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A PLASTICITY THEORY APPROACH TO THE STEADY-STATE 
SHAPE OF A THREE-DIMENSIONAL ICE SHEET 
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A BSTRACT. The diffe rential equati o n determining the eleva tio ns of a perfectl y pl asti c three-dimens io na l 
stead y-state ice sheet is set up. Analytica l so lutio ns of the eq ua tio n a re obtai ned in two simple case. ( I) a n ice 
sheet o n a horizonta l base with an arbitra ry edge cur ve. and (2) a n ice sheet o n a pl ane sloping base with a 
rec tilinear ice margin . The so lutions are di sc ussed. pa rt icul a rl y with reference to the deve lopment of ice di vides 
and ice streams. 

For arbit rary base a nd ice-margin geometries. solu tio ns a re o btained by mean s of the method o f 
c ha racteri stics. which reduces the problem to so lvi ng simulta neously three o rdin a ry fir st-order diffe rential 
eq uations. The integrati o n. which is perfo rmed by numeri ca l methods. is generall y co mmenced at the ice m a rgin. 

w here the necessary bo undary conditions a re known. 
The method has been a pplied to model the elevation contou rs a nd the fl ow pattern o f the central Greenl a nd ice 

shee t, using the botto m to pography revea led by radio echo-soundings and the present ice-margin geometry . The 
result is in su rprisingly good agreement with o ur kn owledge o f the ice-sheet topograph y and fl ow pattern. all 
significant ice divides a nd ice streams bei ng reproduced. This suggests, that the method can be applied to model 
the sha pe and flow pa tte rn of ice sheets under glacial conditio ns. using informatio n about former ice-margin 
pos itio ns. 

R ESUME. Ulle approche par la Iheorie de la plaslicile de la fo rme d 'equilibre d 'une calo{{e glaciaire 
tridimellsionnelle. L'eq ua tio n differentielle determinant les a ltitudes d'une calotte glac iaire en equilibre s ur tro is 
d imensions, parfa itement pl as tique a ete eta blie. Des solutions a na ly tiques de I'equatidn sont obtenues da ns de ux 
cas simples : ( I) une calo tte glaciaire sur une base hori zontale avec des bords de forme arbitraire. et (2) une calo tte 
glacia ire su r une base pl a ne inclinee avec des bo rds rect ili gnes . Les solutions sont di scutees parti culi erement en 
fo nc tion au deve loppement des diffi uences glacia ires et des coura n ts de glace. 

Po ur des bases et des geometri es de bo rdure arbitraires. Ics so lutio ns sont obtenues par la methode des 
ca rac teristi ques qui reduit le prob h:me it la resolution si multa nee de trois equati o ns diffe rentielles ordin a ires du 
pre mier ordre. L'integra tio n q ui est obtenue pa r des methodes nume ri q ues est genera lement commencee sur la 
bord ure d u glacier o u les conditions aux limites sont connues. 

La methode a ete a ppli q uee pour modeli ser les li gnes de ni veau et le mode d'ecoulement de la calotte glac ia ire 
du G roenland centra l. en utili sant la topogra phie du fond reveh:e pa r les sondages it echo-radio et la geometrie 
ac tuell e des bord ures. Les res ultats sont eto nnemment coherent s avec ce que nous sa vo ns de la topogra phie de la 
ca lo tte glaciaire et de son ecoulement. to utes les diffiu ences glac ia ires et les courants de glace signifi cati fs o nt e te 
reprod uit s. Ceci suggere q ue la methode pe ut etre appliquee po ur modeli ser la forme et I'ecoulement des ca lo ttes 
glacia ires au moment des glacia ti ons en utili sant les in fo rmatio ns di spo nibles sur les dernieres positions de leurs 
bord ures. 

ZUSAMMENFASSUNG . Eine Herleitung der stationiiren Gestalt einer dreidimensionalen Eisdecke mit Hi(fe der 
PlastiziliilSlheorie. Es wird die Differenti a lgle ichung zu r Bestimmung der Hii he einer vo llko mmen pl asti schen. 
dreidime nsionalen Eisdecke in stati oniirem Zustand aufgestellt. Ana lyti sche Liisungen der Gleichung erh ii lt man 
fur zwei einfache Fii ll e, niimlich ( I) fur eine Eisdecke au f ho ri zonta lem Untergrund mit beliebiger Umra ndung. 
und (2) fur eine Eisdecke auf ebenem. geneigtem Untergrund l11it geradlinigem Eisrand. Die Liisungen werden 
besonders hinsichtli ch der Entwick lung vo n Eisscheiden und -striim en di skuti ert. 

H a ben Untergrund und Eisrand unregelmiissige Form, so crgeben si ch Liisungen mit der Methode der 
Charakteristi ken. di e das Problem auf d ie simultane Liisung von drei gewiihnli chen Differenti algleichungen I. 
Ord nung zuruckfuhrt. Die Integration. die mit numerischen Methoden ausgefuhrt wird , beginnt im all gemeinen 
a m Eisrand. wo die erfo rderli chen Rand beding ungen bekannt sind. 

Die Methode wo rde z ur Berechnung de r H iihenlinien und des Fliessverhaltens des zentralen griinl ii ndi schcn 
In landeises angewand t. wobe i die durch Rada r-Echolotungen ermitte lte Topogra phie des Untergrundes und die 
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gegenwiirtige Lage des Eisrandes eingefuhrt wurden. Das Ergebnis stimmt ersta unli ch gut mit unserer Kenntni s 
der Form der Eisdecke und ihres Fliessverha lten s iiberein: alle wichti gen Eisscheiden und -stro me werden 
wiedergegeben. Die legt es nahe, die Methode zur Berechnung der Form und des Fliessverhaltens van Eisdecken 
unter ei szeitlichen Bedingungen, fussend auf den Kenntni ssen uber fruhere Eisrandlagen , heran zuziehen. 

I. INTRODUCTION 

Recent years have shown an increasing interest in modelling the shape and flow of ice sheets 
under glacial conditions: Much information obtained from analysing deep cores from ice sheets 
can be properly interpreted only if past ice-sheet elevations and ice flow can be reconstructed 
(Dansgaard and others, 1973, p. 36; Paterson, 1977). This is also a condition for understanding 
the widespread landscapes formed by glacial erosion (Sugden, 1978) and finally attempts on 
modelling palaeo-climates require information about the topography of former ice sheets 
(Hughes, 1979). 

Two different methods have been applied in three-dimensional (3 -D) ice-sheet modelling. One 
method is based on prescribing the distribution of accumulation rate over the potential ice­
covered area, and letting the ice sheet build up governed by the differential equations for non­
stationary glacier flow (Campbell and Rasmussen , 1970; Mahaffy , 1976; Jenssen , 1977). This 
method has mainly been developed to tackle problems of glacier response to changes in external 
parameters such as accumulation rate and temperature and will yield steady-state shapes of ice 
sheets in an indirect fashion only. The other method is based on extrapolating estimated steady­
state ice-sheet profiles-obtained either from inspection of existing ice sheets or from two­
dimensional ice-sheet theory- up-stream either at right-angles to the ice margin (Sugden, 1977), 
or along curved flow lines of assumed course (Boulton and others, 1977 ; H ughes and others, 
1977; Andrews, 1979). A major shortcoming of the Sugden method is that the important 
influence of bottom topography on ice flow is not taken into account, and although basal 
topography has been considered in the reconstructions of the latter authors, this is done on a 
rather subjective basis. 

In this paper the problem is approached by developing a theory of a perfectly plastic, three­
dimensional, steady-state ice sheet. We shall discuss a few simple cases with idealized bed and 
ice-margin topographies that can be treated analytically. In spite of their simplicity, they throw 
light on some fundamental aspects of three-dimensional ice-sheet flow. Moreover, a method of 
solution applicable in the case of an arbitrary bed and ice-margin topography will be discussed. 
Next, the efficiency of the model will be demonstrated by comparing the reconstructed surface 
topography and flow pattern of the actual ice sheet of central Greenland with observations, and 
finally the limitations and potentialities of the model will be discussed. 

2. PERFECT PLASTICITY THEORY 

Application of plasticity theory in ice-sheet dynamics is not of recent date. In fact , in the very 
first attempt to predict the surface profile of a steady-state ice sheet theoretically (Orowan, 
1949), the ice was considered a perfectly plastic material, i.e. the shear stress at the ice-bedrock 
interface was assumed not to vary along a flow line. 

Neglecting the influence of longitudinal stress gradients and of transverse shear stress, this 
assumption leads to the following differential equation for the surface elevation E of the ice sheet 
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(Nye. 1952): 

dE TO 

ds pgH 
(I) 

where s is a coordinate measured horizontally along the flow line, positive in the opposite 
direction to ice fl ow, To the yield s tress of glacier ice (TO ~ I bar = 105 N m- 2

), p the density of 
glacier ice (p = 920 kg m - 3), g the gravitational acceleration (g = 9.81 m S- 2), and H the ice 
thickness. In the case of a two-dimensional ice sheet on a horizontal base, Equation (I) predicts 
the maximum ice-s heet thickness Ho to be 

2 2To 
Ho=-- L 

pg 

where L is the di s ta nce between the ice divide and the ice margin. 

(2) 

In central West Greenland the bed underlying the ice is almost horizontal , ice flow is to a 
good approximation two-dimensional and L = 500 km . Applying thi s value of L , the fo rmula 
above gives H o ~ 3200 m, to be compared with an observed ice thickness of 3 ISO 
(G udm andsen, 1973). The perfect agreement is to some extent caused by choosing the yield 
s tress of ice to be equal to I bar, which is somewhat arbitrary, since observations as well as more 
advanced theory show, that the mean value along a flow line of the basal shear stress varies in 
the range 0.5-1.5 ba rs, depending on mean accumulation rate and mean basal ice temperature. 
Nevertheless, the result encourages us to apply pe rfect plasticity theory to obtain fir st-order 
a pprox im atio ns to ice-sheet profiles. in particular because observed or assumed regional 
va ri a tions of accumul ation rate and basal ice temperature can be accounted for by changing the 
va lue of the yield stress for the various regions of the ice sheet. Guidance as to how to make this 
change, is provided by comparing ice-sheet profiles calculated by perfect plasticity theory with 
profiles obtained by applying a more reali stic ice flow law. 

If, for instance, the stress- strain-rate relationship for glacier ice is supposed to follow Glen's 
law 

eij = Bo exp (kT)~- laij 

where ejj is a strain -rate component, aij is a stress deviator component, Te the effective shear 
stress defined by T; = !aijaij , and T the ice temperature. Bo ~ 0.5 bar- 3 year-I, k ~ 0.2 deg- I 

and n ~ 3 are constants in the flow law of ice (Paterson, 1980, p. 13- I 6.) Furthermore, if the 
acc umulati on rate a (metres of ice per year) and the basal ice temperature T are assumed to be 
constant along the flow line, then the following expression is obtained for the maximum ice 
thi ckness of a two -dimen sional ice sheet on a horizontal base (Haefeli , 1961 ; Paterson, 1980, 
p. 20- 2 1): 

[ 

2. - I(n+2)a ]1/(' +1) 
116 = L. 

Bo {exp (kT)}(pg)n 

Comparing this expression with Equation (2) shows that the same value of the ratio of 1I6 /L will 
be obtained from the two formulae, if we put 

_ [ (n + 2)pga ] I /(n + I ) 
TO - . 

4Bo exp (kT) 
(3) 
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Now consider two regions of an ice sheet, where mean accumulation rates are a l and a2' and 
mean basal ice temperatures are TI and T2 , respectively. In order approximately to account for 
these differences, the yield stresses to be applied for the two regions should have a ratio of 

-= - exp --(T2 - T,) 
TOI [ a 1 ] 1/ (. + I) [k ] 
T02 a2 n + 1 

(4) 

(see Equation (3)), assuming that the ice flow is strictly two-dimensional. Otherwise. the value of 
a applied should be decreased or increased in magnitude, depending on whether the flow is 
diverging or converging. 

For example, Equation (4) shows that a surplus by a factor of two of the accumulation rate 
in one region of an ice sheet as compared to another can be accounted for by applying a 20% 
higher yield stress. A similar increase of To is required to account for a decrease of the basal ice 
temperature of 4 deg. 

Changing the yield stress in accordance with Equation (4) should ensure almost correct 
positions and almost correct relative elevations of ice divides determined by perfect plasticity 
theory. In order to make such changes, however, the distributions of accumulation rate and basal 
ice temperature must be known. As regards the present large ice sheets, the distribution of 
accumulation rate is fairly well known, whereas basal ice temperatures must in general be 
estimated because they have been measured at only very few locations. In the case of a glacial 
age ice sheet, both parameters obviously have to be estimated. 

Even though positions and relative elevations of ice divides can thus be correctly determined. 
at least in principle, the elevation profiles obtained from perfect plasticity theory will show 
certain deficiencies. This is illustrated by comparing the profile of a two-dimensional ice sheet 
obtained by perfect plasticity theory, with the corresponding profile obtained by applying Glen's 
law and assuming a horizontal base and uniform accumulation rate and basal ice temperature 
along the profile (Figure I). If the two profiles are adjusted to the same elevation at the ice divide, 
it appears that the former profile on the average underestimates ice sheet elevations by 12% 
(Paterson, 1972, p. 891). 

In spite of such imperfections, it seems worthwhile to design a three-dimensional perfectly 
plastic ice-sheet model as an objective method of reconstructing the three-dimensional 
topography and ice-flow pattern of former ice sheets, using bed and ice-margin topographies as 
an input. Moreover, considered as a second-generation model, it may serve as guidance on how 
to develop more advanced third-generation three-dimensional models able to account for 
regional variations of accumulation rate and basal ice temperature. 

Fig. I. Theoretical two-dimensional ice-sheet profiles. Assumptions: horizontal base and uniform distributiol/ Q{ 
accumulation rate and basal ice temperature. 
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3. TH E DIFFERENTIAL EQ UATION 

The basic assumption of the theory is that flow lines may be defined as trajectories to the 
eleva tion contours of the ice-sheet surface, and that Equation (I) holds along such flow lines. 
Along a trajectory the surface gradient dE/ ds is given by the equation 

(5) 

where x and)' are orthogonal coordinates in a horizontal plane. 
Introducing a quantity of dimension length by the equation Hr = TO /pg and substituting H for 

E - B. where B = B(x, y ) is the elevation of the base of the ice sheet, Equations (I) and (5) may 
be combined to give the following differential equation for the elevations of a perfectly plastic 
three-dimensional ice sheet: 

( 
OE)2 + ( OE)2 =(~)2 
ox ay E - B 

(6) 

Equation (6) may be soived by means of the method of characteristics. A pplying the notation 
p =(!E/ox and q = o E/ oy. equation (6) may be rewritten 

(7) 

ass uming that the x-axis is oriented in such a way, that p ;> O. 
According to Kamke (1965, p. 66- 67), the characteristic equations of the partial differential 

equation (7) are 

dy q 
(8) 

dx 
, 

p 

dE p2 + q2 Hf 
----- , (9) 
dx p (E - B)2p 

and 

dq (p2 + q2)(oB / oy - q) Hf(oB / oy - q) 
( 10) 

dx p(E - B) (E _ B)3 p 

where p may be expressed in terms of x , y, E, and q through Equation (7). 
The problem of sol ving the non-linear partial differential Equation (6) is thereby reduced to 

solving simultaneously three first-order differential equations, of which Equation (8) defines the 
course of the flow-line projections on the xy-plane (from now on these projections will be simply 
referred to as flow lines), and Equation (9) and (10) define the variations along the flow lines of 
the surface elevation and its gradient in the direction of the y -axis. It should be pointed out, that 
the flow lines are the only set of curves in the x - y plane along which the elevations of the ice 
sheet can be determined by integration (in mathematical terms: the basic characteristics along 
which the integral surfaces of the partial differential equation can be build up). Consequently, in 
order to determine a specific ice-sheet surface, a set of initial values of y , E , and q must be known 
at one point of each flow line. Since the origin and the orientation of the coordinate system may 
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be chosen arbitrarily, this means that the surface elevation and one surface gradient mu st be 
specified at one point of each flow line. 

It can be shown that the ice-sheet elevations are uniquely determined within the area confined 
by any specified elevation contour line. On the other hand, this is not necessarily the case as 
regards the area outside a contour line, where divergence regions may develop down-stream of 
points of intersection between the contour line and possible ice divides, see Figure 2. I n such 
divergence regions, the determination of the surface elevations will require further specification. 
However, no such troubles will arise, if we choose a point of the ice margin as the starting-point 
for the integration. At the ice margin the initial values are E = Band q = oE/on = oB/o il. if the 
differentiation is performed in the direction of the marginal curve. 

In general, the ice margin will not coincide with an elevation contour line. Nevertheless. the 
flow lines will intersect the ice margin at right angles, because the ice-sheet surface has a vertical 
tangent plane at any point of the ice margin , see Equation (I). 

4. ICE SHEET ON A HORIZONTAL BASE 

I n the case of an ice sheet on a horizontal base we may choose B = 0 and consequently 
E = H. without losing generality. Then combining Equations (9) and (10), we get 

dq dH 

q H' 

which condition must hold along any flow line. By integration we get 

qH=C (11) 

where C is a constant. Now consider an arbitrary flow line, which intersects the marginal curve 
of the ice sheet at a point 0 and let us introduce a local cartesian x)'-coordinate system with 
origin at this point and x- and y -axes along the tangents to the flow line and the marginal curve 
respectively (see Fig. 2). Then at point 0 we have H = 0 and q = oH /oy= 0 and consequently. by 
Equation (I I), C = O. Since at other points of the flow line, H is not equal to zero. renewed 
application of Equation (11) will show that q is everywhere equal to zero. Then from Equation 
(8) it appears, that the direction of the flow line is determined by the equation d),/ dx = O. which 
shows (when combined with the above definition of the coordinate system) that the flow lines of a 

Fig. 2. Ground plan a/ice sheet. Definition 0/ local coordinate system. 
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perfectly plastic three-dimensional ice sheet on a horizontal base are straig ht lines running 
normal to the ice margin. Moreover, it can be deduced fro m Eq ua tio n (9), that the elevation 
profile along any flow line is the well -known second-order parabola. valid for the two­
dimen sional case, 

( 12) 

These conclusions are in agreement with the results deduced by Nye ( 1952) for an ice sheet on a 
horizo ntal base. It follows that the surface elevation contours are para llel to the ice margin . 
Hence. convex parts of the marginal curve create divergence regions o f the ice sheet up-st ream. 
which may develop ice divides running inland from the margin. whereas concave parts of the 
margin al curve crea te convergence regions, which may feed ice streams. see Figure 3a. Except 

Fig. J. Central Greenland ice sheet. Heavy fUl/lines are ice divides, medium ful/lilles a re elevation contour lili es with 
elevations in 100 m (upright figures), thin fUl/lines areflow lines. DOlled lines are elevation contour lines of ice· 
sheet base with elevations ill 100 m (s loping figures). (a) shows surface contours and flow pattern obtailled bl' 
pelfectl)' plastic ice-sheet model/illg with no consideration of basal topography , (b) is observed slllface alld bed 
cOll tollrs according to radio echo·soundings (Gudma lldsell , 1978). 
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for a few minor corrections, this ice-sheet topography is identical to the one suggested by Sugden 
(1977) in his reconstruction of the morphology of the Laurentide ice sheet. But. the present 
investigation shows that the method applied by Sugden neglects the influence of bottom 
topography on ice-sheet elevations and ice flow. This may be justified where the relief of the base 
is small compared to the ice thickness. However, this is seldom the case close to the ice margins. 
where ice thicknesses are small , and where bottom hollows or ridges may create convergence or 
divergence regions, respectively, which may greatly influence flow directions even in the interior 
parts of the ice sheet (see Section 6). Hence, Sugden's approach is at best a rough approximation. 
even in the case of smooth bottom relief. 

Figure 3a shows the result of a three-dimensional modelling of the ice sheet in central 
Greenland when the influence of bottom topography is neglected. As shown in Appendix B. this 
does not necessarily require the base of the ice sheet to be a horizontal plane. A base given by the 
equation 

B = Eo + F(E - Eo) ( 13) 

where Eo is a constant level and F is a constant factor , will result in the same simple ice sheet 
morphology as the one connected to a horizontal base. Equation (13) was introduced by 
Weertman (1964), who considered an ice sheet with its base, originally horizontal. in local 
isostatic equilibrium, so that F = P/ (P - Pr), where P and Pr are densities of ice and rock 
respectively. If P = 900 kg m - 3 and Pr = 2 700 kg m - 3, we get F = - 0.5. 

However, Equation (13) may be used with any F < I to approximate the shape of the 
bedrock. In Figure 3a we have chosen Eo = 500 m and F= - 0.20, which results in a bottom 
elevation close to sea-level in the central part of the ice sheet, in accordance with observations. 
Furthermore, Hr in Equation (12) has been assigned a value of 10 m corresponding to a yield 
stress oho =0.9 bars. 

The deficiencies of the model applied appear from a comparison between Figure 3a and b, of 
which the latter shows observed elevation contours in central Greenland (Gudmandsen. 1978). 
In Figure 3a the central ice divide is located midway between the western and eastern ice 
margins, whereas the ice divide is actually offset more than 100 km to the east (Figure 3b). 
mainly due to the influence of the bottom topography. Also the secondary ice divides separating 
the drainage basins feeding the major ice streams are mal positioned, these drainage basins being 
in general underestimated whereas the drainage basins of the intervening divergence sectors are 
overestimated. 

As illustrated by Figure 12, which shows the result of applying the model discussed in 
Section 6, a much better approximation to the ice-sheet morphology is obtained when the 
influence of bottom topography is taken into account. Before dealing with this model. however. 
the influence of bottom topography will be discussed in more general terms, by considering an 
ice sheet with a rectilinear ice margin resting on a plane sloping base. 

5. ICE SHEET ON A PLANE SLOPING BASE WITH A RECTILINEAR ICE MARGIN 

A coordinate system is introduced with origin at an arbitrary point of the ice margin. the 
y -axis along the projection of the ice margin onto a horizontal plane, and the positive direction 
of the x-axis pointing into the ice sheet. In this coordinate system the plane sloping base of the 
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ice sheet is supposed to be given by the equation 

B =fJ(Y cos a + x sin a) (14) 

where the maximum upward slope of the plane is fJ > ° and makes an angle with respect to the 
x-axis of h - a (see Fig. 4). 

Since neither the conditions at the ice margin proper nor the topography of the ice-sheet base 
relative to the margin varies from one flow line to another, all flow lines and all ice-sheet profiles 
along the fl ow lines must have the same shape. This means, however, that the ice-sheet surface 
must be insensitive to a translation in the direction of the ice margin, i.e. H must be independent 
of y. The equation of the surface elevations may therefore be written 

E = B + H(x) (15) 

where the elevat ions of the base are given by Equation ( 14). 
Introducing dimensionless quantities by .X:=x/(Hr/ fJ 2

), y=y/(HrlfJ 2
), £= E/(Hr/ fJ), 

B = B/(HrlfJ), and if = H/(HrlfJ), the differential equation (7) may be rewri tten 

o£ /1 (0£)2 
a_X: = Y fji- ay , ( 16) 

whereas Eq uati on ( 15) should be replaced by the equation 

£ = y cos a + x sin a + I-/(x). (17) 

The solution for an arbitra ry value of a in the range 0 ~ a ~ 2n will be given in Appendix A. For 
the discussion of the fundamental aspects of the flow of a three-dimensional ice sheet over a non ­
horizontal base, it is sufficient to consider the case of a = 0, i.e. the case where the ice margin 

Fig. 4. Ice sheet on a plal/e sloping base. 
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follows the direction of maximum slope of the base. Putting a = 0 In Equation (17) and 
combi ning this equation with Equation (16), we get 

: =~ ~- I, (18) 

which defines the variation of the ice thickness with x. Equation (18) may be integrated to give 

H= )2X_X2, (I 9) 

where x must fall within the range O <;x~ 2, to ensure a non-imaginary square root. In fact, the 
range is reduced to O<; x <; I, as shown below. 

Consequently, the ice-sheet profile of any section normal to the ice margin follows that of a 
quarter ellipse. Now from Equations (17) and (19) we get q = I and p = (I - x)/(2x - x2

) 

respectively. Substituting these expressions into the dimensionless equation analogous with 
Equation (8), the following differential equation of the flow line is obtained: 

dji ~ 
dx I-x 

from which we may deduce that x and s are related by the equation 

- - 1 + )2x->:2 _ 12x->:2. y=Yo + In _ V 
I -x 

Furthermore, for the increment of the dimension less distance s along a flow line, we have 

ds=dxV1 + (dji/dX)2 =dx/(I-x), 

from which we may deduce that x and s are related by the equation 

x= 1 -exp (-S). 

(20) 

(21) 

Here s is measured from the ice margin, positive in the opposite direction of ice flow. Substituting 
in Equation (I 9) for x by means of this equation, we find that the variation of the ice thickness 
with distance along the flow line is 

(22) 

ForS -t CX) Equations (20), (21), and (22) show that ji-t 00, x-t 1, and H -t 1. 
Hence all flow lines have a common asymptote parallel to the y-axis at a dimension less 

distance from the ice margin of Xl = 1. The corresponding non-dimensionless distance is 
Xl = Hr/fJ2· Furthermore, the ice thickness approaches asymptotically the value H=HrlfJ(which 
is the ice thickness in uniform ice flow down a constant slope {J), as the direction of the flow lines 
approaches that of the y-axis, i.e. as the slope of the bottom in the direction of the flow line 
approaches the value fJ . 

The equation of the elevation contour lines are obtained by combining Equation (17) for 
a = O and Equation (19): 

£ = ji + V2x->:2. 

Taking E = £0 in this equation we get after a little manipulation 

(ji_EO)2 + (x-l)2 = 1, (23) 
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whi ch shows th at the elevati on contour lines are arcs of circles with dimensionless radius I and 
centre at point (I , Eo). In Figure 5a, flow lines and elevation contour lines are shown for the ice 
sheet considered. Also shown by Figure 5b are the surface, bottom, and ice thickness profil es 
along a flow line and by Figure 5c the ice-sheet profile of a section normal to the ice margin. 

The fl ow pattern of Figure 5 is clearly di vergent. We shall now analyse this fl ow a little 
closer: 

In the case of three-dimen sional flow, the foll owing differential equation is valid a long a fl ow 
line (personal communicati on from Sigfu s Johnsen): 

dq q 
--+-= 0. 

ds R 
(24) 

I n thi s equation q is the ice flow function q(s) = H V m where V m is the average over the ice 
thickness H of the horizontal velocity component in the direction of ice flow, s is the distance 
along the flow line, positive in the opposite direction of ice flow, 0 is the rate of accwnulation, 
and R = R(s) is the radius of curvature of the elevation contour lines at their points of intersection 
with the flow line, positive or negative depending on whether the centre of curvature is located 
up-stream or down-stream relative to the flow-line point considered. Assuming the rate of 
accumulation to be constant, we introduce a dimensionless ice flow function by the equation 

Noting then, th at R(s) = I (see Equ a tion (23)), Equation (24) may be written in dimensionless 

a ~_===iJ =E'::' =1' ":::":::' =B~- =="2==~E "~':::.O~E:==lE "::' .6::::~B~~'===E "~"=' :::B~-=:::0 ==:JE. 8,i 1 ' 
.B 
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Fig. 5. Ice sheel on a plane sloping base wilh all ice margill fo llowing Ihe d ireclion of Ihe maximum slope. 
Dimensionless repreSenlalioll. (a) shows ground plan wilh sutface-elevalion CO /1lours (heavy l ull lilles lI'illl 
uprighljigures), jlow lines (thinfulllines) , and bed elevation COl1lours (dOlled lines wUIl slopingjigures), (b) sholVs 
sUI/ace, bOllom , and ice Ill ickness profiles along a flow line, and (c) shows ice-s lleel projile of seclion normal 10 
Ihe ice margin . 
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form as 

With the boundary condition q = 0 for S = Se' this equation may be integrated to give 

q = I - exp (05 - Se), 

from which the value of the dimensionless ice flux at the ice margin may be determined by 
putting 05=0: 

qe = I - exp ( se )' 

This relationship is plotted as the heavy curve in Figure 6. For comparison the co rrespond ing 
relationship for the case of parallel flow qe = Se is shown as a thin line in Figure 6. 

The slower increase of the heavy curve reflects the divergence of the ice flow pattern shown 
in Figure 5. 

As previously mentioned (see p. 441), there is an upper limit to the extent of the portion of an 
ice sheet that can possibly drain towards a margi n parallel to the maximum slope of its plane 
base. Taking Hr = 10 m , Table I presents the limiting distance Xl = Hr//J2 as a function of {3. 

The regions of an ice sheet at distances greater than Xl from the margin considered. must 
necessarily drain towards other margins. In the case of an ice sheet unlimited in both x- and 
y-directions, for example, ice flow in the zone X > Xl will be parallel flow in the nega ti ve .1'­
direction , with an ice thickness corresponding to uniform flow down a slope of inclination {3. 

I n the case of a band-shaped ice mass limited by two parallel margins. there are three 
possible flow patterns, depending on the ratio of the width W to the limiting distance Xl . 

(a) W /X l < 2, see Figure 7a. 
Two regions of the type just mentioned will develop with flow towards either margin. The two 
regions are separated by a central sharp ice divide, where elevation contour lines from either 

1.0 

.2 .8 1.6 

Fig. 6. Dimensionless representation oJ the ice flux q, at the ice margin as aJunction of flow line length s" assul11illg 
uniform accumulation rate along flow line. Heavy curve corresponds to the flow pal/ern oJ Figure 5. Thill iille 
represents paralle/flow. 
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TABLE I. L IMITING DISTANCE X I AS A FUNCT ION OF MAXIMUM BASE SLOPE fJ FOR Hr= 10 m 
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0.002 
2500 

region intersect at an angle different from 180°. The cross-sectional profile of the ice sheet 
cons ists of two ellipticall y shaped arcs, intersecting at a point of the sharp ice di vide. 
(b) W/x 1 = 2, see Figure 7b. 
Flow pattern as described above, except that the ice divide is smoothed, elevation contours 
intersect the ice di vide without a bend, and the cross-sec tional profile is a full se mi-ellipse. 
(c) W/ Xl > 2, see Figure 7c. 
In thi s case three different flow region s will develop, the two region s mentioned at (b) being 
separated by a region of parallel flow in the direction of the negative y -axis W - 2xI wide and 
with an ice thickness corresponding to uniform fl ow down a slope of inclination p. 

It is questionable if the ideal-plastic band-shaped ice mass model has more than illust rative 
signifi cance. When considering the sha pe of its gro und plane, one might think of applying it to a 
glac ier tongue. However, one of the basic assumptions of the model , viz. that the flow lines 
coin c ide with the trajectories of the elevation contours, will in general not be fulfilled in the case 
of a glacier tongue, w here the two sets of curves m ay deviate due to bottom sliding in the 
longitudinal direction of the glacier. In the case of a cold glacier tongue frozen to its base, the 
model may be of some relevance. 

The solu ti on obtained for a three-dimensiona l ice sheet on a plane sloping base- in 
particular the general solution for an arbitrary value of the angle et given by Equations (A-4), 
(A-7), and (A-8) of Appendix A, opens up the possibility of numerous exercises of modelling ice 
sheets with various shapes of the ma rgin al curves. For example, Figure 8a shows an ice sheet 
with a rectangular ground plane. The ice sheet is divided into four fl ow regions, two with parallel 
flow towards north and south respectively and two with curvilinear divergent flow towards east 
and west respectively. The regions are separated by sharp ice divides bisecting the angles 
between surface contour lines as well as flow lines . Since the ice-sheet surfaces of the different 
regions are determined by simple analytic expressions, s imple equations may aiso be deduced in 

w w 

Fig. 7. Band·shaped ice sheet on plane sloping base with ice margins in the direction of the maximum basal slope. (a) 
is fo r the case W/ (H/ fJ 2) < 2, (b) is for the case W/(H/fJ 2) = 2, and (c) isfor the case W/(HlfJ2) > 2. Heavy full 
curves are sUI/ace-elevation contours, thin full curves are flow lines, and dotted curves are bed elevation 
contours. 
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Fig. 8. lee sheet on a plane sloping base. Dimensionless representation. Heavy lull curves are ice divides, medium/ull 
curves are surface-elevation contours with elevations indicated by upright figures, thin /ull curves arejloll' lilies. 
and dotted curves are bed elevation contours with elevations indicated by sloping figu res. (a) lee sheet 'I'ilh 
rectangular ground plan. (b) Ice sheet with circular ground plan. 

this case for the ice divides. Even in the case of a curvilinear ice margin, Equations (A-4), (A-7), 
and (A-8) can be used to construct ice-sheet surfaces, since a specific pair of values of Eo and a 
can be attached to each point of the ice margin, determining the course of and the ice thickness 
variation along the flow line terminating at the point considered. 

The flow lines and elevation contour lines of the ice sheet with a ci rcular ground plan shown 
in Figure 8b have been constructed this way. 

A more interesting use of the theory than constructing ice sheets o n plane sloping bases with 
hypothetical ground plans, however, is to study the influence on a three-dimensional ice sheet 
flow of basal ridges and troughs running transversely to the ice margin. 

Consider an ice sheet resting on a base composed of two sloping pla nes forming a ridge and a 
trough respectively (see longitudinal sections of Figures 9 and 10). The rectilinear ice margin is 
supposed to run in the direction of the maximum slope of the planes, so that Equations (20), (22), 
and (23) will apply for each of the planes composing the respective ice-sheet bases. 

(a) Basal ridge 

If the two basal planes have equal inclination /J, a sharp ice di vide will form above the 
junction of the basal planes (Figure 9a). Ice flow on either side of the ice divide will be divergent 
flow of the type discussed on p. 442. If the inclinations of the basal planes are different, the ice 
divide will be gradually displaced towards the plane with the smaller slope. This is illustrated in 
Figure 9b for the case of {JI = 0 and /J2 =(J* O. The equation of the ice divide can in this case be 
determined by means of Equations (20), (2 1), (23), and (12) as 

ji = H-4x2 + 18x - 13.5 + (13 .5 - l2x)(1- 8/ 9x)I/2 f 1/2. 
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Fig. 9. Ice-sheet jlow around a basal transverse ridge. Dimensionless representation. In ground plans the thick filII 
line is an ice divide, mediI/m f ull lines are sur/ace-elevation contours with elevations indicated by uprightjigures, 
alld th in fu ll lines are flow lilies . DOlled lines are base elevation contours with elevations indicated by sloping 
jigures. (a) Basal ridge composed of planes of equal inclinations. (b) Base composed 0/ one horizontal and one 
slopillg plane. 

.8 

.6 
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Sec t ion A- A 

Fig . 10. Ice-sheet jlow in a basal transverse trough. Dimensionless representation. In ground plan thick / ull lines 
indicate flow lines separating the central convergence region/rom neighbouring divergence regions, medium/ull 
lines are surface-elevation contours with elevations indicated by upright figures , and thin / ull lines are jlow lines. 
DOlled lines are base elevation contours with elevations indicated by sloping figures. Shaded area is catchment 
area used/or determining the ice jlux funclion shown in Figure 11 . 
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(b) Basal trough 

In this case three flow regions will develop (Figure 10). Two of them, which are divergence 
regions of the type considered in Figure 5, are bounded by flow lines, terminating at the point of 
intersection 0 between the ice margin and the bottom line of the sub-ice valley. This point is a 
singularity, being the common end point of all the flow lines occupying a convergence sector of 
the ice sheet located between the above-mentioned limiting flow lines. The bottom line of the 
trough is a flow line itself, along which the ice-sheet elevation profile is given by Equation (12). 
All other flow lines of the convergent sector are tangents to the valley bottom flow line, following 
its course for some shorter or longer distance before terminating at the singularity point. The 
course of the flow lines of the convergent sector and the ice-sheet elevation profiles along these 
flow lines cannot be expressed by simple analytic equations. The flow lines shown in Figure 10 
have been determined by numerical integration of Equations (8), (9), and (10), as described in 
Section 6. Figure 10 illustrates the significance of basal transverse troughs as generators of 
sectors of converging ice flow, which may feed ice streams. 

This is further illustrated by Figure 11, which in dimensionless form shows the total ice flux 
Q at point 0 as a function of the "inland" extension Xe of the convergence sector (heavy curve). 
If the annual accumulation rate a is assumed to be uniformly distributed over the convergent 
region, the dimensionless total ice flow Q is simply determined as the shaded area shown in 
Figure 10, i.e. 

Q = Q/(aHf/fJ2) = 2 rXe (In _1_+-...:./_2_x_-_x_2 
Jo I-x 

J2X -~) dX. 
For comparison, the corresponding Q - xe relationship for the case of parallel flow is shown as a 
thin line in the figure, Q being the total ice flow in a band of dimensionless width WO.02 = 0.005 4, 
which is the width of the convergence sector shown in Figure IO at a dimensionless distance 
from the ice margin of x = 0.02. 

Xe 
H,//32 

Fig. 11. Dimensionless representation 0/ the total icejlux Q at the ice margin as a/unction 0/ the "inland" extent x, 
o} the ice-sheet sector considered. Heavy curve corresponds to the sector 0/ converging flow shown in Figure 10. 
Thin curve represents parallel flow in a band o/ 'dimensionless width fv = 0.0054 corresponding 10 Ihe 
convergence sector widlh at a dimension/ess distance/rom the ice margin 0/x =0.02. 
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Even transverse valleys with slopes of very moderate inclinations will have a considerable 
effect on the flow pattern of an ice sheet. 

Taking for example Hr=10m,/1=0.002 (200 m/ lOO km), a=0.3m of ice/ year and 
Xe = 500 km corresponding to a dimensionless xe of 0.2, the total ice flux at point 0 of Figure 10 
may be calculated to be 27 km3 of ice/ year, a figure of the same order of magnitude as the total 
ice flux of the lakobshavn ice stream in central West Greenland (Carbonell and Bauer, 1968), 
which has a catchment area with a and Xe values of the same order of magnitude as the values 
applied in the above calculation. 

For comparison, in the case of parallel flow, the total ice flow through a section of width 
W 0.02 = 13.5 km would be 2 km 3 of ice/ year only, if the same values of a and xe were applied. (A 
sector width of 13.5 km occurs in the convergent flow case at a distance from the ice margin of 
50 km where the ice thickness according to the model is I 000 m.) In addition to demonstrating 
the important role of sub-ice ridges and troughs as generators of sectors of divergent and 
convergent ice flow respectively, Figures 9 and 10 also illustrate a condition which is quite 
general for three-dimensional ice-sheet flow, viz. that a flow line, when followed up-stream from 
the ice margin , will always be diverted towards the direction of maximum up-slope of the bed. 
The degree of di version for a given magnitude of the slope is the larger the less the ice thickness. 

Therefore, in general, the curvature of the flow lines will be greatest in the marginal zones of 
an ice sheet, and the flow lines consequently become more and more rectilinear towards the 
centre. In an actual ice sheet, this statement, which is based on perfect plasticity theory, has to be 
modified as regards flow lines approaching secondary ice divides. Such flow lines will often show 
large curvatures due to strong divergence of the flow round the divide, see the discussion in 
Section 7. 

Also deviations from the above-mentioned general flow pattern may occur, for example in 
the case of large elevation changes of the sub-ice surface in the interior of an ice sheet. 

6. ARBITRARY SUB-ICE AND ICE-MARGIN TOPOGRAPHY 

The analytic solutions obtained in Sections 4 and 5 for simple cases of three-dimensional ice­
sheet flow have mainly illustrative significance, but are rather useless for modelling surface 
elevations and flow patterns of real ice sheets with their far more complicated sub-ice and ice­
margin topographies. In order to tackle this more interesting problem, a method of solution 
based on numerical integration of Equations (8), (9), and (10) has been developed. 

As discussed in Section 3, the ice-sheet elevations and flow patterns are constructed as a 
synthesis of calculated variations along individual flow lines. Also it was mentioned, that the 
calculation was most conveniently commenced at the ice margin, thus ensuring a unique solution 
for the entire ice-covered area. 

The choice of the ice margin as the starting-point of the integration is the more convenient, 
since a potential application of the model is to reconstruct surface elevations and flow patterns of 
ice-age ice sheets, for which the most reliable geometric feature is probably the very position of 
the ice margin. 

However, when initiating the numerical integration at the ice margin , one is faced with a 
problem due to the ice thickness Hm there being equal to zero and as a consequence the surface 
gradient Pm = [oE/oxjm being infinitely high. 

This is a rather unpleasant boundary condition for numerical calculations. But the difficulty 

https://doi.org/10.3189/S0022143000005049 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000005049


448 JOURNAL OF GLACIOLOGY 

is overcome by taking the first step of integration by means of the equations for an ice sheet o n a 
plane sloping base, i.e. Equations (A-4), (A-7), and (A-8) of Appendix A. The maximum 
upward slope fJ of the basal plane and the angle a between the direction of this slope and the ice 
margin, which are needed for applying these expressions, are determined as the corresponding 
values of the tangent plane to the bed surface at the ice margin point considered. As soon as this 
first step has been performed, the integration can be continued without further troubles by 
standard numerical integration methods. 

For each flow line the calculations are performed in the local xy-coordinate system shown in 
Figure 2. Along each flow line the positions of points with specified elevations (e.g. in 200 m 
steps) are marked, and eventually the topography of the ice sheet is constructed by drawing 
surface contour lines through the points of equal elevation of the various flow lines. Locations of 
ice divides are in principle determined by connecting intersection points of flow lines where 
elevations match. 

A more practicable method, however, is to connect the sharp bend points of the surface 
contour lines. In the case in which the same Hr-value has been applied for the two ice-sheet 
sectors meeting at an ice divide, the divide will bisect the angle between the respective elevation 
contour-line segments. Otherwise the ice divide will be displaced towards the sector with the 
greater value of Hr and the consequent greater ice-sheet surface gradients. 

In connection with the numerical integration procedure, it remains to be mentioned that the 
function B = B(x, y) describing the topography of the ice-supporting surface, is evaluated, by 
two-dimensional spline interpolation in x and y directions respectively between discrete bed 
surface elevations obtained by digitalizing the bed surface in a rectangular grid. The mesh-width 
of the grid can be varied , allowing the point density to be adjusted in accordance with the 
roughness of the bed surface relief. 

The model has been applied to construct the surface topography and flow pattern of the ice 
sheet of central Greenland, see Figure 12, applying a constant value of Hr = 10 m over the entire 
region. The sub-ice topography applied in the model is shown in Figure 3b. It is based on radio 
echo-soundings carried out during the Greenland Ice Sheet Program (GISP) (Gudmandsen, 
1978). The bed topography is extrapolated through the regions close to the ice margins, where 
soundings are scarce, if not missing, so as to give a smooth transition to the relief of the ice-free 
surface ahead of the ice margin. The mesh-width of the grid applied, varies from 40 to 100 km, 
with the denser point distributions in the marginal areas. Also shown in Figure 12 by dashed 
lines are the positions of the ice divides from Figure 3b, deduced from the ice-sheet elevations 
obtained during the radio echo-sounding flights (Gudmandsen, 1978). 

As appears on comparing Figures 3b and 12, there is a general agreement between the 
constructed and the observed flow pattern of the ice sheet, all significant ice divides and ice 
streams being reproduced , though not always in exactly correct positions. The largest 
descrepancies between constructed and observed positions occur in the case of secondary ice 
divides in East Greenland. This is probably due to the fact that the 40 km mesh-width of the grid, 
applied for digitalizing the bed topography, is too coarse to provide a sufficiently detailed 
representation of the very rough relief of the bed supporting this part of the ice sheet. However, 
the relatively modest density of radio echo-sounding flight lines in the area hardly justifies 
application of a grid of finer mesh-width. 

As regards elevations, predicted values at the central ice divide are in close agreement with 
the o bserved ones (around 3 200 m). This of course is due to choosing Hr = 10 m, corresponding 
to an ~verage bottom shear stress of 0.9 bar. What is the more interesting, is the close agreement 
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Fig. 12. Reconstruction of the central Greenland ice sheet by perfectly plastic ice-sheet modelling with due 
consideration of the topography of the base as given in Figure 3b. Heavy f ull lines are ice divides, medium full 
lilies are elevation contour lines with elevations in 100 m, thin full lines are flow lines. Dolled lines are ice 
divides, deduced f ram ice-sheet elevations, as obtained during radio echo-sounding flights (Gudmandsen, 1978). 

between modelled and observed elevation changes along the central ice divide, the tendency to a 
local dome formation around Crete, and the very modest increase of elevation from Crete to 
Summit (Mock, 1976) being correctly reproduced. 

As to the elevatio ns on the slopes o f the ice sheet, these are generally underestimated by up to 
200 m, as was to be expected (see discussion in connection with Figure]). 

One aspect of the modelling should be specially emphasized, viz. the predominant role of the 
convergence sectors for determining the over-all surface elevations of the ice sheet (see e.g. the 
drainage basins of lakobshavns Isbrre, Daugaard lensen Gletscher, and Kangerdluqssuaq in 
Figure 3c) as opposed to the far more subordinate role of divergence sectors. Since convergence 
secto rs are generally associated with the lower points of the ice margin , we may consequently 
conclude, that surface elevations in the interior parts of an ice sheet will in general be determined 
in rela ti on to the parts of the ice margin with the lowest elevations. 

7. DIS CU SSION AND CONC LUSIONS 

7. 1 Flow pattern around ice divides 

As already di scussed in Section 2, the ice-dynamics problem is entirely separated from mass 
bala nce considerations in perfect plasticity theory. As a consequence, only the flow pattern (i.e. 
the course of the flow lines and the ice thickness distribution along them) will be determined by 
the theory, whereas the ice flux will be left undetermined in the first place. However, once the 
fl ow pattern is constructed, the ice flux can be determined by one of the methods described on 
p. 44 I and p. 446, assuming that the distribution of mass balance over the ice-sheet surface is 
known . 

The differential -equation method (p. 44 I) and the area method (p. 446) will respectively, 
provide spot values and average values over ice-sheet depth sections of the ice flux, from which 
ice fl ow velocities averaged over depth can be determined by dividing by the ice thickness. 
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Rigorous application of the difTerential-equation method, however, will lead to absurdities. 
This is due to the fact that in constructions of ice-sheet surfaces using three-dimensional perfect 
plasticity, not only central ice divides, but also secondary divides separating individual drainage 
basins (the counterparts of watersheds in unglacierized areas) will be reproduced as sharp ridges, 
from which flow lines will originate (see Figure 12). Since the surface slope in the direction of an 
ice divide will always be less than the slope along a flow line at its starting-point at the divide, the 
basal shear stress in the direction of an ice divide will always be less than the yield stress ro and, 
consequently, the perfect plasticity theory allows no flow along a divide. 

This is obviously unrealistic when considering "watershed" ice divides, such as those 
separating the drainage basins of the central West Greenland ice sheet (see Figure 12). Along 
these divides the basal shear stress is only diminished by an insignificant amount, as compared to 
the shear stress along the almost parallel flow lines, and actual flow velocities along these weakly 
developed ridges will not differ significantly from the flow velocities of the adjacent ice. 

Therefore, ice fluxes (and thereby velocities) obtained from a three-dimensional perfectly 
plastic ice-sheet surface by the difTerential-equation method, have to be smoothed around ice 
divides, the more so for less distinctly developed ridges. The essential problem can be referred 
to the basic assumption of perfect plasticity theory, viz. that the basal shear stress r is constant in 
the direction of a flow line, and that ice will not flow if r < ro. As discussed above, this 
assumption will cause not only primary ice divides but also secondary drainage divides to be 
sharp ridges with zero flow in the direction of their crests. In actual ice-sheet flow all divides are 
smoothed, ice will flow along the divides, and all flow lines will originate at ice domes or 
horizontal ice ridges. However, the smaller the slope along a divide, the larger will be the 
divergence of the flow, and the lower will be the flow velocity. One might say that ideal plasticity 
theory provides a caricature of the surface topography and the flow pattern of an ice sheet, all 
features being exaggerated. 

In order to reproduce the actual flow pattern more closely a more realistic model should be 
applied, e.g. a model analogous to that mentioned on p. 433 (i.e. a steady-state MahafTy model 
(Mahaffy, 1976)). 

This however, is not trouble-free either, first because the difTerential equation to be integrated 
is far more complicated, and secondly because flow dynamics will then be directly coupled to the 
flux of ice, which in turn depends on the mass-balance distribution and the flow pattern along the 
entire up-stream part of a flow line. This means, that the (in many respects) very convenient 
technique of integrating from the ice margin inland along a flow line, will not apply. The 
integration will have to be initiated at ice domes or at horizontal ice divides, the positions of 
which are not always accurately known, not even as regards existing ice sheets, but certainly not 
in the case of an ice-age ice sheet. 

Furthermore, one may question, whether the method of integration by means of 
characteristics can be applied at all to a steady-state version of the Mahaffy equation. 

7.2 The ice margin 

Although the construction of the surface topography and the flow pattern of a perfectly 
plastic three-dimensional ice sheet is most conveniently initiated at the ice margin , this does not 
mean, of course, that the ice margin is the determinant of the flow in the interior of the ice sheet. 
On the contrary, the position of the ice margin is controlled by the mass-balance distribution at 
the ice-sheet surface and the relief of the bed underlying the ice. 
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Therefore, when the flow pattern of an ice sheet has been determined on the basis of 
estimated ice-margin positions, the total mass balance of the constructed drainage basins should 
be calculated, which implies the distribution of the mass balance over the ice-sheet surface is 
known . If imbalance is found for any drainage basin, the ice marginal position should be 
changed and the flow pattern recalculated with the new position of the ice margin. Only when all 
drain age basins are in balance with the surface mass-balance distribution , can the ice-sheet 
con struction be claimed to be self-consistent. Unfortunately, in the case of ice sheets under 
glacial conditions this checking of the model can only be tentative, due to the lack of a reliable 
model for predicting the distribution of precipitation over past ice-sheet surfaces. A further 
difficulty in performing mass-balance checks is that large masses of ice may be ablated from the 
ice sheet through ice streams which may either terminate in iceberg-calving fronts or may be 
feedin g ice shelves. Consequently, the mass balance of the entire ice-sheet/ stream or ice­
sheet/ shelf system should be considered. This requires several additional ice-dynamics problems 
to be solved, among others how to predict reliably the positions of the seaward margin and the 
grounding line of former iceberg-calving ice streams or ice shelves respectively . 

7.3 Depression of ice-sheet base 

A potential application of the theory is to reconstruct the topography and the flow pattern of 
ice sheets under glacial conditions from information about former ice margin positions , and a 
paper on thi s is in preparation for the cases of the Late Wisconsinan Greenland and Innuitian ice 
sheets. In thi s connection the deflection of the Earth ' s crust due to the increased load from the ice 
sheet must be considered. 

Several models describing the deflection history of the crust in response to changing load 
conditions caused by growing or decaying ice sheets have been developed (see e.g. Brotchie and 
Silvester, 1969; Farrell and Clark, 1976; Peltier and Andrews, 1976). 

From these models it may be concluded that in the equilibrium stage, i.e. so long a time after 
loading that rates of deflection are insignificant, the magnitude of the depression can be 
reasonably well approximated by the value corresponding to local isostatic equilibrium, even 
though small discrepancies will occur in particular close to the boundaries of the loaded area. 

On this basis, it is concluded, that at the present moderate stage of sophistication of steady­
state three-dimensional ice-sheet modelling, crustal deflections are sufficiently accurately 
accounted for by considering local isostatic equilibrium, and this the more so, since such a 
crustal deflection model can be immediately built into the ideal-plastic three-dimensional ice­
sheet model (see Appendix B). Based on the present relief of the formerly ice-covered landscape, 
the topography of the ice-sheet surface and the topography of the depressed bed may be 
calculated simultaneously. 

7.4 Conclusion 

The above discussion has aimed at clarifying the potential and the limitations of the three­
dimensional perfect-plasticity ice-sheet model. To summarize: The model does not directly 
account for the influence of the ice flux on the topography and on the flow pattern of the ice 
sheet, although it is known to have a significant, though not predominant influence. If, on the 
other hand, the distribution of surface mass balance and bottom ice temperature is known or can 
be estimated, regional variations of these parameters can be accounted for by changing the 
assumed basal shear stress from one region to another, see p. 433. Since some uncertainty in 
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such estimates will probably always remain, the three-dimensional perfect-plasticity ice-sheet 
model will provide the gross elevation and drainage pattern of the modelled ice sheet but not the 
exact ice-surface elevations, nor the exact positions of ice and drainage divides. 

MS. received 29 December 1980 and in revised/arm 27 July 198 ! 

ApP E NDIX A . A THREE - DIMENSIONAL ICE SHEET ON A PLANE , SLOPING BASE WITH A 

RECTILINEAR ICE MARGIN 

The difTerential equ a tion is given by Equation ( 16), 

(A- I) 

a nd the coord inate system is shown in Figure 4. From Eq uation ( 17), which is va lid in the case of a pl a ne. sloping 
base, we get 

oE dH 
-=sin a+­{I; d; 

which, when substituted into Equation (A- I), yields 

oE 
and -_ =cosa. oy 

dH I 
-=- sin a + ~. / 1 _ H 2 cos 2 a. d; H v 

Integrating th is eq ua tion, we get 

_ . (- IV I - H
2

cos
2
a+sin a l ) ~ 

x=sm a - H + ln _ + I -V I - H 2 cos 2a, 
I I - H I( I + sin a) 

which determines the di mension less x-coordinate as a fu nction o f the dimensionless ice thick ness H. 
The corresponding rela tionship between )' and H is obtained by means of the ident ity 

Alo ng a flow line we have according to Equa tion (8) 

d); d); d; 

dH = d_~ di/, 

d.v q OE/OE 
d_t =j;= 0)-' 0; , 

(A- 2) 

(A- 3) 

(A--4) 

(A- 5) 

(A- 6) 

where oE/oy and off/a; are given by Equations (A- 2). Therefore substituting for dy/ dX and dX/dH = 1/(dH/dX) by 
means of Equations (A- 6) and (A- 3) respectively, Equation (A- 5) may be rewritten as 

d.y cos Cl 

dH = ( I/ H)V 1 - H 2 cos 2 a(- sin Cl + (I / H)V 1- H2 cos 2 a) , 

which may be integrated to give 

y=cosa - H + ln _ . +tan a( I - H 2 cos 2 a - I). - { - IV I - H 2cos2a+sin ClI} V -
II - H I(I +sm a) 

(A- 7) 

The ice sheet elevation E may be expressed in terms of H by com bini ng Equation (1 7) of the main text with Eq uati ons 
(A-4) and (A-7) to give 

E = ln IV I - H ~cos2a+sin al. 
II - H I( I +sin a) 

(A- 8) 
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Fig. A- i . Ice sheet on a plane sloping base. Dimensionless representation. Curved lines show course o/flow lilies with 
dimensiollless ice thickness indicated by numbers. (a) Upward slope 0/ base towards the interior 0/ the ice sheet 
(tan a = 0.5). (b) Down ward slope o/base towards the interior o/ the ice sheet (tall a = - 0.5). 

An investigation of Equations (A-4) and (A- 7) shows that fl ow lines will always bend in the direction of the maximum 
upwards slope or the base when moving up-strea m. However. the solution behaves diffe rentl y depending on whether 
sin a is positi ve or nega ti ve , i.e. whether the base slopes upwards or downwards toward s the in terior or the ice sheet. 

(a) sin a > 0; lIplvard slope o/base towards the interior o/the ice sheet 
In thi s case if is limited to the interva l 0 :( if < I. As if -> I, the direction or the fl ow line approaches th a t o r the 

maximum upwards slope, and flow approaches uniform flow down a plane or constant slope p, see a in Figure A- I. 

(b) sin a < 0; downward slope o/base towards the illterior o{the ice sheet 
In thi s case if is limited to the interval 0 :( fi :( I/ Icos a l. As H -> I/ Icos a i, the directio n of the fl ow li ne approaches 

that of the ice margin . In this direction the bottom slope is Plcos a l and hence the flow approaches un irorm fl ow down 
a slope of magnitude P lcos ai, see b in Figure A-I . 

ApPENDIX B. LOCAL ISOSTASY 

C o nsider an unloaded landscape with a relief given by the equa tio n 

B, = B,(x, y ). 

When loaded with an ice sheet or local thickness H(x, y) , the bed will be depressed. On the assumptio n o r local 
isostasy. the eq uati on o r the depressed bed will be 

Bd = B, - P/PrH , 

where P and Pr are densities of ice and rock respectively. 
Hence the elevation of the ice sheet £ = Bd + H may be expressed in terms of the unloaded bed elevatio ns B, a nd 

the ice thickness as foll o ws 

o r equi va lently 

where F=P/(P - Pr ). 

£= B, + H Pr - P , 
Pr 

H = (£ - B,XI - F ), (B- 1) 

https://doi.org/10.3189/S0022143000005049 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000005049


454 JOURNAL OF GLACIOLOGY 

H 

'----~, --. 
---

/ 
./ 

/ 

-; 
/ 

/ 

Fig. B-1 . lee sheet on deformable base. E = ice sheet surface, B. = unloaded base, Bd = depressed base, and H = ice 
thickness. 

Using Equation (B-1) together with Equations (1) and (5) of the main text, the basic differential equation may be 
written 

(
OE)2 ( OE)2 { Hr }2 
ox + oy = (E - B.XI - F) , 

which is identical to Equation (6) of the main text except for the factor ( I - F). 
The characteristic equations therefore read (compare Equations (8), (9), and (10) of the main text) 

dy q dE Hr 
-=- -= 

(E - B .)2(I _ F)2p dx p , dx 

and 

dq Hr /(oB./oyX I -F)-q} 
(B-2) 

dx (E _ B.)3( I _ F)3p 

Integration of these equations will provide surface elevations of an ice sheet supported by a landscape. the topography 
of which before ice loading is given by B .(x, y) . 

Furthermore taking B. =0, and combining the second and third part of equation (B-2) we obtain 

dq dE 

q E(i - F) , 

which by integration yields 

By a similar argument as in section 4, we conclude, that q must everywhere equal 0 and consequently . that a base 
given by Equation (13) of the main text will result in the simple ice-sheet morphology discussed in Section 4. 
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