities
also had greater improvement on pre-/post-learning tasks, thus suggesting that
learning of inter-level causal system mechanisms supports multi-level design
tasks. Contrasting animations of the system designed in two different behavioral
regimes were provided to users in both conditions to conclude the study,
which resulted in about 50% of users in each study condition demonstrating an
understanding of inter-level causal mechanisms.

These findings suggest that successful design of complex systems may
benefit from reasoning processes that extend beyond knowing the parametric
relationships in a system, namely that engineers may benefit from considering the
complex organization of the system they are attempting to design. Here, our study
suggests that methods for teaching inter-level causal mechanisms to engineers are
crucial to consider when promoting human understanding for effective complex
systems design. Our results demonstrated that the most proficient engineers may
have learned both parametric and inter-level relationships and outperformed
users who only benefited from parametric design knowledge. Therefore, the
most effective route to engineering complex systems may be a combination
of traditional engineering approaches for teaching parametric relationships
bolstered by considerations of how a complex system’s unique organization
influences the search of its design space.
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As a whole, these findings demonstrate the challenges in user understanding
and reasoning about inter-level causal and parametric relationships in complex
multi-level systems, and that software tools can promote learning of these
relationships. Particularly, agent-based simulations may support users in
discovering behaviors of a system that are often hidden in parametric
representations of design spaces. Gains in understanding can then promote better
human performance in complex systems design applications, where non-obvious
emergent behaviors that were demonstrated in myosin-based systems are
common to many complex systems that are challenging for designers.
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Appendix

Appendices A.1 and A.2 provide quantitative modeling details, for recreating
the GUI and understanding the parameter search space, that are not essential
for following the primary findings of this paper, but offer readers a chance
to explore nuances in myosin design. Appendix A.l details the mathematical
equations necessary for predicting the performance of designed myosin assays
in both continuous and intermittent emergent regimes. Appendix A.2 provides
a sensitivity analysis of how each design input affects system velocity when
perturbed from continuous and intermittent regimes.

A.1. Multi-level mathematical model

The model used in this paper is an extension of our past myosin models for
GUI implementation (Egan et al. 2013), which was influenced by well-established
myosin mathematical models (Howard 2001). Design inputs are considered at two
levels of organization (individual myosins and a collection of myosins) and predict
the average local and global system behavior. The mathematical model is based
on assumptions that no external force is applied to the filament and that the actin
filament stays within a defined distance of interaction with all myosins during
times when no myosins are attached.

Individual myosins have three parameters that can be altered as design inputs:
(1) a myosin’s lever arm length I, (2) a myosin’s attachment rate ko, and (3) a
myosin’s detachment rate k. Myosins are assumed to behave as linearly elastic
elements that attach to actin and have a linear power-stroke distance of 6, =
I -sin(0), where 6 (30°) represents the rotation of a myosin lever arm. The power
stroke is followed by a drag stroke of distance 5 = vy /kof, where vf; represents
the instantaneous velocity of a translating actin filament when at least one myosin
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is attached. vf is determined by

V2
vﬁl=7~5+'koﬁ (A1)

and is dependent on only two of the three myosin design variables. The total
distance a myosin remains attached to a filament is 8o, = 4+ + v/kog. The
total distance an actin filament travels on average for each myosin cycle is
Ac = xq/(1 — exp(kop + x;/v)), where a complete derivation exceeds the scope
of this paper, but includes variables of the distance between binding sites on actin
xg (36 nm) and the proximity of binding sites to myosin that is required for
attachment to occur x; (1 nm). The calculation of the myosin duty ratio is given
by
)

Tmyo = ALZ , (A2)
which represents the proportion of time a myosin spends attached to actin on
average. The duty ratio is dependent on all three myosin design inputs, although at
high velocities it is no longer influenced by myosin lever arm length I. The average
rate at which a myosin utilizes the energy of ATP is then given by

€myo = %:l (A3)
and is dependent on all three myosin design inputs; however, at high velocities it
is primarily influenced by the myosin attachment rate k.

At the systems level, only one design variable is introduced, the number of
myosins Ny, that are present. Systems level behavior is dependent on how often
at least one myosin is attached to an actin filament, since the filament has no
velocity and myosins are not expending energy during periods when no myosins
are attached. The probability that at least one myosin is attached is determined
as

Par = 1 — (1 = ryyo) Ve, (A4)

and P,y is generally about 0.9 when at least two myosins are attached to actin on
average. The average number of attached myosins, Ny, is calculated as

Nay = Pyt - Nmyo * 'myos (A5)

and is important in determining whether a system has continuous or intermittent
emergent behavior. The time-average global filament velocity can be calculated as

Vsys = Patt - Vfil, (A6)
and the total ATP energy use of the system is determined by

Esys = Fatt - Nmyo * €myos (A7)

which is the last of the equations necessary for predicting global performance
metrics considered in optimization tasks for this study.
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Figure A.1. Sensitivity analysis when global behavior is (A) continuous and (B) intermittent.

A.2. Sensitivity analysis

Each design input has unique effects on system behavior, and the sensitivities
among parameters depend on whether the system is in the continuous or
intermittent emergent behavioral regime. In this section, the effects that input
variations have on global velocity are considered when perturbations from designs
with a high number of attached myosins (a continuous system) and a low number
of attached myosins (an intermittent system) are compared.

For the continuous system, parameters were set to the maximum design input
value for lever arm length, attachment rate, and number of myosins (I = 20 nm,
kon = 4000 s~ !, and Nmyo = 30), while the detachment rate is set to its minimum
design input value (ko = 800 s, providing the chance of at least one myosin
being attached, Py, of about 1.0 (therefore the filament moves 100% of the
time) and a global velocity of about 5.7 um s~!. The opposite set of conditions
leads to a low number of myosins attached, where the parameter values are set
to the minimum for lever arm length, attachment rate, and number of myosins
(I = 4nm, k,, = 800s~!, and Numyo = 10), while the detachment rate is set to
its maximum value (ko = 4000 s, leading to a chance of at least one myosin
beingattached, Py, of about 0.13 (therefore the system translates about 13% of the
time) and a global velocity Vs of about 0.7 pum s~!. This is quite different when
compared to its instantaneous filament velocity of v being 5.7 um s~! (meaning
both systems have the same value of vy but contrasting values of V).

To perform the sensitivity analysis, each design variable was then perturbed
across its five possible discretized values as constrained by the GUI, while all
other parameters were held constant for each condition. Therefore, two plots were
generated by normalizing to unity each global velocity to the maximum recorded
for a given perturbation. All design inputs are considered independent variables
and were normalized to unity based on their maximum value, as demonstrated in
Figure A.1.

The graphs demonstrate that when global behavior is continuous (i.e., a
large number of myosins are attached such that P,; ~ 1) the global filament
velocity increases linearly with myosin lever arm length and the detachment rate
of myosins, which is expected because they have a linear relationship with the
instantaneous unloaded velocity of the system (Eq. (A 1)). However, perturbations
in the myosin attachment rate and the number of myosins in a system have no
effect on instantaneous velocity. The slight increase in velocity on the plots occurs
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because when they are at their minimum value, the probability that at least one
myosin is attached is slightly less than unity.

When global behavior is perturbed from being intermittent (i.e., alow number
of myosins are attached and in this case P,; & 0.13) all variables have a positive
correlation with velocity except for the detachment rate, which levels off because
the increase in instantaneous velocity is canceled by the decrease in the average
number of attached myosins. The increase in the attachment rate and the number
of myosins added occurs because there is a larger probability of at least one myosin
being attached in the system. Lever arm increases tend to have little influence
on the probability of one myosin being attached, but still cause a linear increase
in global filament velocity due to their positive correlation with instantaneous
filament velocity.

Although these figures demonstrate linear and null relationships among
changes in myosin inputs to effects on outputs, they represent a small subset
of the design space. Highly non-linear relationships emerge when considering
designs perturbed from other starting locations in the design space or outputs
such as energy use of the system and the number of attached myosins. These
non-linear relationships are evident from the equations presented in §A.1,
particularly through considering Eqs. (A 2) and (A 4) due to exponents included
in the analytical formulation. Additionally, non-linear effects may emerge among
parameters when considering a system transitioning from a regime that has
intermittent transport of filaments to continuous transport. Such non-linear
effects may occur when the detachment rate parameter is significantly influencing
both the unloaded filament velocity and the probability of at least one myosin
being attached simultaneously.
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