ON FINITE POLARIZED PARTITION RELATIONS
V. Chvétal
(received April 11, 1969)
1. Theorems. Callan m X n array an m X n; k array if its

mn entries come from a set of k elements. An m X n; 1 array has
mn like entries. We write

(1) (m,n; k) —— (p,q; 1)

if every m X n; k array contains a p X q; 1 sub-array. The negation
of (1) is written

(m, n; k) ——> (p,q; 1)

and means that there is an m X n; k array containing no p X q; 1 sub-
array. Relations (1) are called '"polarized partition relations among
cardinal numbers' by P. Erdos and R. Rado [2]. In this note we
prove the following theorems.

m/

THEOREM 1. If n( >

5 > (q- 1) () then (m,n5 k) — (p, g 1).

THEOREM 2. (k‘2 +k +1, k2+ k +1; k) — (2,2;1).

THEOREM 3. I k > 2 then

(Up -0 =), (Pa- DK% 0 — (g 1)

for every real t > 1, where {s} denotes the least integer > s.

C. Frasnay [3] proved that

1
K +pk

1 k
(1 +pk TPX g p k) — (p,p; 1).
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We improve this in

THEOREM 4. (pk, pkP; k) — (p,p; 1).

-1
THEOREM 5. If (’;‘) (Z) < kP97 then (m,n; k) — (p,q; 1).

In particular
1 Z_ 1 2_
T R S A (T R S S PRI S

P. Erdos and R. Rado [2, p. 485] proved

kp -k +1

(kp - kK +1, k (q-1)+1; k) — (p,q; 1).

We improve this in

kp - k +1
THEOREM 6. (kp - k +1, k(P o ) (q- 1) +1; k) — (p,q; 1),

) (@ - 1); k) = (p, q; 1).

-k +
(kp - k +1, k(P pk 1

Theorem 6 has been proved independently by Scott Niven.

THEOREM 7. (4p - 3, (Zp;) +2;2) — (p,2;1).

2. Proofs. We first prove two lemmas. K. Zarankiewicz [5] asked
for the least positive integer k(m, n; p,q) such that every choice of k
entries of an m X n array contains a p X q sub-array. For a detailed
survey of this problem, see [4].

N/n

LEMMA 1. I n( ") > (q-1) ("

p) then k(m,n; p,q) < N.
Proof. Let A = (a..) bean m X n array and S be a choice of
1)
N of the mn entries of A. Then c. = > 1 1is the number of

a..eS
1]

elements of S which come from column j of A, so
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By the pigeon-hole principle, q of the choices (of p rows) counted in

n c,
= J) must be the same, so S contains a p X q sub-array.
j=1 P
. 1/p
LEMMA 2. X k >2, p>3 and t = (p/(p - 1)) then
RN LS
t-1

Proof. When k =2, p =3,4,5, the inequality is easily verified.
In other cases we have

pp-1 , _ p-1_ 2
t k 1—p_1k 1 >p,
SO
2
1 P 1\p 2
1+ ) )<e<<’1+ _1f=tp,
PRP -ty P-Y
or
1
1+——'_1— < t,
PPy

and the desired inequality follows.

Proof of Theorem 1. Let A be an m X n; k array with entries
from the set {41,2,...,k}, and, for j=1,2,...,k, let rj denote

the number of entries equal to j. Then r1 + r2 +... + rk = mn, SO

max(r1,...,rk) > mn/k, say rj > mn/k. Now, (r./n) > (m/k),
2 j P

so by the hypothesis

rj/n m
n< p) > (q-i)(p).

By Lemma 1, the rJ_ entries of A (all equal to j) containa p X g

sub-array. This sub-array isa p X q; 1 sub-array of A.
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2 2
Proof of Theorem 2. Let A bea (k +k+1)X(k +k +1); k

2
array, m:=n=k +k+1, p=q=2. We have

m/k, 2 (K% +k +1)/K 2 kK+1,  KE4k+1, b
(T = +k+1)< 5 >>(k P (0 =TT = - 0()

so the hypothesis of Theorem 1 is satisfied. By Theorem 1, A contains
a 2X2;1 sub-array.

Proof of Theorem 3. Let t be areal >1 and let p,q be
positive integers. Let A be an m X n; k array where

m={(p- 1)kt - 1)/(t - 1)} , n = {tP(q - )P} . We have
m-k(p-1)>(m- (p-1)/t k>2, so

Lmm m Plg- )P . m=-1 . m-p+t1
n k(k 1)...(k pt+t1) >t (q-1)k Tt o Tt

= (q-'l)rn(m—i)...(m-p‘l'i)

or n(mp/k) > (q - 1) (I::) . By Theorem 1, A contains a p X q; 1 sub-

array which is the desired result.

Proof of Theorem 4. Let A be a pkp X pkp; k array. We have
to show that A contains a p X p; 1 sub-array. This is trivial when
p=1 or k=1. When p =2, k > 2, the conclusion follows by Theorem

2 as 2k2_>_k2+k+1. When p =3, k >2, we have

({(p - Dkt - )/(t- 1}, {£p- D&} k) — (p,p; 1)

by Theorem 3. Set t = (p/(p - 1))1/}).

PP > (kt - 1)/t - 1) or pkP = Pp - P > (p - 1)kt - 1)/(t - 1).
Therefore A contains a p X p; 1 sub-array and the proof is complete.

Then by Lemma 2,

Proof of Theorem 5. We shall use a method developed by
P. Erd8s [1]. Consider m X n; k arrays with entries from the set

{1,2,...,k} . There are exactly kmn of them. We shall show that

n, mn-pq+1

at most (m)( ) k of these arrays containa p X q; 1 sub-array.
P q
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Given any m X n; k array A there are (r;)(n) possibilities of choosing
q

its p X q sub-array. Moreover, this sub-array is a p X q; 1 sub-array

in exactly krnn—pq+1 cases since there are k possibilities of choosing

its entries as well as k possibilities of choosing each of the remaining
mn - pq entries of A. Now, by the hypothesis,

mn

mn-pq+1< Kk ,

m_n
(p)(q) k

so there exists an m X n; k array containing no p X q; 1 sub-array,

2
which is the desired result. In particular, if m < (p! )1/p k(p 1/zp

p 2 2
then (m) < rn_' < k(p 1)/2 or (m)(m)< kp ! so there exists an
P p. - P P
m X m; k array containing no p X p; 1 sub-array.
kp -k+1
Proof of Theorem 6. Let A bea (kp - k +1) X (k( b Mg -1)+1 )5k
array. Given any column of A there exists (by the pigeon-hole principle)
a p-tuple of rows such that their intersection with the column forms a
kp -k+1

pX1;1 array. There are exactly ( ) possibilities of choosing

such a p-tuple; hence, by the pigeon-hole principle again, k(q - 1) +1
of the choices must be the same. Finally, q of these k(q - 1) +1
choices must correspond to the same element of {1,2,...,k}. In other
words, A contains a p X q; 1 sub-array.

To prove the second part, we observe that there exists a set G
of kp - k +1 X 1; k arrays with entries from the set {1,2,...,k}
provided that

(i) if AcG, then A contains exactly one p X 1; 1 sub-array;

) elements;

kp -
(ii) G has exactly k( P ;+1

(iii) a (kp - k +1) X k(kp‘::“

); k array whose columns are all

elements of @ contains no p X 2; 1 sub-array.

kp -k+1

p
containing no p X q; 4 sub-array, an array whose columns are elements
of (5, each of them being used exactly (q - 1)-times.

Hence, there exists a (kp - k +1) X k(q - 1)( ); k array

Proof of Theorem 7. Let A = (aij) be a (4p- 3) X ((Zpr;1) +2);2

array with elements from the set {1, 2} . Evidently, there is a set
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sc{1,2,...,4p - 3}, |S| =2p - 1, such that a, =a, whenever

i, ke S, say ay T Ay =1. Now, given'the j-th column of A,
i

there exist a set T = T(j) CS, IT’ =p and an element r = r(j) of
{1,2} such that aij = r(j) whenever iec T(j). I r(j) =2 for every

2p-1

i=2,3,...,( ) + 2 then there are integers ji’jz such that

2y < g (pr—i) +2, T(j,) = T(j,) = T and A containsa pX2;1

2
sub-array (a‘j), ieT, je {ji’jz} . If there exists an integer
i

jO
sub-array (aij) ie T(JO)’ Jje {1:30} .

2p-1 . .
, 2_<_j0§ ( Pp ) + 2 such that r(_]o):i then A contains a p X 2;1
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