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Nilpotency of Some Lie Algebras Associated
with p-Groups
Pavel Shumyatsky

Abstract. Let L = L0 + L1 be a Z2-graded Lie algebra over a commutative ring with unity in which 2 is
invertible. Suppose that L0 is abelian and L is generated by finitely many homogeneous elements a1, . . . , ak

such that every commutator in a1, . . . , ak is ad-nilpotent. We prove that L is nilpotent. This implies that any
periodic residually finite 2 ′-group G admitting an involutory automorphism φ with CG(φ) abelian is locally
finite.

0 Introduction

Let p be a prime and G a finitely generated residually finite p-group. Examples of groups
constructed in [1], [3], [4], [5], [17] show that in general G can be infinite.

Using the Lazard central series of G one associates to G a Lie algebra L = Lp(G) in such
a way that G is finite if and only if L is nilpotent. Some detail of this construction is given
in the last section of the paper. Lazard proved that L is generated by a finite set M such that
each commutator of elements in M is ad-nilpotent [9]. This enables us to reduce problems
on finiteness of certain p-groups to problems on nilpotency of some Lie algebras. For
example, the celebrated Zelmanov’s solution of the Restricted Burnside Problem is based
on his deep results concerning Lie algebras.

In the present paper we prove the following theorem.

Theorem Let L = L0 + L1 be a Z2-graded Lie algebra over a commutative ring with unity in
which 2 is invertible. Suppose that L0 is abelian and L is generated by finitely many homoge-
neous elements a1, . . . , ak such that every commutator in a1, . . . , ak is ad-nilpotent. Then L is
nilpotent.

This theorem is proved in Section 4 of the paper. It enabled us to derive that any periodic
residually finite 2 ′-group G admitting an involutory automorphism φ with CG(φ) abelian
is locally finite (Theorem 5.8).

It should be said that Theorem 5.8 is not a first result stating local finiteness of a periodic
group in terms of the centralizer of an automorphism φ of G. B. H. Neumann showed that
any periodic group admitting a fixed point free involutory automorphism is abelian [10].
S̆unkov proved that if G is a periodic group having an involutory automorphismφ such that
CG(φ) is finite then G is locally finite (and contains a solvable subgroup of finite index) [16].

According to Deryabina and Ol’shanski for any positive integer n which has at least one
odd divisor there exists an infinite group G having an element of order n with finite cen-
tralizer such that all proper subgroups of G are finite [2]. Therefore the result of S̆unkov
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cannot be extended to periodic groups having finite centralizer of an element whose order
is not a 2-power. N. Rocco and the author proved recently that if G is a periodic residually
finite group having a 2-automorphism with finite centralizer then G is locally finite [11].
In [12], [13], [15] we prove local finiteness of some periodic groups admitting a fixed point
free four-group of automorphisms.

It seems however that Theorem 5.8 of this paper is the first result of the kind in which
the condition imposed on CG(φ) does not refer to the order of CG(φ).

Most of our notation and terminology is standard. We use [x1, . . . , xk] to denote[
. . . [x1, x2], x3

]
, . . . , xk]. An element g of a Lie algebra L is called ad-nilpotent if there

exists an integer m such that
[x, g, . . . , g︸ ︷︷ ︸

m times

] = 0

for any x ∈ L. Let M ⊆ L be a subset of a Lie algebra L. By a commutator in elements of
M we mean any element that can be obtained by taking products of elements of M with
arbitrary system of brackets. A subalgebra of L generated by a set M is denoted by 〈M〉.

A Lie algebra L is Z2-graded if it contains subspaces L0 and L1 such that L = L0 + L1 and
[Li , L j] ≤ Li+ j ; i, j ∈ Z2. Clearly, L0 here is a subalgebra. If L = L0 + L1 is a Z2-graded
Lie algebra then any element x ∈ L0 ∪ L1 is called homogeneous. Homogeneous elements
x ∈ L0 are called even while those x ∈ L1 odd.

Suppose that X is either a quotient algebra or a subalgebra generated by a set of ho-
mogeneous elements of a Z2-graded Lie algebra L. Then X is naturally equiped with the
Z2-grading induced by that of L. So X can be viewed a Z2-graded Lie algebra.

Through out the paper we use freely the following fact. Let x, g, h1, . . . , hk ∈ L be any
elements of a Lie algebra L. Assume that g commutes with all h1, . . . , hk. Then

[x, h1, . . . , hk, g] = [x, g, h1, . . . , hk].

1 Existence of a Nilpotent Ideal

Our goal in this section is to prove the following:

Proposition 1.1 Let L be a Lie algebra, L1, L2, L3 abelian subalgebras of L such that

L = L1 + L2 + L3

and
[L1, L2] ≤ L3, [L1, L3] ≤ L2, [L2, L3] ≤ L1.

Assume that a is an ad-nilpotent element in L1 and let N be the ideal of L generated by a. Then
N is nilpotent.

This proposition can be deduced from some results scattered in [14], [15] and proved in
a somewhat different setting. For the reader’s convenience we give a complete and detailed
proof here.

Lemma 1.2 Assume hypothesis of 1.1. Suppose that b ∈ L2 and [a, b] = 0. Let T be the ideal
of L generated by [b, L1]. Then [T, a] = 0.
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Proof It is sufficient to show that for any set of elements c1, c2, . . . , ct such that c1 ∈ L1 and
ci ∈ Lki , where each ki ∈ {1, 2, 3}, we have

(1.3) [b, c1, . . . , ct , a] = 0.

To prove this we shall use induction on t .
If t = 1 (1.3) can be proved easily:
Since a, c1 ∈ L1 and L1 is abelian, c1 ∈ CL(a). By hypothesis b also lies in CL(a), and so

(1.3) follows.
Let now t ≥ 2 and suppose that for smaller values of t (1.3) holds. If c2 ∈ L1 we denote

[b, c1] by d and observe that d ∈ L3 and [d, a] = 0. Then

[b, c1, . . . , ct , a] = [d, c2, . . . , ct , a].

The form of the latter commutator differs from that of the commutator in (1.3) only by
the fact that b ∈ L2 ∩ CL(a) while d ∈ L3 ∩ CL(a). This difference is not very serious of
course and we are in a position to apply the induction hypothesis. It yields

[d, c2, c4, . . . , ct , a] = 0

and so (1.3) holds.
If c2 ∈ L3 then [b, c1, c2] = 0 because [b, c1] and c2 both lie in L3.
Thus we can assume that c2 ∈ L2. If t = 2 we see that [b, c1, c2, a] = 0 because both a

and [b, c1, c2] lie in L1. So t ≥ 3. Consider the three possible cases:

1) c3 ∈ L1;
2) c3 ∈ L2;
3) c3 ∈ L3.

1) Since both c3 and [b, c1, c2] lie in L1 and L1 is abelian, [b, c1, c2, c3] = 0 and obviously
(1.3) holds.

In the calculations below all the underlined commutators [x1, x2, . . . , xs] equal zero as
there always exist some positive integer k and some i ∈ {1, 2, 3} such that [x1, x2, . . . , xk] ∈
Li and xk+1 ∈ Li which, since Li is abelian, guarantees that [x1, . . . , xk, xk+1] = 0. So, we
will just discard such commutators.

2) We have

[b, c1, c2, c3] =
[
b, [c1, c2], c3

]
+ [b, c2, c1, c3] =

[
b, [c1, c2, c3]

]
+
[
b, c3, [c1, c2]

]
.

Put a1 = [c1, c2, c3] ∈ L1. Then the commutator in (1.3) can be rewritten in the form

[b, a1, c4, . . . , ct , a]

which by the induction hypothesis equals zero.
3) In this case we have

[b, c1, c2, c3] =
[
[b, c1], c3, c2

]
+
[
b, c1, [c2, c3]

]
.
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If we put a2 = [c2, c3] ∈ L1 and b1 = [b, c1] ∈ L3 ∩ CL(a) then the commutator in (1.3)
can be rewritten as

[b1, a2, c4, . . . , ct , a].

The form of the latter commutator differs from that of the commutator in (1.3) only by
the fact that b ∈ L2 ∩ CL(a) while b1 ∈ L3 ∩ CL(a). We have already remarked that this
difference is not very serious and we can apply the induction hypothesis. Therefore

[b1, a2, c4, . . . , ct , a] = 0.

The proof is now complete.

Lemma 1.4 Assume hypothesis of 1.1. Then [L, L] ≤ 〈L1, L2〉.

Proof Denote 〈L1, L2〉 by N . The inclusions [L1, L3] ≤ L2 and [L2, L3] ≤ L1 show that L3

normalizes N . Since L = L1 + L2 + L3, it follows that N is an ideal in L. The quotient L/N
must be abelian because so is L3. This completes the proof.

Proof of 1.1 Let n be the minimal number such that

[L, a, . . . , a︸ ︷︷ ︸
n times

] = 0.

We certainly can assume that n ≥ 1 and prove nilpotency of N using induction on n. Set

M = [L2, a, . . . , a︸ ︷︷ ︸
n−1 times

].

Then M ≤ CL(a) ∩ L2 if n is odd and M ≤ CL(a) ∩ L3 if n is even. Assume that M ≤ L2

(the case M ≤ L3 is absolutely symmetric).
Let L = L/CL(N), and let X denote the image of any subset X ⊆ L in L. The minimal

ideal T of L containing [M, L1] is spanned by commutators of the form [b, c1, . . . , ct ], where
c1 ∈ L1 and ci ∈ L1∪L2∪L3; i ≥ 2. Therefore, by Lemma 1.2, a centralizes T. This implies
T ≤ CL(N) and we obtain [M, L1] = 0. Since M ≤ L2 and L2 is abelian, we conclude that

M ≤ CL

(
〈L1, L2〉

)
.

By Lemma 1.4 [L, L] ≤ 〈L1, L2〉. Hence M centralizes the subalgebra R of L generated by
[L, L] and a. Obviously N ≤ R and therefore M ≤ Z(N). Bearing in mind that L =
L/CL(N) we conclude that M ≤ Z2(N), the second term of the upper central series of N .
The same argument with L2 replaced by Li shows that

[Li , a, . . . , a︸ ︷︷ ︸
n−1 times

] ≤ Z2(N)
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for any i = 1, 2, 3. Since L =
∑

1≤i≤3 Li , we obtain

[L, a, . . . , a︸ ︷︷ ︸
n−1 times

] ≤ Z2(N).

Let us consider now the quotient algebra ¯̄L = L/Z2(N). Let ¯̄X denote the image of any
subset X ⊆ L in ¯̄L. Then

[¯̄L, ¯̄a, . . . , ¯̄a︸ ︷︷ ︸
n−1 times

] = 0

and so by induction ¯̄N is nilpotent. Since ¯̄N = N/Z2(N), we derive that N is nilpotent as
well. Remark that the proof actually shows that N is of nilpotency class at most 2n−1. The
proof is complete.

2 A Sufficient Condition for [L, L] to be Nilpotent

From now on the term “Lie algebra” means Lie algebra over some commutative ring K with
unity in which 2 is invertible.

We will prove here

Proposition 2.1 Let L = L0 + L1 be a Z2-graded Lie algebra and assume that there exists an
odd element a ∈ L1 such that L = 〈L0, a〉. Suppose that L0 is abelian and a is ad-nilpotent.
Then the subalgebra 〈L1〉 of L generated by all odd elements is nilpotent.

We remark that under hypotheses of the above proposition 〈L1〉 is actually an ideal of L
containing the derived algebra [L, L]. It follows that the derived algebra [L, L] is nilpotent.

Lemma 2.2 Let i, j be non-negative integers either both odd or both even. Let L = L0 + L1 be
a Z2-graded Lie algebra with L0 abelian. Let h1, . . . , hi and g1, . . . , g j be arbitrary elements
in L0 and a ∈ L1 an arbitrary odd element. Then [a, h1, . . . , hi] and [a, g1, . . . , g j] commute.

Proof We use induction on min{i, j}. Suppose first that j = 0 and set b = [a, h1, . . . , hi].
We have to prove that [b, a] = 0. By the Jacobi identity we have.

[a, h1, . . . , hi, a] = [a, h1, . . . , hi−1, a, hi]−
[
a, h1, . . . , hi−1, [a, hi]

]
.

Note that [a, h1, . . . , hi−1, a, hi] = 0 because [a, h1, . . . , hi−1, a, ] ∈ L0 and L0 is abelian.
Therefore

[a, h1, . . . , hi, a] = −
[
a, h1, . . . , hi−1, [a, hi]

]
.

Write

[
a, h1, . . . , hi−1, [a, hi]

]
=
[
a, h1, . . . , hi−2, [a, hi], hi−1

]
−
[
a, h1, . . . , hi−2, [a, hi, hi−1]

]
.

Again we note that
[
a, h1, . . . , hi−1, [a, hi], hi−1

]
= 0 because

[
a, h1, . . . , hi−1, [a, hi]

]
∈

L0 and L0 is abelian. Therefore

[a, h1, . . . , hi, a] =
[
a, h1, . . . , hi−2, [a, hi, hi−1]

]
.
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It becomes clear that for any non-negative k ≤ i we have

[a, h1, . . . , hi, a] = (−1)k
[
a, h1, . . . , hi−k, [a, hi, hi−1, . . . , hi−k+1]

]
.

Since i is even, when k = i we obtain

(2.3) [a, h1, . . . , hi, a] =
[
a, [a, hi, . . . , h1]

]
.

By hypothesis all h1, . . . , hi commute and so

[a, hi, hi−1, . . . , h1] = [a, h1, . . . , hi−1, hi] = b.

Combining this with (2.3) we obtain [b, a] = [a, b]. Since 2 is invertible in K, it follows
that [b, a] = 0.

Assume now that i ≥ j ≥ 1. Set c = [a, g1, . . . , g j−1] and let us show that

[c, g j , b] = 0.

We have [c, g j , b] = [c, b, g j] −
[
c, [b, g j]

]
. As [c, b] ∈ L0 and L0 is abelian, we conclude

that [c, b, g j] = 0 while
[
c, [b, g j]

]
= 0 by the induction hypothesis. The proof is now

complete.

Lemma 2.4 Let L = L0 + L1 be a Z2-graded Lie algebra and assume that there exists an odd
element a ∈ L1 such that L = 〈L0, a〉. Then L1 is spanned by all commutators of the form
[a, h1, . . . , hk], where h1, . . . , hk ∈ L0.

Proof Since L = 〈L0, a〉, it follows that L is spanned by all commutators of the form

(2.5) [x1, . . . , xs],

where each xi is either even or equals a. It is immediate that L1 is spanned by all commu-
tators (2.5) in which the number of occurrences of a is odd. Assume that [x1, . . . , xs] is
such a typical generator of L1 and let j be the maximal number such that x j = a. Then
the number of occurrences of a in [x1, . . . , x j−1] is even and therefore [x1, . . . , x j−1] ∈ L0.
Set h1 = [x1, . . . , x j−1]. Since j is the maximal number with x j = a, we conclude that
x j+1, . . . , xs ∈ L0. We obtain

[x1, . . . , xs] = −[a, h1, x j+1, . . . , xs]

and the lemma follows.

Proof of 2.1 Set

M1 = 〈[a, h1, . . . , hk]; h1, . . . , hk ∈ L0; k is even〉,

M2 = 〈[a, h1, . . . , hk]; h1, . . . , hk ∈ L0; k is odd〉

and M3 = L0. Then by 2.4 L1 = M1 + M2. Therefore L = M1 + M2 + M3. Lemma 2.2 tells
us that M1 and M2 are abelian while M3 is so by hypotheses. Also we have [M1,M2] ≤ M3,
[M1,M3] ≤ M2 and [M2,M3] ≤ M1. Note that a ∈ M1. Thus, we are in a position to use
Proposition 1.1 according to which the ideal N of L generated by a is nilpotent. Lemma 2.4
shows that L1 ≤ N . This completes the proof.
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3 Existence of Commuting Ideals

We start this section with a generalization of Lemma 2.4.

Lemma 3.1 Let L = L0 + L1 be a Z2-graded Lie algebra and assume that L = 〈X,Y 〉, where
X ⊆ L0 and Y ⊆ L1. Then L1 is spanned by commutators of the form [y, h1, . . . , hk] for
suitable y ∈ Y and h1, . . . , hk ∈ L0.

Proof Since L = 〈X,Y 〉, it follows that L is spanned by all commutators of the form

[z1, . . . , zs],

where each zi ∈ X∪Y . It is immediate that L1 is spanned by all such commutators in which
the number of occurrences of elements of Y is odd. Assume that [z1, . . . , zs] is such a typical
generator of L1 and let j be the maximal number such that z j ∈ Y . Then the number of
occurrences of elements of Y in [z1, . . . , z j−1] is even and therefore [z1, . . . , z j−1] ∈ L0.
Set h1 = [z1, . . . , z j−1]. Since j is the maximal number with z j = a, we conclude that
z j+1, . . . , zs ∈ X. We obtain

[z1, . . . , zs] = −[z j , h1, z j+1, . . . , zs]

and the lemma follows.

Lemma 3.2 Let L = L0 + L1 be a Z2-graded Lie algebra with L0 abelian. Let B ≤ L1 be
any set of odd elements and g ∈ L0 such an even element that [B, g,B] = 0. Let D be the
set of all commutators of the form [b, h1, . . . , hk], b ∈ B and h1, . . . , hk ∈ L0. Assume that
a ∈ L1 ∩CL(g). Then for any non-negative integer m we have

[a,D, . . . ,D︸ ︷︷ ︸
m times

, g] = 0.

Proof Induction on m. If c ∈ L1 is any odd element we observe that [a, c, g] = 0 because
[a, c] ∈ L0 and L0 is abelian. Since D ⊆ L1, for m = 1 the assertion follows. Suppose now
that m = 2. We will prove first that

(3.3) if c1, c2 ∈ B then [a, c1, c2, g] = 0.

Write
[a, c1, c2, g] = [a, c1, g, c2] +

[
a, c1, [c2, g]

]
.

Note that [a, c1, g, c2] = 0 because [a, c1, g] = 0. Therefore

[a, c1, c2, g] =
[
a, c1, [c2, g]

]
.

Since c1, c2 ∈ B and [B, g,B] = 0, we obtain

[
a, c1, [c2, g]

]
=
[
a, [c2, g], c1

]
=
[

[a, c2, g] +
[
c2, [a, g]

]
, c1

]
.
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Both commutators [a, c2, g] and
[
c2, [a, g]

]
equal zero. The first one is zero because

[a, c2] ∈ L0 and L0 is abelian while the second one is zero because [a, g] = 0 by hypothesis.
Thus, (3.3) holds.

Now write
c1 = [b1, f1, . . . , fk1 ], c2 = [b2, h1, . . . , hk2 ],

where b1, b2 ∈ B and f1, . . . , fk1 , h1, . . . , hk2 ∈ L0. Suppose that k1 > 0 and write

[a, c1] =
[
a, [b1, f1, . . . , fk1 ]

]
.

Using the same argument as in the proof of Lemma 2.2 we obtain

[a, c1] = (−1)k1 [a, f1, . . . , fk1 , b1].

Set a1 = [a, f1, . . . , fk1 ] and observe that a1 ∈ L1 ∩ CL(g). It now suffices to prove that
[a1, b1, c2, g] = 0. This argument shows that without any loss of generality we can assume
that k1 = 0.

Taking this into account and using the fact that [a, b1] ∈ L0 and hence [a, b1] commutes
with all h1, . . . , hk2 we compute

[a, c1, c2, g] =
[
a, b1, [b2, h1, . . . , hk2 ], g

]
= −
[
b2, h1, . . . , hk2 , [a, b1], g

]

= −
[
b2, [a, b1], h1, . . . , hk2 , g

]
= [a, b1, b2, h1, . . . , hk2 , g].

We already know that [a, b1, b2, g] = 0. Since g commutes with h1, . . . , hk2 , it follows that
[a, c1, c2, g] = 0.

Thus, it remains to handle the case m ≥ 3. Let c1, c2, . . . , cm be arbitrary elements in D.
We have to show that

[a, c1, . . . , cm, g] = 0.

Set a2 = [a, c1, c2] and observe that a2 ∈ L1 and by the preceding paragraph a2 ∈ CL(g).
The induction hypothesis yields

[a2, c3, . . . , cm, g] = 0.

This completes the proof.

Lemma 3.4 Let L = L0 + L1 be a Z2-graded Lie algebra with L0 abelian. Let A,B ⊆ L1 be sets
of odd elements such that L = 〈L0,A,B〉 and [A, L0] ⊆ A. Suppose that g ∈ L0 and a ∈ L1

are such even and odd elements respectively that [A, a] = 0 and [B, g,B] = 0. Let N and G
be the ideals of L generated by a and g respectively. If [a, g] = 0 then [N,G] = 0.

Proof Assume that [a, b]= 0. Let D be the set of all commutators of the form [b, h1, . . . , hi]
where b ∈ B and h1, . . . , hi ∈ L0. Then by 3.1 L1 is spanned by A and D. Then N is spanned
by commutators of the form [a, d1, . . . , ds], where d1, . . . , ds ∈ L0 ∪ A ∪ D. Therefore it
suffices to prove that we always have

(3.5) [a, d1, . . . , ds, g] = 0.
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This will be proved by induction on s and some other parameters introduced when neces-
sary. We observe that the set L0 ∪ A ∪ D is closed with respect to the multiplication in L.

Obviously (3.5) holds if d1 ∈ A because [A, a] = 0, so we may assume that d1 /∈ A.
Suppose that at least one of d2, . . . , ds belongs to A. Let j be the smallest number such that
d j ∈ A and let us use induction on j. Write

[a, d1, . . . , d j−1, d j, d j+1, . . . , ds, g] =
[
a, d1, . . . , [d j−1, d j], d j+1, . . . , ds, g

]
+ [a, d1, . . . , d j , d j−1, d j+1, . . . , ds, g].

The first of the above commutators is zero by the induction on s because [d j−1, d j] ∈
L0 ∪ A ∪ D while the second one is zero by the induction on j. The conclusion is that
there is no loss of generality in assuming that none of d1, . . . , ds lies in A. Suppose now
that some of them lie in L0 and let k denote the smallest number such that dk ∈ L0. We will
use now induction on k. If k = 1 we write a1 = [a, d1]. Since L0 normalizes A, it follows
that [A, a1] = 0. Also we note that [a1, g] = 0 because L0 is abelian. Substituting now
in (3.5) [a, d1] by a1 and using induction on s we deduce (3.5). This enables us to assume
that k ≥ 2. Since dk−1 /∈ A, it follows that dk−1 ∈ D and so [dk−1, dk] ∈ D. We have

[a, d1, . . . , dk−1, dk, dk+1, . . . , ds, g] =
[
a, d1, . . . , [dk−1, dk], dk+1, . . . , ds, g

]
+ [a, d1, . . . , dk, dk−1, dk+1, . . . , ds, g].

The first of the above commutators is zero by the induction on s because [dk−1, dk] ∈ D
while the second one is zero by the induction on k.

The conclusion is that without any loss of generality we may assume that all d1, . . . , ds

lie in D. In this case (3.5) is immediate from Lemma 3.2. The proof is complete.

4 Main Theorem

Given any Lie algebra L, let R(L) denote the sum of all locally nilpotent ideals of L. Thus,
R(L) is the maximal locally nilpotent ideal of L.

Lemma 4.1 Let L be a Lie algebra generated by finitely many elements a1, . . . , ak such that
each commutator in a1, . . . , ak is ad-nilpotent. If L is not nilpotent then there exists a proper
ideal N in L such that R(L/N) = 0.

Proof Let us consider an ascending chain of ideals Rα of L defined as follows. Set R0 = 0.
If α is not a limit ordinal and Rα−1 is already defined then Rα/Rα−1 = R(L/Rα−1). If α is
a limit ordinal then Rα =

⋃
β<α Rβ . Let N be the union of all ideals Rα. Then obviously

R(L/N) = 0. We wish to show that L 6= N .
Suppose that L = N . Since L is finitely generated, it cannot be a union of proper ideals.

Therefore L = Rα, where the ordinal α is not limit. Then L/Rα−2 is not nilpotent and so
without any loss of generality we can assume that α = 2. Since L/R1 is locally nilpotent and
finitely generated, we conclude that L/R1 is nilpotent. Let c be a commutator in a1, . . . , ak

of maximal possible weight such that c /∈ R1. Then c + R1 is central in L/R1 and therefore
〈c,R1〉 is an ideal in L. By [7, 1.3.1] 〈c,R1〉 is locally nilpotent. The definition of R1 now
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implies that 〈c,R1〉 = R1 and c ∈ R1. This contradicts our choice of c and completes the
proof.

Lemma 4.2 Let L be a Lie algebra with R(L) = 0. Let N be an ideal of L and C = CL(N).
Let L̄ = L/C and N̄ be the image of N in L̄. Then R(L̄) = 0 and CL̄(N̄) = 0.

Proof Since N∩C is an abelian ideal of L, it follows that N∩C = 0. Suppose that R̄ = R/C
is a locally nilpotent ideal of L̄. Then N̄ ∩ R̄ is a locally nilpotent ideal of L̄ contained in N̄.
Since N ∩ C = 0, we conclude that N ∩ R is locally nilpotent. Therefore N ∩ R = 0 and
R ≤ C . This means that R̄ = 0.

Next, let D̄ = D/C = CL̄(N̄). By the preceding paragraph N̄ ∩ D̄ = 0. Therefore
N ∩ D ≤ C . Now N ∩ C = 0 implies N ∩ D = 0. It follows that D ≤ C and D̄ = 0, as
required.

Lemma 4.3 Let L = L0 + L1 be a non-abelian nilpotent Z2-graded Lie algebra generated
by a set Y ⊆ L1. Then there exists a non-zero commutator h in elements of Y such that
h ∈ L0 ∩ Z2(L), where Z2(L) denotes the second term of the upper central series of L.

Proof Let L be of nilpotency class c ≥ 2 and let d be the even of the numbers c − 1, c.
Then there exist elements y1, . . . , yd ∈ Y such that h = [y1, . . . , yd] 6= 0 (otherwise, the
nilpotency class of L would be less than c). We observe that h ∈ L0 ∩ Z2(L), as required.

Theorem 4.4 Let L = L0 + L1 be a Z2-graded Lie algebra over a commutative ring with
unity in which 2 is invertible. Suppose that L0 is abelian and L is generated by finitely many
homogeneous elements a1, . . . , ak such that every commutator in a1, . . . , ak is ad-nilpotent.
Then L is nilpotent.

Proof Let L be a counterexample to the theorem. By 4.1 we can assume that R(L) = 0.
Our reasoning in the case k = 2 is slightly different from that in the case k ≥ 3 so we

will consider these cases separately. Suppose first that k = 2. It is convenient to denote a1

by a and a2 by b, so that L = 〈a, b〉. If any of a, b belongs to L0 then L is generated by L0

and a single ad-nilpotent odd element. Then by Proposition 2.1 the derived algebra [L, L]
is nilpotent. This contradicts the assumption R(L) = 0. Therefore a, b ∈ L1.

Let A and B be the subspaces of L1 spanned by all commutators of the form [a, h1, . . . , hi]
and [b, h1, . . . , hi] respectively, where h1, . . . , hi ∈ L0. Then by Lemma 3.1 L1 = A + B.
Proposition 2.1 tells us that the subalgebras 〈A〉 and 〈B〉 generated by A and B respectively
are nilpotent. Let 〈B〉 be nilpotent of class c and suppose first that c ≥ 2. Then by 4.3 there
exists a non-zero element g ∈ Z2(〈B〉) ∩ L0. Let G be the ideal of L generated by g. By
Lemma 4.2 we can assume that CL(G) = 0. Choose

0 6= d ∈ L1 ∩CL(A) ∩CL(g).

If N is the ideal of L generated by d then Lemma 3.4 says that [N,G] = 0. Hence N = 0, a
contradiction.
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We conclude that
L1 ∩CL(A) ∩CL(g) = 0.

Recall that g ∈ L0 and so g normalizes L1 ∩ CL(A). If d is any element in L1 ∩ CL(A) then
for each positive integer m the commutator

[d, g, . . . , g︸ ︷︷ ︸
m times

]

also lies in L1 ∩CL(A). Since g is ad-nilpotent, we can choose m such that

[d, g, . . . , g︸ ︷︷ ︸
m times

] ∈ CL(g).

The conclusion is that
L1 ∩CL(A) = 0.

Recall that 〈A〉 is a non-zero nilpotent subalgebra generated by certain homogeneous
elements. Therefore Z(〈A〉) contains some non-zero homogeneous element h0. Our as-
sumptions imply that h0 ∈ L0. Now observe that

[b, h0] ∈ L1 ∩CL(A).

Indeed, the inclusion [b, h0] ∈ L1 is obvious. Let a1 = [a, h1, . . . , hi] be a generator of 〈A〉
with h1, . . . , hi ∈ L0. We have

[
a1, [b, h0]

]
= [a1, b, h0] +

[
b, [a1, h0]

]
.

The first of the commutators on the right hand side above is zero because [a1, b] ∈ L0 and
L0 is abelian while the second one is zero because h0 ∈ Z(〈A〉) and therefore [a1, h0] = 0.
The assumption that L1 ∩CL(A) = 0 implies now that [b, h0] = 0. We have just noted that
h0 ∈ Z(〈A〉) and therefore [a, h0] = 0. So, we conclude that h0 ∈ Z(L). This contradicts
the assumption that R(L) = 0.

Thus, we obtain a contradiction in all cases when 〈B〉 is not abelian. Consider now what
happens if 〈B〉 is abelian. By a symmetric argument we can assume also that 〈A〉 is abelian.
So, 〈A〉 = A and 〈B〉 = B. Set now g0 = [a, b] ∈ L0. Let G0 be the ideal of L generated by
g. By Lemma 4.2 we can assume that CL(G0) = 0. Since g0 is ad-nilpotent and normalizes
A ≤ L1, it follows that A∩CL(g0) contains a non-zero element a2. Since A and B are abelian,
we observe that

[A, a2] = [B, g0,B] = 0.

We are again in a position to use Lemma 3.4. Let N be the ideal of L generated by a2. By
Lemma 3.4 [N,G] = 0, whence N = 0. This contradicts the choice of a2 and completes
the proof in the case k = 2.

Suppose now that k ≥ 3. Without any loss of generality we assume that ak−1 and ak

do not commute. Set a = a1, b1 = a2, . . . , bk−1 = ak. Arguing by induction on k we
assume that the subalgebra 〈b1, . . . , bk−1〉 is nilpotent. Let B = 〈b1, . . . , bk−1〉 ∩ L1. If
〈b1, . . . , bk−1〉 ≤ L0 then L = 〈L0, a〉. In this case Proposition 2.1 tells us that [L, L] is
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nilpotent which yields a contradiction. It follows that B 6= 0. Let us show that there exists
a non-zero g1 ∈ L0 such that

[B, g1,B] = 0.

If the subalgebra 〈B〉 is not abelian, then existence of g1 with required properties follows
from Lemma 4.3. If 〈B〉 is abelian then, since 〈b1, . . . , bk−1〉 is not abelian (recall that
bk−2 and bk−1 do not commute), it follows that either bk−2 or bk−1 lies in L0. For clarity’s
sake assume that bk−1 ∈ L0. Note that [B, bk−1,B] = 0 because bk−1 normalizes B and B
generates an abelian subalgebra. Also it is clear that bk−1 satisfies the other conditions so
we can take g1 = bk−1.

Thus, we proved that there exists an element g1 ∈ L0 such that [B, g1,B] = 0. The
remaining part of the proof practically does not differ from the settled above case k = 2.

Denote by A the subspace of L1 spanned by all commutators of the form [a, h1, . . . , hi]
for suitable h1, . . . , hi ∈ L0. By Proposition 2.1 〈A〉 is nilpotent. Again we can show that
existence of a non-zero element d ∈ L1 ∩CL(A) leads to a contradiction. So, we assume

L1 ∩CL(A) = 0.

Arguing exactly as in the case k = 2 above, we choose 0 6= h0 ∈ Z(〈A〉) and observe that

[L, h0] ⊆ L1 ∩CL(A) = 0.

Since Z(L) = 0, it follows that h0 = 0. This contradicts the choice of h0 and completes the
proof.

5 On residually finite groups

Let G be any group and p a prime. For i ≥ 1 set

Di(G) =
∏

j pk≥i

γ j(G)pk

,

where γ j(G) stands for the j-th term of the lower central series of G and for any subgroup

H ≤ G the symbol H pk
denotes the subgroup of H generated by the set {hpk

; h ∈ H}.
It follows that γi(G) ≤ Di(G) for all i ≥ 1 and that

(
Di(G)

)
i≥1

is a descending series of

characteristic subgroups of G. This series is called the Lazard p-series of G.

Lemma 5.1 ([6, p. 250]) For any group G and all i, j ≥ 1 we have
[
Di(G),D j (G)

]
≤ Di+ j(G).

The above lemma shows that the Lazard p-series
(
Di(G)

)
i≥1

is a strongly central series

of G in the sense of [6]. This fact enables us to associate a Lie algebra Lp(G) to G. This is
done as follows.

To simplify notation we write Di in place of Di(G). For all i ≥ 1 the quotient group
Di/Di+1 can be viewed as a vector space over the field with p elements Fp. Let L(G) denote
their direct sum,

L(G) =
∞⊕
i=1

Di/Di+1.
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For arbitrary cosets aDi+1 ∈ Di/Di+1 and bD j+1 ∈ D j/D j+1 we define a bracket product

(5.2) [aDi+1; bD j+1] = [a, b]Di+ j+1,

where [a, b] denotes the group commutator a−1b−1ab. Lemma 5.1 implies that the product
above is well defined in the sense that the right hand side of (5.2) does not depend on the
coset representatives a, b. Extending now the product (5.2) linearly to the whole L(G) we
give L(G) a structure of Lie algebra over the field Fp. The subalgebra of L(G) generated by
D1/D2 will be denoted by Lp(G).

The following lemma is due to M. Lazard [9, p. 128].

Lemma 5.3 Let a ∈ Di − Di+1 and suppose that a is of order pk. Let ã = aDi+1 be the
corresponding element in Lp(G). Then

[
Lp(G), ã, . . . , ã︸ ︷︷ ︸

pk times

]
= 0.

Next, we remark that if φ is an automorphism of G thenφ naturally acts on each quotient
Di/Di+1. This action induces an automorphism of Lp(G). Slightly abusing terminology we
will say that φ acts on Lp(G).

Let G be a periodic group. For any element x ∈ G of odd order let us use x
1
2 to denote

the element y ∈ 〈x〉 such that y2 = x. If G is a periodic 2 ′-group and φ is an involutory
automorphism of G then x(x−φx)−

1
2 ∈ CG(φ). Indeed, let h = x(x−φx)−

1
2 . Using that

(x−φx)
1
2 = x−φx(x−φx)−

1
2 we compute

hφ = xφ(x−1xφ)−
1
2 = xφ(x−φx)

1
2 = xφx−φx(x−φx)−

1
2 = x(x−φx)−

1
2 = h.

Lemma 5.4 Let G be a periodic 2 ′-group admitting an involutory automorphism φ. Let I be
the set of all elements x ∈ G such that xφ = x−1. Then G = CG(φ)I.

Proof Let x be an arbitrary element of G, and let h = x(x−φx)−
1
2 . We know that h ∈

CG(φ). Clearly, g = (x−φx)
1
2 ∈ I. Since x = hg, the lemma follows.

Lemma 5.5 Let G be a periodic 2 ′-group having an involutory automorphism φ. Suppose
that N is normal φ-invariant subgroup of G. Then

CG(φ)N/N = CG/N (φ).

Proof Let x ∈ G and xN ∈ CG/N (A). Then x−φx ∈ N . Since

x = x(x−φx)−
1
2 (x−φx)

1
2 and x(x−φx)−

1
2 ∈ CG(φ),

we obtain that xN ∈ CG(A)N/N .
Thus, we showed that CG/N (φ) ≤ CG(φ)N/N . The reverse inclusion is obvious.

Lemma 5.6 Let G be a periodic 2 ′-group having an involutory automorphism φ such that
CG(φ) is abelian. Assume that p is a prime. Then also the centralizer of φ in Lp(G) is abelian.
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Proof This is immediate from 5.5 and the definition of Lp(G).

Proposition 5.7 Let G be a finitely generated residually finite p-group admitting an involu-
tory automorphism φ such that CG(φ) is abelian. Then Lp(G) is nilpotent.

Proof Let L = Lp(G). The previous lemma allows us to view φ as an automorphism of L
such that CL(φ) is abelian. Set L0 = CL(φ) and L1 = {x ∈ L; xφ = −x}. Then L = L0 + L1

and this provides a Z2-grading of L with L0 abelian. By 5.4 G is generated by finitely many
elements a1, . . . , as such that either aφi = ai or aφi = ai

−1. Let ã1, . . . , ãs be the generators
of L corresponding to a1, . . . , as. Since the subgroups 〈ai〉 are φ-invariant, we conclude that
ã1, . . . , ãs are homogeneous in L. By the Lazard Lemma all commutators in the generators
ã1, . . . , ãs are ad-nilpotent. So by Theorem 4.4 L is nilpotent. The proof is complete.

Theorem 5.8 Let G be a periodic residually finite 2 ′-group having an involutory automor-
phism φ such that CG(φ) is abelian. Then G is locally finite.

Proof Suppose first that G is residually nilpotent. In this case G decomposes into direct
product of maximal p-subgroups. It suffices to prove that any p-subgroup of G is locally
finite. Therefore without any loss of generality we may assume that G is a p-group for a
prime p. Next, let X be any finite subset of G. Obviously X is contained in some finitely
generated φ-invariant subgroup S of G. Proposition 5.7 tells us that Lp(S) is nilpotent.
Therefore, by the argument of Zelmanov [18, p. 573], S is finite. We derive that any finite
subset X of G is contained in a finite subgroup. Therefore G is locally finite.

Now we consider the general case. By 5.5 if Q is an arbitrary φ-invariant finite quotient
of G then Q admits an involutory automorphism whose centralizer in Q is abelian. A
result of Kovács and Wall [8] now yields that the derived group Q ′ is nilpotent. Together
with residual finiteness of G this leads us to the conclusion that the derived group of G is
residually nilpotent. By the preceding paragraph we obtain that G ′ is locally finite. This
implies local finiteness of G. The proof is complete.

References
[1] S. V. Aleshin, Finite automata and the Burnside problem for periodic groups. Math. Notes 11(1972), 199–203.
[2] G. S. Deryabina and A. Yu. Ol’shanskii, Subgroups of quasifinite groups (in Russian). Uspekhi Math. Nauk

41(1986), 169–170.
[3] E. S. Golod, On nil-algebras and residually finite groups. Izv. Akad. Nauk SSSR, Ser. Mat. 28(1964), 273–276.
[4] R. I. Grigorchuk, On the Burnside problem for periodic groups. Funct. Anal. Appl. 14(1980), 53–54.
[5] N. Gupta and S. Sidki, On the Burnside problem for periodic groups. Math. Z. 182(1983), 385–386.
[6] B. Huppert and N. Blackburn, Finite groups II. Springer, Berlin, 1982.
[7] A. I. Kostrikin, Around Burnside (transl. J. Wiegold). Springer, Berlin, 1990.
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