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HOMOMORPHISMS OF DISTRIBUTIVE LATTICES
AS RESTRICTIONS OF CONGRUENCES.
II. PLANARITY AND AUTOMORPHISMS

G. GRATZER AND H. LAKSER

ABSTRACT. We prove that any {0,1 }-preserving homomorphism of finite distribu-
tive lattices can be realized as the restriction of the congruence relations of a finite
planar lattice with no nontrivial automorphisms to an ideal of that lattice, where this
ideal also has no nontrivial automorphisms. We also prove that any {0,1}-preserving
homomorphismof finite distributive lattices with more than one elementand any homo-
morphismof groups can be realized, simultaneously, as the restriction of the congruence
relations and, respectively, the restriction of the automorphisms of a lattice L to those
of an ideal of L; if the groups are both finite, then so is the lattice L.

1. Introduction. Let L be a lattice. It was proved in N. Funayama and T. Nakayama
[6] that the congruence lattice of L is distributive. For a finite lattice L, the converse
of this result was proved by R. P. Dilworth: Every finite distributive lattice D can be
represented as the lattice of congruence relations of a suitable finite lattice L. The first
published proof of this result is in G. Gritzer and E. T. Schmidt [12]. Another proof of
this result, in the same spirit, by the present authors, is given in [7], pp. 81-84.

Based on the concept of coloring, which originated in S.-K. Teo [16], an entirely new
proof of the above result was given by the present authors in [9]. It was furthermore
proved that the finite lattice L can always chosen to be planar and to have only the
identity mapping as an automorphism. This was applied in [9] to give a new proof of
the following result due to V. A. Baranskii [2], [3] and A. Urquhart [17]: for any finite
distributive lattice D with more than one element and any group G, there is a lattice
L whose congruence lattice Con L is isomorphic to D and whose automorphism group
Aut L is isomorphic to G. If G is finite, then L can be chosen to be finite.

Given a lattice L and a convex sublattice L', it is well known that the restriction
map of Con L to Con L', sending each congruence relation of L to its restriction to
L', is a lattice homomorphism preserving 0 and 1. Based on the proof of Dilworth’s
representation theorem given in [7], it was shown by the present authors in [8] that,
conversely, any {0,1}-preserving homomorphism of finite distributive lattices can be
realized by restricting the congruence lattice of some finite lattice L to the congruence
lattice of an ideal L’ of L. See E. T. Schmidt [15] for an alternate proof of this result.
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4 G. GRATZER AND H. LAKSER

In this paper we apply the methods of [9] to prove the following theorem, which
improves the result of [8] by showing that we can enforce planarity:

THEOREM 1. Let D and D' be finite distributive lattices, and let 1): D — D' be a
{0,1}-preserving lattice homomorphism. Then there exist a finite planar lattice L, an
ideal L' of L, and lattice isomorphisms

o:D—Con L, o': D' — Con L’

such that 1o’ is the composition of o with the restriction of Con L to Con L. Moreover,
the lattices L and L' have no nontrivial automorphisms.

By a nontrivial automorphism we mean one that is distinct from the identity mapping.
In general, automorphisms of a lattice do not restrict to automorphisms of its ideals.
However, we can construct lattices where this does happen:

THEOREM 2. Let D and D' be finite distributive lattices with more than one element,
and let v: D — D' be a {0,1}-preserving lattice homomorphism. Let G and G' be
groups, and let 1: G — G’ be a group homomorphism. Then there exist a lattice L, an
ideal L in L, lattice isomorphisms

0:D—ConL, o':D'—Con L,
and group isomorphisms
7:G— Aut L, 7:G — Aut L'

such that, for each x € D, the congruence relation x\pp’ on L' is the restriction to L' of
the congruence relation xp on L, and, for each g € G, the automorphism gnt’ of L' is
the restriction of the automorphism gt of L.

If G and G’ are finite, then the lattice L can be chosen to be finite.

By identifying D with Con L, D’ with Con L', G with Aut L, and G’ with Aut L',
Theorem 2 can be paraphrased as follows: any pair ¥, a {0,1 }-homomorphism of finite
distributive lattices, and p, a homomorphism of groups, can be simultaneously realized
as the respective restrictions Con L — Con L' and Aut L — Aut L’ for some lattice L
and some ideal L' in L.

Note that we do not claim that the lattice L in Theorem 2 can be chosen to be
planar—we do not know whether every (finite) group can be represented as the group of
automorphisms of a planar lattice. If this were so, we could easily modify the construc-
tions in Sections 6, 7 to get the stronger result.

The basic notation is explained in Section 2. In Section 3, we present the construction
used to prove these theorems. It is based on the idea of coloring a chain, which originated
in S.-K. Teo [16]. We discuss in Section 4 a generalization of this construction introduced
in G. Gritzer and H. Lakser [11]. This is then applied in Section 5 to prove Theorem 1.
In Section 6, we modify a construction of R. Frucht [4] and [5] to prove the special case
of Theorem 2 where D and D’ are the two-element chain. Finally, in Section 7, we prove
Theorem 2.
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2. Notation. For any finite distributive lattice D, we denote by J(D) the partially
ordered set of (nonzero) join-irreducible elements of D. Let 23 denote the five-element
modular nondistributive lattice, and let s denote the five-element nonmodular lattice.

For a lattice A, let Con A denote the lattice of congruence relations on A, and let Ip A
denote the the set of prime intervals in A, that is, the set of all intervals p = [u, v], where
u < v (u is covered by v). We shall usually denote prime intervals in lower-case Fraktur
font; p, g, and so on. If I = [u, v] is an interval of A, then for any lattice B and b € B, we
use the notation I x {b} for the interval [(u, b), (v, b)] of A X B. Note that if p is prime,
then p x {b} € Ip(A X B).

For a (prime) interval I = [u, v] in the lattice A, we shall denote by @4 (1) or O4(u, v)
the congruence relation generated by the interval /. If A is understood, we use the notation
O() or O(u, v). Note that u = v (O) is equivalent to O(/) < O.

For any structure A, let Aut A denote the group of automorphisms of A.

Condition (1) of Theorem 5 will be referred to as Condition (5.1), and so on.

We refer the reader to G. Gritzer [7] for the standard notation in lattice theory.

3. The basic construction. In this section we review the ideas introduced in [9] and
show how the construction presented there can be modified to prove Theorem 1.

The starting point is the classical duality between finite distributive lattices D and the
posets of their join-irreducible elements J(D)—see [7], p. 62. The lattice D is naturally
isomorphic to the lattice of hereditary subsets of J(D) (that is, those subsets H satisfying
x € Handy < x imply that y € H); a hereditary subset H of J(D) corresponds to the
element \/(x|x € H) of D. Let D and D’ be finite distributive lattices and let ¢: D — D’
be a {0,1 }-preserving homomorphism. The homomorphism 1 then determines an isotone
map *: J(D") — J(D) determined by setting

(3-1) ay” = \pa)py™).
We can recover ) from 1)* by noting that
=\, ({acD)|a<xpwnH).
Finally, any isotone «: J(D') — J(D) is ¢, where 1 is given by
=\, ({aciD)a<xta').

In a finite lattice L, a join-irreducible congruence is a principle congruence ©(a. b)
where [a, b] is a prime interval in L, that is, a < b. We first show how to construct a finite
lattice whose poset of join-irreducible congruences is isomorphic to J(D); then Con L
is isomorphic to D. If the finite distributive lattice D has n join-irreducible elements,
then, as the first step in our construction, we take a chain C of length n. The chain C
has exactly n join-irreducible congruences; however, J(Con C) is a discrete poset, that
is, any pair of elements is incomparable.

Our first task is to force comparability between certain pairs of join-irreducible
congruences. This can be accomplished by what we call the Ns-construction—see
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FIGURE 1

Figure 1. The lattice depicted there is the nonmodular lattice Js, and it has exactly
three join-irreducible congruences, O(ay, a;), O(a;, az), O(as, az), and

O(a), a2) < BO(ap,ay)
O(ay, ar) < O(ay, a3).

We think of %5 as a modification of the chain {a. ay, as, a3} obtained by adding the
atom u(ag, a3), as indicated by how we draw the lattice. Now, using this idea alone, we
can only get a poset of join-irreducible congruences of length 1 in which each minimal
element is covered by either O or 2 elements, and each maximal element covers at most
one element.

To get more general posets we must provide a construction that identifies various
join-irreducible congruences. For example, to get a three-element chain, we take the
lattice L depicted in Figure 2, a modification of the chain

ag

as

a

ay

FIGURE 2

{ag,a\,az, a3, a4, as,ag}
by the Js-construction, and extend it to a lattice L’ where the congruences

O(ay. a), O(ay. az), O(ay. as)

https://doi.org/10.4153/CJM-1994-001-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-001-7

RESTRICTION OF AUTOMORPHISMS AND CONGRUENCES 7
are identified and the congruences
O(a3, as), O(as, ac)
are identified. If we can accomplish this, the poset J(Con L') is then the chain
O(ay, ar) < O(as, as) < O(as., ay).

Given a chain Cy, various join-irreducible congruences can be identified by a con-
struction we call the IN;-construction. We take a second chain C; and consider the
product lattice Cyp x C;. Then

Con (Cy x C;) = Con Cy x Con Cy,
and so we have a natural isomorphism
(3-2) J(Con (Cp % Cl)) ~ J(Con Cy) UJ(Con Cy).

Given two prime intervals [ag, a1], [bo, b1] in Cy, we choose a prime interval [cy, ¢;] in
C) and add in the lattice Cy X C| a new atom m to the interval [{ay, co), (a1, c; )] and a
new atom m to the interval [(by, co), {by, c1)], thereby getting a lattice L in which the
intervals [{ao, co), (a1, c1)] and [(bo, co), (b1, c1)] are isomorphic to Pi3—see Figure 3.
Then, in Con L, O(ay, a;), O(by, b)), O(cy, c1), the three join-irreducible congruences

N 7/
N _ 7
AN ’
N ’
s ny N
yd \ .
v \ N\ 7/
s, 7 N \N__ 7
e
N s . \
N ’ , \ s
N 7 Va N\ 7/
b -
s my ~
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b() N v VRN N
N s Y N N
N , 4 N N ’
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// \\
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a, N 7
C0 0\ L 0
\\ 7
/
\ s C]
FIGURE 3

under the isomorphism (3-2), are identified. Consequently, we can identify arbitrary
join-irreducible congruences in a chain Cy by taking a chain C; with the right number
of prime intervals and applying the W¢5-construction sufficiently often. We call Cy the
working axis and C the control axis. Of course, we can also use Cy as a control axis
to identify distinct join-irreducible congruences of C;. Indeed, since, in the notation of
Theorem 1, distinct join-irreducible congruences of L' may need to be identified in L,
identifying distinct join-irreducible congruences in C; may be necessary.
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8 G. GRATZER AND H. LAKSER

The Mi3-construction can be formalized by the concept of coloring, an idea which
originates in S.-K. Teo [16]. Let J be a set, which in practice will be the poset J(D) of a
finite distributive lattice D. A coloring of a chain C is a mapping

p: IpC—J.
Following S.-K. Teo [16], for the chains Cy and C; and colorings
po: Ip Co—J

and

e1: Ip Cp — J,

we define the lattice K, as follows: the lattice K is Cy X C; augmented with the elements
m(po, P1), whenever po = [uo. vol € Ip Co, p1 = [ur.v1] € Ip Cy, and oo = Pry1; we
require that the elements

(3'3) <MQ,M|>, <V0,M|>, <I/t0, V]), m(p()w pl)v <V01 V|>

form a sublattice of K isomorphic to ¥¢5, as illustrated by Figure 4. Then the poset of

FIGURE 4

join-irreducible congruences of K is isomorphic to the discrete poset
(Ip Co)po U (p Ci)ey.

In Teo’s paper, Cy = C; and ¢y = ¢, but the idea is the same.

Actually, in order to accomplish our purposes it is not necessary to apply the 2¢;-
construction to all intervals of Cy X C| of the form py X p; with pypo = pi¢. Indeed,
in order to prove Theorem 1, it will be essential to use only a proper subset of that set of
intervals. The following requirement is sufficient:
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A is a set of intervals in Cy X C) of the form py X p; satisfying

(3-4) If po X p; € A, then po = P11
(3-5) For each x € (Ip Co)po N (Ip Cy)pi, thereisapy X py € A
with powo = Py = x.
(3-6) Foreachi=0,1, if p, p’ € Ip C; are distinct and by; = p’p;,
then there are p € Ip C;, q, q’ € Ip C,_; with
pXxXq, pxa pxqg,pxqg €A, ifi=0,
axp,gxp, g xp,q xpEA, ifi=1.

Then, if K is the lattice we get by adding to Cy X C; the elements m(p, p;) for all
intervals py X p; € A, we again find that J(Con K) is isomorphic to the discrete poset
(Ip Co)po U (Ip C)p1—condition (3-6) guarantees that distinct prime intervals of C;
with the same color determine the same congruence.

It is tempting to apply the Jis-construction on top of the M¢3-construction to get an
arbitrary poset of join-irreducible congruences. Let us introduce some more terminology.
If p: C— Jisacoloring of a chain C and if x, y € J, then by an (x, y)-interval of C with
respect to ¢ we mean an interval {a, b, c,d} in C with

a<b<c=<d
and with

[a.blp = [c,d]p =y,
[b,clp = x.

Now, for example, to get a poset of join-irreducible congruences isomorphic to J =
{x,y,u, v}, the (unordered) union of two two-element chains, with

x<yandu < v,
we set the working axis to be the chain
Co: a<a <a<az<as<as<ag

with the coloring o : Ip Cy — J such that [ay, a3] is an (x, y)-interval and [a3, ag] is a
(u, v)-interval, that is, with

lag, ailpo = laz.azlpo =y
[as, aslpo = las, aglpo = v
[a),az]p0 = x

[a4, as]po = u,
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and let C; be the chain
b<c<---

with a coloring ¢;: Ip C; — J and with at least one prime interval [cg, ¢ ] with
[co. crlpr = v,

and at least one prime interval [c;, c3] with
[e2, e3]p1 = y.

We then apply the ¥s-construction to Cy X Cj, getting a lattice K identifying (using
somewhat loose notation, that is, ay for {ag, b), etc.) the congruences

O(ap, a1). O(az, a3) -
and identifying the congruences
®(a37 a4)7 @(05, a6)'

See Figure 5, where the colors are indicated on the “inside” of the intervals.

FIGURE 5

We then apply the Rs-construction to the chains [ag, a3] and [as, ag] of K to get a
lattice L where

O(ay, az) < O(ap, a)) = O(az, a3) and O(ay, as) < O(az, aq) = O(as, ag).

seemingly accomplishing our purpose. However, a close look at Figure 6, depicting the
part of L involving only the bottom interval of C|, yields a nasty surprise,

a=a; (OB,c)) and a3=as (OOb,0)),
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O(b, c)\

FIGURE 6

that is, (b, ¢) is a join-irreducible congruence that includes both O(ay, a;) and O(a3, as)!

Indeed, proceeding in the above manner to attempt to get any arbitrary poset always
results in getting a join-irreducible congruence that includes every nonisolated join-
irreducible congruence. (An element of a poset is isolated if it is incomparable to
every other element.) This problem is a familiar phenomenon in attempting to control
congruences—it is usually easy to make congruences do at least what we desire, but
much harder to make them do no more! It is precisely to avoid nasty surprises that we
developed the rather technical theorems of Section 4.

The above difficulty is not hard to rectify. Rather than taking all of Cy x C|, we take,
for each (x, y)-interval [a, b] of Cy, only the part [a, b] X [¢) of Cy X C}, where [c,d] is a
prime interval of C; colored by y. After applying the J)¢3-construction to this sublattice
A, we then apply the Js-construction to the intervals of the form [(a, c), (b, c)] by adding
a new element u(a, b) with

(a,c) <u(a,b) < (b,c).

We note that, in order for A to be a sublattice of Cy x C;, the colorings ¢o and ¢,
must be coordinated—if [a;, b;] is an (x;, y;)-interval in Cy and [ay, by] is an (x2, y;)-
interval and if b; < a,, then there must be prime intervals [c}, d], [c2, d>] in C|, where
[e1,diler = yi, [e2,da]er = ya, with dj < ¢;. For example, the coloring depicted in
Figure 5 will not work—instead, we must color [cg, ¢;] with y and [c3, c3] with v.

Reverting to our example, given the poset J = {u, v, x,y} withx < y and u < v, we
get the lattice K depicted in Figure 7 whose join-irreducible congruences represent J.

Note that we will always get a planar lattice since we apply the Js-construction to
the leftmost side of A.

As above, in order to apply the ¥¢3-construction to the sublattice A of Cy X C; we
have the requirement:
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FIGURE 7

REQUIREMENT 1. Ais a set of intervals in A of the form py X p; satisfying

(3-4) If pg X p1 € A, then popo = pr1¢1.
3-5) For each x € (Ip Co)po N (Ip Cy)¢, thereisapg X p; €A
with poo = prey = x.
(3-6) Foreach i =0, 1, if p, p’ € Ip C; are distinct and py; = p’ ¢,
then there are p € Ip C;, g, g’ € Ip C,_; with
pXxa pxaq, p xq,pxq €A, ifi=0,
gxp, gxp.a xp,q xpeEA, ifi=1.

Actually, in most cases, we shall have the following stronger form of (3-6):

(3-6") Foreach i =0, 1, if p, p’ € Ip C; are distinct and py; = p"p;,
then there isa g € Ip C,_; with
pxqg, pxqg€EA ifi=0,
axp, gxp A ifi=1.
We then have (3-6) with ¢’ = g and p = p (or, if we wish, p = p’).

We also observe, for later use, that (3-5) and (3-6) together imply the following
stronger form of (3-5):

(3-5) Foreachi=0,1, if p € Ip C;and py; € (Ip C1-)¢1-i,
then there isa g € Ip C,_; with
pXqgeA, ifi=0,
qaXpeA, ifi=1.

Indeed, and letting i = O without loss of generality,

x=pypo € (Ip Co)poN(p Cr)ep1,

and so, by (3-5), there are p’ € Ip Cy and q¢ € Ip C; with

p’ X qo € Aand p'pg =x = ppo.
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If p’ = p, set q = g and we are done. Otherwise, the hypothesis of (3-6) holds, and so
we are assured a q € Ip C; with
pXqgeEA

and, again, we are done.

Except for ensuring that we have only the identity automorphism, this concludes the
outline of the construction in [9].

We now apply these ideas to supply a construction for Theorem 1. Let D and D’ be
distributive lattices and let ¢: D — D’ be a {0,1 }-preserving homomorphism. Note that
if D' is the one-element lattice, then J(D') is empty. If D is also the one-element lattice,
then we set L = L’ to be the one-element lattice. So, in the sequel, we assume that |[D| > 1
and thereby that |J(D)| # 0. The homomorphism 1 yields the isotone mapping

Y*: J(D') — J(D)

of (3-1). Of course, if |D'| = 1, then ¢* is the empty mapping. We must construct a lattice
L with
J(Con L) ¥ J(D)

and with an ideal L’ with
J(Con L") = J(D')

such that each join-irreducible congruence © of L' extends to the congruence ©v* of L.

We take chains Cy, a working axis for L, and C, a control axis for L. The chain Cy
will have an ideal Cj,, which will be a working axis for L', and the chain C; will have an
ideal C’l , a control axis for L. For each i = 0, 1, the chain C,{ will have a coloring

¢l Ip Cl— J(D'),
and the chain C; will have a coloring
it Ip Ci— J(D).

Thus, each prime interval p of C; will have two colors, py; and pep;. The colorings ¢;
will determine the lattice L, and the colorings ¢; will determine its ideal L.

The colorings on the working axis Cy will have two tasks to perform. The first is to
ensure that the partial orderings in J(Con L) and J(Con L') are correct, exactly as in the
above outline of the construction in [9]. The second task, which was not required in [9],
is to ensure that each x € J(D') is identified, in Con L, with x¢*.

We first describe the chain Cjj and its coloring . Let s" be the number of isolated
elements of J(D'), that is, the number of elements of J(D') that are incomparable to all
other elements of J(D'). Let

hy hyy ... kL

be an arbitrary listing of the isolated elements. Then Cj, has an ideal

cp <cp <---<cy,
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and, foreach i,0 < i <, we set
[cis civi @) = B

We list all the covering pairs in J(D'):

ay < by, ay <b\,..., dy_ <bh_
(note: a} < b} in J(D'), not in D), so that
3-7) whenever b; < b in D', then i > j,
this latter to ensure that Requirement 1 be satisfied. We then set the rest of Cj, to be

Cy < Cyy) <+ <X Cyy3pl-

We extend the coloring <,9(’) so that, for each i, the interval [cy43;, ¢y43i43] 18 an (a}, bl)-
interval, that is, foreach i, 0 < i < n’, we set

. . !l _ . . !
[Cy43is Cora3int Wo = [eya3iv2, "s’+3i+3]99() = b,w

. . ! !
[cys3icts Crazisalpy = a;.

We have thus defined the chain C(’),
o <) <X < Cyy3n

and its coloring
o: Ip Ch— J(D).

which, in contrast to the construction in [9], is always surjective.
We now describe the control axis C1. Let

€y €yl
list all the nonisolated elements of J(D’) in such a manner that
(3-8) e < e; implies j < i,
in order to ensure, again, that Requirement 1 be satisfied. We set C| to be the chain
do <dy <---<dy
and define the coloring ¢} : Ip C] — j(D’) by setting
[di,dis1 1) = €]

for each i, 0 < i < ¥. Note that, since each isolated color occurs exactly once on the
working axis Cj, we do not need any isolated color on the control axis C}. Note also
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that, in contrast to the example of Figure 7, any nonisolated color may occur many times
in Cj—it may have many upper covers in J(D')—and so, for the sake of uniformity, the
coloring of C} includes all nonisolated elements of J(D').

We now extend Cj, to a chain Cy. Let

ag < by, ay <by,..., a,_1 <b,_,
be a listing of all the covering pairs of J(D), where, again,
(3-9) b; < b; implies j < i.
We extend Cj by taking elements

Cy3n’ X Cya3nal <07 < Cyi3p4dn
and defining the coloring g : Ip Cy — J(D) by setting

(s 3m43is Coradnra3in1 190 = [Cori3nra3inns Coa3nazinalpo = bis

[Cot3ns3ists Coaznazisal Po = @i,
for each i, 0 <i < n, and setting
/RS
Pwo =Ppyy,

for each prime interval p € Ip Cj,.
Thus, foreach i < n,

[Cos3n+3is Csra3nra3ina]

is the unique (a;, b;)-interval in

C() - [CO“, Cs'43n' -1 ]

Finally, let

€0, €1,y ...,€6r|

be a listing of all the elements of J(D) with

(3-10) e; < ej implyingj <.

We extend Cj to a chain C, by adding elements dp,, . .., dy,, with
dp <dpy < <dpy,.

We define the coloring ¢, : Ip C; — J(D) by setting

[drsis dpsivi )1 = e
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for each i, 0 < i < r, and setting

pe1 = peiyt

for each prime interval p € Ip Cj. Observe that ¢ is surjective onIp [d,. d,.,].

Note the asymmetry between the roles of J(D') and J(D) in the construction. All
elements of J(D') appear as colors in Cj, since we must control ¢* as well as the partial
order in Cj, and so no isolated element of J(D') need appear as a color in C|. On the
other hand, in the chain [cy 3./, Cy4307432], W€ need only control the partial order, and
thus no isolated colors appear. But, then, all elements of J(D) must appear as colors in
the chain [d,, d,,]. This latter is also required to control v*, as will be evident shortly.

We are now ready to describe the construction of the lattice L and its ideal L'. For
each i, 0 < i < n/, there is exactly one §(s’ + 3i) with djy,3; < d, that is, with

(ds(s+3i)s dssr+3i+1] € Ip C1,

satisfying

(dss43iys dscs+3ie1 191 = [Coazin Coazin 100-
Similarly, foreach i,0 < i < n, there is exactly one 6(s' +3n’+30) withd, < dsyi3043) <
d,,,, that is, with

[ds(s+3n7+30)s dosa3na3in ] € Ip [dy, dyys ],
satisfying

[ds(s+3n43i)s ds(s 33001101 = [Coiana3is Csaana3int 1po-

Let the sublattice A of Cy X C) be defined by requiring that
v e (Cy, incase co < u < cy;
v > ds(o 43 in case cy,3; < u < Cypy3ia3 for 0 <i < n's

(u,v) €A — i
v > dé(s’+3n’+3i)~ in case Cyy3pe3i < U < Cyy3pn43ins

for0 <i <n.

That A is a sublattice of Cy X C| follows easily from (3-7), (3-8), (3-9), and (3-10). Note
that A is the union of the sublattices

[co, ce] X Cys
[ca3is Coa3i3] X [dsisa3i))c,

foralli,0 <i < n,and

[Cy 4307430y Csr43n43i43] X [d5(5’+3n’+3i))C|

foralli,0 <i<n.
We define a set A of intervals of the form p x q, p € Ip Cp, g € Ip Cy, in A by
requiring that
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ifpxq CAwithp €lp C), g € Ip C}, then
PXGEA & ppy=ap,

if p x g CA withp € Ip [¢y430, Cyaanaanl, thatis, with p & Ip €, and with
q € Ip Cy, then
PXqeEA <= ppo=apl,

ifpxqCAwithp € Ip Cp and with q € Ip [dy. dy.,], thatis, withq ¢ Ip C],
then
PXgeEA < ppo=aei.
We set
A =AN(Cy x C)),

that is, A’ is the ideal ((cy3,/, dy)] of A. We let A’ be the set of those intervals in A that
are subsets of A’. Thus
N={pxqCA|pelpC.qelpCi.ppy=a¢i}

LEMMA 3. The set of intervals A' of A’ satisfies Requirement 1 with respect to the
colorings ¢}: Ip Ci — J(D'). The set of intervals A of A satisfies Requirement 1 with
respect to the colorings p;: Ip C; — J(D).

PROOF. We first establish Requirement 1 for A’. Condition (3-4) for A’ and the
colorings !, and the implication
if po X p1 € A, then Doy = P11},

follow immediately from the definition of A’ by virtue of the definition of A. It is also
easy to see that condition (3-5),
foreachx € (Ip C())gooﬂ(lp C’)<p1, thereisa py X p; € A’ with po<,00 DHPI =

x7

holds. Indeed, since (Ip C')¢| consists only of nonisolated elements of J(D'), there is
an i, 0 < i < n’, with either

/
X = [cyi3is Cyazirt )0

or

’
X = [Cy3ip1s Cya3in2] Po-

In the first case, set
po = [Cys3is Coazivt]s P1 = [dsiziys dsise3ine ]

Then, by definition of A’, we have py X p; € A'.
In the second case, there is exactly one j, 0 < j < ¥ with

x = [dj, djn1 ]
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Set
bo = legazists Coazinzls D1 = ldj dia ]
Since
x = [Ca3i1s Cya3ina ]9 < [Cya3is Coa3int 100 = [dsisraziy: diisazie1 191
it follows by (3-8) that d; > dj(y43; in C}, and so that
Po X Py € /\/.

establishing (3-5).
Finally, we establish (3-6),

foreach i = 0, 1, if p, p’ € Ip C; are distinct and pp; = p’¢!, then there are
pelp g, q €lpC)_; with
pXqg, bxqg b xqg,pxqg eA, ifi=0,
axp.axp, axp,a xpeA, ifi=1,
for A’. We, in fact, establish the stronger form (3-6'). Since | is injective, we need
only take i = 0. Again, since ¢y, is injective on Ip [co, cy] and (Ip [co. cy 1), consists

of isolated elements of J(D') while (Ip [cy, cy43n 1) consists of nonisolated elements,
there are j, k with j < k and, without loss of generality, with

pe IP [Cs’+3j~ Cs’+3j+3]

and

P’ € 1Ip [cyisis Coasias]
Then, as in the proof of (3-5) above, there is a t > §(s” + 3k) with
ld:, dr+l]<P11 = p,@;).

Setting q = q' = [d;,d;+1] and p = D establishes (3-6) with i = 0, concluding the proof
that A’ satisfies Requirement 1 with respect to the colorings ;.

We now establish Requirement 1 for A. Condition (3-4) for A and the colorings ¢;
follows immediately from the definition of A—we need only observe that ; = ¢!1* on
Ip Cl.

To establish (3-5) and (3-6) for A, we observe that the full product is contained in A:

(3-11) Co x [dp.dpy) CA.
We now establish condition (3-5),

foreachx € (Ip Co)poN(Ip C))p),thereisapgxp; € Awithpopo = b1 = x,
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forA. If x € (J(D’))w*, then, since
wo: Ip Cy— J(D')

and
10 Ip [dy.dpyy] — J(D)

are surjective, and since g = (", there are py € Ip €, by € Ip (dp. dys,] With
X =DPopo =Py
Then, by (3-11) and the definition of A,
Po X p) €A

Otherwise,
X € (Ip [Cs’+3n’~ Cs’+3n’+3n])'\p0 N (Ip [dﬂa d,4+,])<P| )

and we proceed in a manner similar to our proof of (3-5) for A’ above. Indeed, there is
an i, 0 < < n, with either

X = [cyi3na3is Cyradnra3ivt 10

or

X = [Cy3m43is1 s Cyra3n+3is2 ] Q0
In the first case, set
Po = [Cyiana3is Coranazint ]y P1 = [dsisraanrsdiys dsis3na3iet 1-

Then, by definition of A, we have py X p; € A.
In the second case, there is exactly one j, ¥ <j < ¥ + r with

X = [dj~dj+l]¥71-

Set
Po = [Cyr3madints Coanazisals pi = [d;, diq 1.

Since

X = [Cyianists Coradna3in2 100 < [Corisnradis Coraantazin 190

= [ds(s3n+3iys ds(s+3n+3i+1 191 5

it follows by (3-10) that d; > djs(y+3743i) in [dp. dp..,], and so that
bo X p1 €A,

concluding our verification of (3-5).
Finally, we establish (3-6),
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foreach i = 0, 1,if p, p’ € Ip C; are distinct and py; = p’;, then there are
pelpCi,q, q €lp C,_; with

pxag pxq, p'xq,bpxqg €A, ifi=0,
axp, qxp,axp,a xpeA, ifi=1,

for A.

First, let i = 0, that is, let p, p’ € Ip Co with ppg = b’ po. We establish the stronger
(3-6").

If both p, p’ € Ip C), then, since ¢, is surjective on Ip [d,,d.,,], let q be a prime
interval in [d., d,-,,] with

ge1 =ber =p'e1.
By (3-11),
pxa, pxq €A
If both p, p" € Ip [Cy43ms Cys3m43nl, then we proceed as for A’ above. There are j, k
with j < k and, without loss of generality, with

b € 1Ip [cyi3m43)s Cs43n43j43]
and

P € Ip [Cya3nasis Coaana3re3]-
Then, there is a t > §(s” + 3n’ + 3k) with

[di, di1ler = D/W0~

Setting g = [d,, d;4 ] establishes (3-6) in this case.
If p €Ip Cjand p" € Ip [cy43ns Cys3n+3n], then, as above, there is a prime interval g
in [d,, d,,] with
P’ xq€A.
Then, by (3-11),
pXaqeEA,
concluding the verification of (3-6) for the case i = 0.
Finally, we consider the case i = 1 of (3-6). Since ¢ is injective on Ip [d,.. d.,,], we
may assume, without loss of generality, that

pelpC.

Since ¢, is surjective on Ip C, we conclude, by (3-5") for A’, that there isa q € Ip Cj
with
axpeAN CA.

If p’ € Ip (d., dy.,], then, again by (3-11), we have

gaxp €A,
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establishing the stronger version (3-6') of (3-6) again. If, on the other hand, p’ € Ip Cj,
then, as above, there is a ¢’ € Ip Cj, with
qg'xp' e N CA.
Observe that
ap) = P
and
a'po = p'el.
Then
a0 = Py’ = pe1P" = per = p'p1 =P P10 = a'pY" = d'po.
Choose p € Ip [d.,d,,] with pp| = gpo. Then, by (3-11),

axp, g xpeA,

establishing (3-6) in this final case. Note that it is only here that we can verify only (3-6),
rather than the stronger (3-6).
The proof of the lemma is hereby concluded. n

We now apply the Ws-construction to all of the intervals in A, thereby obtaining
the lattice K and its ideal K’ = ({cy43,, d»)], which is the lattice obtained from A’ by
applying the M3-construction to all the intervals in A’. It should be fairly clear that
J(Con K) is isomorphic to the discrete poset J(D), that J(Con K') is isomorphic to the
discrete poset J(D’), and that restriction of congruences from K to K’ yields, under these
isomorphisms, the set mapping

¥*: J(D') — J(D).
We then apply the Jis-construction to each of the intervals
[Cya3is Cyra3ia] X {ds(azi
for 0 < i < n’, adding a new atom denoted u(cy.,3;, Cy43i43), and to each of the intervals
[Cya3na3is Coaanazies] X {dsosans3i }

for 0 < i < n, adding a new atom denoted u(cy 3,435 Cy+3n7+3i+3)> thereby getting the
lattice L and its ideal L' = ({cy43,, dr)]. We then get isomorphisms of posets

J(Con L) = J(D)

and
J(Con LY = J(D)
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such that the restriction of congruences from L to L’ yields, under these isomorphisms,
the isotone map
Y"1 J(D") — J(D),

that is, we have lattice isomorphisms
ConL=D

and
Con L =~ D'

such that, under these isomorphisms, the restriction of congruences from L to L’ is the
homomorphism 1. A formal proof will be given in Section 5.

We now turn to the automorphisms of L and its ideal L', as constructed above. In all
cases, L' will have only the identity automorphism, but, in certain special cases, L may
have other automorphisms—in these cases our construction will have to be modified.

One such special case occurs when J(D') is not empty and

(3-12) [co, c1lpo = [co c1legd™ = [dpsr—1. drilpr

that is, when the bottommost prime interval in Cy has the same color under ¢ as the
topmost prime interval in C| under ¢;. Then the interval

[co, c1] X [dysr—1,drir] € A,

and so, in constructing L, we end up applying the Jt3-construction to this interval by
adding the new element

m = m([co, c1], [dpir—1, drir]).

Then, interchanging m and (co,d,,,) (and fixing all other elements) yields an auto-
morphism of L. The relevant part of L is depicted in Figure 8. Usually, there is some
freedom in coloring the intervals in Cy and C, and so the difficulty (3-12) can be avoided.
Sometimes, though, such avoidance is impossible. For example, if J(D) has a unique
minimal element x, and if J(D') has isolated elements all of which map under ¢* to x,
then, under the construction presented above, (3-12) will always occur.

Other sources of difficulty can occur when both J(D) and J(D') are discrete, that is,
when both D and D’ are Boolean. Then

n=n"=0
and
=0,

and so Cy = Cj, is a chain of length 5" = |J(D')|, C} = {do}, and C| is a chain of length
r = |J(D)|. The Js-construction is not applied, and so L = K. One difficulty, similar to
that of (3-12), that can then occur is that the colorings are chosen so that

(3-13) [ey—1sevlpo = [ey 1, cvlpod™ = [do. dil o,
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FIGURE 8

that is, when the topmost prime interval in Cp has the same color under ¢y as the
bottommost prime interval in C; under ;. Then, as above, we get the new element
m([cy_1, cy], [do, di]) which can be interchanged with (cy,dy) to get a non-identity
automorphism of L.

A second type of difficulty, for the case of both D and D’ Boolean, can occur if

(3-14) ¥: D — D' is an isomorphism.
Then 5" = r and so Cy = C;. If the colorings ¢, and ¢; are chosen so that
leis cistlpo = [dis disi T
for all i, then the automorphism of A = Cy x C;
(cirdj) = (¢j. i)

determined by interchanging the axes extends to an automorphism of L. For example, let
D' and D be the four-element Boolean lattice {0,a, b, 1} with0 <a < 1and0 < b <1,
and let v be the identity mapping. Then the chain Cj is

co <c1 <y,

and C| is the chain
dy <dy <d.

If we chose the coloring o with [co, ¢1]1¢(, = a and [¢}, ¢;]¢g = b and the coloring ¢,
with [do, d ]¢1 = a and [d, d2]p = b, the resulting lattice L is depicted in Figure 9.
(The ideal L' is the ideal whose maximal element is depicted as o.) The interchange of
the two axes is an automorphism.

We first present a formal proof that the difficulties (3-12), (3-13), and (3-14) are the
only difficulties that can occur. Then, we discuss how these difficulties can be overcome.
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FIGURE 9

LEMMA 4. The lattice L' has no automorphism other than the identity mapping. The
lattice L has no automorphism other than the identity mapping unless one of the following
three conditions holds:

(1) [eos c1lpo = [drir—15 drir)or
(2) D and D' are both Boolean and [cy_1, cg 1o = [do, d1]p1.
(3) D and D' are both Boolean and ): D — D’ is an isomorphism.

PROOF. We first show that L' has no automorphism other than the identity mapping.
Let a: L' — L’ be an automorphism. If D’ is Boolean, then C| is a singleton; so A is a
chain isomorphic to Cjj, and L' = A. Thus, « is an automorphism of a finite chain, and so
is the identity mapping.

Otherwise, n’ > 0. All the elements of L’ —A’ are doubly irreducible in L', and none of
them lies in an interval of L’ which is a four-element Boolean lattice. The only elements
of A’ doubly irreducible in A’ are the (cy43:43, ds(s435) for 0 < i < n’ and (cy.d,). But,
in L', we have the proper join

(Cya3inzs dsioasiy) = (Cyasinas dsiyasiy) V U(Cyazis Cazind)-

Thus, the only element of A doubly-irreducible in L' is {(co, d ). Now, observe that
[co, c1lpg # [dp—1,dr]o) -

Indeed, if 5" > 0 then [co, 1] is an isolated element of J(D'), while, by definition of
¢!, no image of ¢ is isolated. If s’ = 0 then [co. ¢; ]}, is not minimal in J(D"), while,
by (3-8), [d,_1,dr]p] is minimal. Consequently,

lco.c1] X [dy—1,dr] & N

and so it remains an interval after we apply the J);3-construction to A’. Thus, {(co, d,/) is
the only doubly-irreducible element of L’ contained in an interval that is a four-element
Boolean lattice. Thus,

(co,dp)ax = {co,dp)
and so
(L'—Aha=L —A,
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that is, « restricts to an automorphism of A’ that fixes {(cy, d.). But, then, the chain
{co} x C} is fixed by . It then follows easily that « is the identity mapping on A’. Since
the elements of L’ — A’ are determined uniquely by those of A’, we conclude that « is
the identity on L. Thus, L’ has only the identity automorphism.

Now, let none of (4.1), (4.2), (4.3) hold, and let « be an automorphism of L. We first
consider the case when at least one of D, D’ is not Boolean. Then, we proceed exactly
as we did above for L’ with D’ not Boolean. Since (4.1) fails, we have

(3-15) [co.c1] X [dpar—1.dpar] & A,
and (cy 43,430, do) is join-reducible in L. Thus,

Aax=A
and

<CO- d)’+r>a = <C0~ dr’+r>'

Consequently, as above, « is the identity mapping on A, and so is the identity mapping
on L.

Next, we consider the case when both D and D’ are Boolean. Then, since (4.2) fails,
we also have

(3-16) ley—1ve0] X [do.di] ¢ A.

Note that, in this case, n’ = n = 0 and ¢y is the maximum element of Cy, and {cy, dp)
is join-irreducible in L = K. Also, ¥ = 0. Then, by (3-15) and (3-16), (cy,dp) and
(cosdyyr) = (co. d,) are the only doubly-irreducible elements of L that lie in an interval
that is a four-element Boolean lattice. Then, again,

Aa=A,
and, also,
({(CS/. d()>. <C0. d,f+r>})0( = {(C_;/. d0> <C(). d,/+,>}.

Since (4.3) fails, either
s'= DO #r= (D)
or
Y J(D') — J(D)

is not surjective. Now, the height in A of {(cy, dp) is s" and that of (co, dy,,) is r. Thus,
if s # r, then both (cy, dy) and (cy. d,,,) are fixed by a. Consequently, « is the identity
mapping on A, and therefore on L. If, on the other hand, s’ = r, then either « is the
identity mapping on A or

(3-17) <C_V/. do>0( = (C().d,1+,> and <C(), drl+,->(X = <C5f. d()>
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Since v¥* is not surjective, there isan i, 0 < i < r=s', with
p X [di.di] € A

for all p € Ip Cy, that is, such that the interval

[<C()7 di>w <C,\"7 di+l>]

of L is distributive. But, if (3-17) holds, then the interval

[(ciydo). (civ1. dr)] = [{co. di), (cy . din )]

of L contains the non-distributive interval
[{cird)), (civ1 dj)]

isomorphic to M3, where [d}, dj,1] is an interval of C; with color [c;, i1 1o under ;.
Thus, (3-17) is impossible, and so in this case also « is the identity mapping on L,
concluding the proof of the lemma. u

We now describe how the exceptional cases described by (4.1), (4.2), (4.3) can be
handled.

We first treat the case when at least one of D', D is not Boolean and (4.1) holds. There
is some freedom in assigning the colorings ¢ and ¢, and we can often redefine these
colorings so that (4.1) fails. There are certain cases, though, when that cannot be done.
One such case is when J(D’) has isolated elements, J(D) has a unique minimal element
a, and ¢* maps all the isolated elements of J(D') to a. Then, no matter how we assign
the colorings, [co, | ](p(/) is isolated, and, because of (3-10),

(dyir—1,dpirlor = a.

Thus, perforce,
[co, 10 = [co, er1lpg™ = [dysr—1. dpirlipr.

Note that the length of Cy is greater than 1. We can get around the difficulty presented
by (4.1) by modifying the chain C by adding a new maximal element d,.,,,,;. We extend
the coloring ¢, by setting

(3-18) (dyirsdpira ] = [c1, 2100,

extend A by adding Cy X {d, 4,4 }, (that is, the definition of A reads as before, except
that r is replaced by r + 1), and extend A by adding all intervals

p X [dr’+r7 dﬂ+r+l ]

with
Po = ldpir,dpir lpr and p # [co, c1].
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thereby ensuring that
[co, 1] X [dyyrs Ay ] ¢ A.

Note that Cy, Cj,, C} and their colorings, and A’, A’ remain unchanged. Then, after
applying the M3- and Ns-constructions to this new A, the new lattice L has the property
that {co, dy4r41), its only doubly-irreducible element that lies in A, is the only doubly-
irreducible element that lies in an interval that is a four-element Boolean lattice. As is
evident by the relevant part of the proof of Lemma 4, L then has no automorphism other
than the identity mapping. We must verify that Requirement 1 still holds. All that needs
to be verified is (3-6) when i = | and when one of p, p’ equals [d, 4., dy4r41]. SO, let

p=I[dpir,dpirn ]

Then p’ is in [dy, d,,,], the “o0ld” C|. Then, by (3-5") for the “old” situation, there is a
q" € Ip Cy with

q’ x p' €A.
If ' # [co, 1], then

g xpeEA
also, and we have (3-6). Otherwise,

li

q = [co,c1].
Set

q = [c1, 2]
Then

gXpEA
and

a'po =101 = Pe1 = a0,
the last equality by (3-18), the definition of py;. Then, by definition of the “old” A, there

is a unique
p€lp ldy,dp]

with
gxp,a xpeA,

concluding the verification of (3-6).

Now, we consider the cases when both D and D’ are Boolean. Then L’ is a chain
isomorphic to Cy.

If ¥*: J(D') — J(D) is an isomorphism, we can dispense entirely with the above
construction. We let L be a chain of length |J(D)|, and set L' = L. It is then immediate
that neither L nor L' has any automorphism other the identity mapping, that Con L ¥ D,
Con L' ¥ D', and that restriction of congruences is thereby the isomorphism ).
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Thus, we may assume, henceforth, that (4.3) fails. Note that, since J(D) and J(D') are
discrete, the colorings of Cy and C; can be assigned in a completely arbitrary manner,
subject only to the condition that they be injective. In most cases (4.1) and (4.2) can be
avoided. Specifically, if there are a, b € J(D') with ay* # by*, then we can define |,
and ¢ so that

[co,ciley =a.  [do.diler =ay*

and
ley_1.colog=b, [dr1,d, )1 = by

See Figure 10 for a sketch of the resulting lattice L, where, again, the maximal element

FIGURE 10

of the ideal L' is denoted by e.

Similarly, if the image of 1" is a singleton {a} and J(D) has at least three elements,
that is, if » > 3, then we can chose the coloring ¢; so that the interval in C; colored by
a is [d,, d»] and, again, both (4.1) and (4.2) fail—see Figure 11 for an example.

FIGURE 11

However, if the image of ¢* is a singleton {a} and r < 2, then, if we color [dy. d,] by
a, we have at least (4.1), and, if r = 2, if we color [d;.d>] by a, we have (4.2). Thus, L
as constructed will have an automorphism other than the identity map—see Figure 12a)
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a) b)

FIGURE 12

for an example. In this case, we must modify our construction of L. We extend the chain
Cy to a chain Cj by adding a new maximal element cy,; and extend the coloring ¢ by
setting

less cyrilpo = a,

and we extend the chain C; to a new chain C; by adding at least two new elements
drsts .« .5 dryg SO that
dr<dr+l < <dr+q

and so that r+ g # s' + 1, that is, so that Cy and C, have different lengths. We extend the
coloring ¢ to the new prime intervals by setting

[driis drsisi)p1 = a

forall i, 0 < i< gq. We set
AZC()XC_'I

and
A={pxq|ppo=qp1} —{lcy,con] X [do,di], [cosc1] X [drig—1,dragl}.

We then perform the #)¢3-construction on each interval in A to get our new L. Note that in
this modification the ideal L’ remains unchanged—it is still the chain [{co, do), (¢, do)].
The modification of Figure 12 a) is depicted in Figure 12 b), where, again, the maximal
element of L’ is depicted by e.

We observe that our new L has no non-identity automorphism. The elements (¢, 1, do)
and (co. dy+4) are the only doubly-irreducible elements of L that lie in an interval that
is a four-element Boolean lattice, and, since s’ + 1 # p + g, they have different heights,
and so are fixed by any automorphism. We then immediately conclude that there are no
automorphisms other than the identity.

We observe, also, that the new A still satisfies Requirement 1. Indeed, only (3-6) needs
verification. First, let i = 0. Then, for any prime intervals p, p’ of Co (they all have the
same color a) set q = [d,, d.+], thereby verifying the stronger (3-6"). Finally, let i = 1,
and let p, p’ be distinct prime intervals of C, with pp| = p’p,. Then

por = p'or=a,
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since ¢, is injective on the prime intervals of the subchain C,. If neither p nor p’ is
[drig—1.drigl, then we get (3-6') with q = [cp, c1]. Otherwise, if, say, p = [drig—1,drigl,
then we set

q = [ClaC2]» ql = [C(), C|J7 b = [dh dr+l]7

thereby getting (3-6).
Summarizing this section, we have:

SUMMARY. If D and D’ are both boolean and : D — D’ is an isomorphism, we set
L = L' = a chain of length [J(D)| = |J(D")|.

Otherwise, we have chains C; containing ideals C},i = 0, 1, and colorings p;: Ip C; —
J(D), ¢! Ip CI — J(D') satisfying the following:

(@ (Ip Co)poUdp Ci)pr =J(D).

(b) If x € J(D) is not isolated, then x € (Ip Cop)po N (Ip Ci)¢.

(©) (Ip Cph U p Ch = J(D).

(d) If x € J(D') is not isolated, then x € (Ip C()p N (Ip Cel.

(e) Foreachi=0, 1, and each p € Ip C, we have py; = ppiy*.

(f) For each covering pair a < b in J(D'), there is an (a, b)-interval

{civciersciaas i}
in Cj, that is,
Lejs cjrilpg = [cjaa- izl = b
and
[cjs1. Cralip) = a.
(g) For each covering pair a < b in J(D), there is an (a, b)-interval
{cj it e s}t
in Cy with ¢j,1, ¢js2, ¢ju3 ¢ C, that is,
[¢j. cinilpo = [cjr2. ci3]po = b
and
[¢js1s Ciralpo = a.
(h) For each covering pair a < b in J(D') and each (a, b)-interval
{civ ¢ cinan s}
in C, there is a prime interval {d5jy- dsjy+1] in C} with

[ds(jy. dspe1 19} = b.
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(i) For each covering pair a < b in J(D) and each (a, b)-interval
{cj. cjr1 cjaa- cjaz }

in Co with ¢ju1, cjs2, cju3 ¢ Cp, there is a prime interval [dyj), ds+1] in C; with
dsj+1 ¢ C) and with
[dsijy. dsgjye1101 = b.

There is a sublattice A of Cyp X Cy. For each covering pair a < b in J(D') and each
(a, b)-interval
{¢j cjrr. cjpa i}

in Cj,, if x € Cy with x > ¢, then
(x,y) € Aifand only if y > dj.
Similarly, for each covering pair a < b in J(D) and each (a, b)-interval
{cj cjrr- cjnas s}
in Co with ¢ju1, ¢js2, ¢ja3 & Cy, if x € Co with x > ¢, then
(x,y) € Aif and only if y > dj).
There is a set A of intervals py X pj, p; € Ip C; with
lejs vt ] X [dsgys dsper ). [cjaas cieal X dsgjys dsren ] € A

for each (a, b)-interval
{cjs cjurscras cjus

in C), fora < b in J(D'), and each (a, b)-interval
{Cj~ Cjt14+ Cj42s C}+3}

in Cy with ¢ju1. ¢js2. ¢js3 & Cj, fora < b in J(D).

The set A of intervals of A satisfies Requirement 1 with respect to the colorings ;.

We have the ideal A’ = AN (C}, x C}) of A. Let us denote its maximal element by iy,
that is A" = (i4/]4. The set of intervals A’, those elements of A that are intervals in A’,
satisfies Requirement 1 with respect to the colorings /.

We extend A first by applying the the W¢3-construction to all intervals in A, and then,
in the resulting lattice, applying the 9{s-construction to all intervals

[(cjs iy )» (ciaas diiy)]

where [c;, ¢j43] is either an (a, b)-interval in C(’) fora < b in J(D') or [cj, cis3] is an
(a, b)-interval in Cy, with ¢j41, ¢js2. Cj43 ¢ C), for a < b in J(D). The resulting lattice L
is planar, and neither it nor its ideal L' = (iy/], determined by A’, has any automorphism
other than the identity mapping.
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4. Generalized coloring. In [11], we presented a generalization of the ¥)¢3- and
Ns-constructions of Section 3 as follows.

Let L be a lattice and let A be a set of proper intervals in L, that is, intervals with more
than one element. We define a lattice L[A] by adjoining the family of new pairwise distinct
elements {m; | I € A} to L, and requiring that u < m; < v, for each I = [u.v] € A.

We associate with x € L[A] the elements x and X of L: for x € L, set x = x = x; for
I =1[u,v] € A, set m; = u and /m; = v. We then, more formally, define the relation < on
the set L[A] as follows:

x <yifandonlyifx=yorx <, y,

where <; denotes the partial ordering in L.

Then it follows easily that ( L[A], <) is a lattice extending L. If X is a subset of L[A],
then \/ X exists in L[A] if and only if either there is an x € X such that, for all y € X,
we have x > y, in which case \/ X = x; or there is no such x and \/, (% | x € X) exists, in
which case

VX=ViE|xeX.

where \/ ; is the complete join in L; and dually for A.
For the P¢3-construction, A is a set of intervals in the lattice A that satisfy Require-
ment 1 of Section 3. For the Js-construction, A is the set of intervals

[(Cis dé(1)>s <Ci+3~ d&(i)>]

in the lattice obtained by applying the ¥¢3-construction to A, where the [¢;, ¢;y3] are
(a, b)-intervals in the chain Cy.
The following result describes which congruences extend from L to L[A]:

THEOREM 5 (ONE POINT EXTENSION THEOREM [11]). Let A be a set of nontrivial,
nonprime intervals in the lattice L, and let © be a congruence relation on L. Then © has
an extension O[A] to L[A] if and only if © satisfies the following conditions and their
duals (see Figure 13):

vV Xx

u u

Condition (3.1) Condition (3.2)

FIGURE 13

(1) Forlu,vl]€ A, x,y € Lwithy <vandu <x,

y=v (©) impliesthat x=vVx (0).
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(2) For[u,v], [u,w) € A, withv #wandy € Lwithy <,
y=v (©) impliesthat vAw=u (0).
The extension O[A] of O to L[A] is unique. It can be described as follows: For all
a € L[A], set a=a (O[A]). Foralla, b € L[A], witha # b, set
a=b (O[A]
if and only if the following three conditions hold:
(3) anb=aVb (O)
(4) aNb e LoraAb ¢ Landthere is an x,n, € L with
Xapp > alNb and  xgpp=alAb (O).
(5) avVbeLoraVb¢Landthereisay, € L with
Yoo <aVb and ypp=aVb (0).

An interesting special case can be developed by generalizing the concept of coloring
from Section 3. Let P be a set of nontrivial intervals in a lattice L. A (generalized)
coloring ¢ of L by a set X is amap ¢: P — X. In this generalization, L need not be a
chain, nor need the intervals in P be prime—they need only be nontrivial.

Foreach i =0, 1, let A; be a lattice with a coloring ¢;: P; — X. Let A be a sublattice
of Ag X A;. We consider a set A of intervals in Ag X A; of the form Iy X I} with Iy € P
and I} € P; such that each interval in A is a subset of A. In analogy to Requirement 1 of
Section 3, we require of A:

REQUIREMENT 2. A'is a set of intervals in A of the form Iy X I}, I; € P;, satisfying

4-1) If Iy x I} € A, then Iy =1,¢;.
(4-2) For each x € Pypo NP1y, thereisaly X I} € A
with Ippo = 1) = x.
(4-3) Foreachi=0, 1, if I, I' € P; are distinctand I'p; = I'p;,
then there are I € P;, J, J' € P,_; with
IXJ, IxJ, I'xJ, IxJ €A, ifi=0,
IXL XL J xI',J xI€eA, ifi=1.

We form the lattice A[A]; let us denote the element my,»;, € A[A] by m(ly, I}).

Recall that any congruence relation ® on the lattice Ag X A; is of the form Oy x O,
where, for i = 0, 1, ©; is a congruence relation on A;. We consider congruence relations
© on A which are restrictions of such congruence relations ©y X ©; on Ay X A;. The
next result is an application of the One Point Extension Theorem to determine which
such congruence relations on A extend to A[A].

THEOREM 6 (EXTENDED COLORED PRODUCT EXTENSION THEOREM). Let the set of
intervals A satisfy Conditions (4-1), (4-2), and (4-3). The congruence relation © on A
that is the restriction of ®y X ©) € Con (Ag X A|) extends to A[A] if and only if the
following two conditions and the dual of the second condition' hold:

! In dualizing, we only dualize for the lattices, not their congruences; thus, Condition (6.1) is self-dual.
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(1) Forly € Py, I, € Py, lf[o;po =1y, then
Oly) < Oy is equivalent to O(I}) < Oy.

(2) Fori=0,1, if[u,v] € P;with[u,vlp; € PopoPpi, and if thereisay < v with
y=v (0;), then O(u,v) < 0O,
In that event, the extension is unique.

PROOEF. Since none of the intervals in A are prime, the One Point Extension Theorem
applies. We note that in the present case Condition (5.1) is equivalent to the stronger
condition:

(5.1 If [u,v] € Aandthereisay < vwithy =v (0), thenu =v (0).
Indeed, if u = (ug, uy), v = (vo, v1), x = (ug, v ) then, by Condition (5.1),

v =(vo,v1) = {ug,vi) V (v, v1) = (ug, v1) (O).

and, similarly,
V= <V(). V|> = <V0. u1> (@)

Consequently,
u={up,uy) = {ug, vi) AN{vo.u;) =v (0),

establishing Condition (5.17).

Note also that Condition (5.2) follows immediately from Condition (5.1%). Thus, in
view of the One Point Extension Theorem and the principle of duality, we need only
show that the conjunction of Conditions (6.1) and (6.2) is equivalent to Condition (5.1%).

Let Conditions (6.1) and (6.2) hold. Let [(ug, u1). (vo.vi)] € A, and let (yo.y1) <
(vo, vi) with (yo,y1) = (vo.v1) (@). Without loss of generality, we may assume that
yo < vg. Since yp = vy (Qy), it follows from Conditions (4-1) and (6.2) that uy = vy
(©y). Again, since [ug, volpo = [u1, vi]ei, it follows from Condition (6.1) that u; = v,
(©)), establishing Condition (5.1%).

Now let Condition (5.1*) hold. Then the following condition is an immediate conse-
quence:

(4-4) If [{ug, uy), (vo,v1)] € A, then ug = vy (Qp) if and only if u; = v, (©)).

Indeed, if uy = vy (Op), then set y = (ug, v;) in Condition (5.1%), and conclude that
(g, vo) = (uy,v) (O©), that is, that u; = v; (©y). Similarly, if u; = v, (), then
setting y = (uy, vo) yields ug = vo ().

We first establish Condition (6.1). Let Iy € Py, I} € Py with Iy = 11, = x. Then,
by Condition (4-2), there is I X J € A with Iy = J¢| = x. By Condition (4-4),

(4-5) 0() <0y < 6() <0,
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If I = Iy, then, obviously
(4-6) Ol <Oy < O() < 0y.

If, on the other hand, I # I, then, by Condition (4-3) with i = 0 and I’ = I, there are
1€ Py, J,J' € Py with

IxJ, IxJ, IgxJ, IxJ €A.
Then, by Condition (4-4),
O <) < O()) <O, < O() <) < O(J) <0, <> 0O < Oy.

That is, if 1 # I, we again have (4-6).
Similarly,

4-7) o) <0, < 06() <0,.
Combining (4-5), (4-6), and (4-7) we get
Oy <Oy < 6) <06,

establishing Condition (6.1).

Next, we establish Condition (6.2).

Leti = 0. Let [u, v] € P with [u,v]pg € P1pj, and let y < v withy = v (0y). By
Conditions (4-2) and (4-3), there is an interval [u, v;] € Py with [{u,u;), (v, v)] € A.
Now (y,vi) < {v,v;) and (y,vi) = (v,vi) (©). Then, by Condition (5.1*), (u, u;) =
(v,v) (©),and sou = v (0y), establishing Condition (6.2) for i = 0. A similar argument
establishes Condition (6.2) for the case i = 1.

Consequently, we conclude that the conjunction of Conditions (6.1) and (6.2) is
equivalent to Condition (5.1*). Theorem 6 then follows by the One Point Extension
Theorem. n

We denote the extension of © to A[A] by ©p X4 O;.
Theorem 6 is a generalization of the Colored Product Extension Theorem, introduced
in [11], and also used in [9].

5. The proof of Theorem 1. We refer the reader to the summary at the end of
Section 3. If D and D’ are both Boolean and 1) is an isomorphism, then, as observed
there, taking L = L’ a chain of length |J(D)| establishes the theorem. Otherwise we
proceed via the chains Cy and C| and their colorings.

The lattice L and its ideal L’ are planar and admit only the identity automorphism, as
demonstrated in Section 3. We need only formally establish isomorphisms

0:D—ConL
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and
o't D' — ConlL

such that g followed by restriction to L' is ¥’

The result of applying the ¥)¢3-construction to the lattice A for all the intervals in A
is, in the notation of Section 4, the lattice A[A], and its ideal (i4/] is A/[A’]. In Section 3
these lattices were denoted K and K’ respectively. We first determine the congruence
relations on these lattices.

LEMMA 7. The congruence relations of the lattice A[A] are precisely those of the
form ©g X4 A Oy where, fori =0, 1, ©; is a congruence relation on C; satisfying:
(1) Forpg € Ip Co, p1 € Ip Cy, if poo = P11, then

O(py) < Oy is equivalent to O(p;) < O.

PROOF. Denote the largest element of C; by d,—usually, t = r + ¥/, but it may be
larger, as in the discussion following the proof of Lemma 4 in Section 3. The smallest
element of Cy is denoted ¢(. Since

Co X {d,} CA

and
{co} x C1 C A,

it follows easily that any congruence relation on A is the restriction of a congruence
relation ®y x ©;, where ©; is a congruence relation on C; fori =0, 1.

We apply Theorem 6, the Extended Colored Product Extension Theorem. For each
i=0,1,weset P; = Ip C;.Since A satisfies Requirement 1 of Section 3, Conditions (4-1),
(4-2), and (4-3) hold. Furthermore, Condition (7.1) is equivalent to Condition (6.1). Since
all the intervals in Py and P; are prime, and since Cyy and C; are chains, Condition (6.2)
and its dual hold trivially. Thus the lemma follows from Theorem 6. ]

Recall that A’, the set of those elements of A that are intervals in A’, satisfies Require-
ment | with respect to the colorings «p,’- . Thus, exactly as above, we have:

LEMMA 8. The congruence relations of the lattice A'[N'] are precisely those of the
form ©y X4 n ©1 where, fori =0, 1, ©; is a congruence relation on C} satisfying:
(1) Forpy € Ip Cj, p1 € Ip C}, if Pop) = P1p}, then

O(po) < Oy is equivalent to O(p;) < Oy.

We now formally describe the application of the J{s-construction to the lattice A[A]
referred to in the summary at the end of Section 3. We let I be the set of those intervals
of the form

(¢, cjaal X {dsjy
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where [cj, cj3] is either an (a, b)-interval in C{) for some a < b in J(D'), or is an
(a, b)-interval in Cy for some a < b in J(D) with ¢ji1. ¢js2, ¢js3 ¢ Cpy. Then

L=A[A][T].

If T” is the set of those elements of T that are intervals in A’[A’], then it is the set of those
intervals of the form
lcj. i3] X {dsy}

where [¢;, ¢j:3] 18 an (a, b)-interval in Cj, for some a < b in J(D'). Then
L' =A"[AT].
We describe the congruence relations of L:

LEMMA 9. The congruence relations of the lattice L are precisely those of the form
(©g xXa.n ONDIT], where O is a congruence relation on Cy and O, is a congruence
relation on C| satisfying:

(1) Foreach ik € {0,1}, and each p € Ip C;, q € Ip Cy with qp; < Py,

ifO(p) < ©;, then ©(q) < O.

PROOF. By Lemma 7, the congruence relations of A[A] are precisely those of the
form ¥ = (©g x 4.4 ©1) such that Condition (7.1) is satisfied. Any congruence relation on
L = A[A][I'] is the extension of a congruence relation on A[A]. Note that Condition (7.1)
is just the special case of Condition (9.1) with i # k and q¢; = py;. Thus, we need only
show that a congruence relation on A[A] of the form

Y =0) x4 0

extends to A[A][I'] if and only the full Condition (9.1) holds.

We apply Theorem 5. Note that no interval in T is prime. Condition (5.2) and its dual
hold vacuously. Consequently, ‘¥ extends to L if and only if Condition (5.1) and its dual
hold for ¥ and T', and then the extension is unique.

We show that in the present situation Condition (5.1) and its dual are equivalent to
Condition (9.1).

Let Condition (9.1) hold.

First, we show that Condition (5.1) holds: If [u, v] € T, then there are a, b in J(D) or
J(D') witha < b and u = (¢j. dy;)), v = (cjs3, dsjy) where [cj. cjs3] is an (a. b)-interval in
Co—see Figure 14. Now, y < vin A[A] implies that y < <Cj+7_. d(\(j)>, by the definition of
A. Thus, y = v (V) implies that

Ci+2 = Cj43 (©y).

Since the intervals [(c;. ds))- (Cj1- dsy)] and [(ci2. ds(j))- (cja3- dy(;)] are projective in
A[A], we conclude that
¢ = ¢ (Op).
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<Cj’d5(1)+l>

FIGURE 14

Furthermore, and using the fact that ¥* is isotone in the case of a, b € J(D'), we observe
that

[cjs15 cialpo < [cjv2, cia3lwo:
consequently, by Condition (9.1) withi =k =0,
Cisl =cjr2 (Op).
Thus
¢ =cis3 (Oo),

and so u = v (W), and Condition (5.1) follows immediately.
Next, we verify the dual of Condition (5.1). Set

m = m([c}, cjs1], [ds() dsiye1 -

the element that was added to [cj, ¢ji1] X [ds(j), dsj+11 in going from A to A[A]. Let
y > u = (cj, ds;)). Then

y = {cjs1 dsj)-
or

¥ 2 {¢js dsgjys)-
or

y>m

—see Figure 14. If y = u (‘) we conclude, in each case, that
Cj = Ci+l (@0).

and so, exactly as above, that u = v (), establishing the dual of Condition (5.1).
Finally, let Condition (5.1) and its dual hold—all we really need is Condition (5.1).
We, of course, have Condition (7.1). We next establish Condition (9.1).
We first consider the case where q¢; = py; in the hypothesis of Condition (9.1). If
i # k, then the conclusion follows by Condition (7.1).If i = k and q = p, the conclusion is
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immediate. If i = k and g # p, then, since A satisfies Condition (3-6) of Requirement 1,
we get

(5-1 if ©(p) < ©;, then ©(q) < ©;

by Condition (7.1).

We are then left with the case q¢; < py;. We can restrict ourselves to the case
i = k = 0. Indeed, by (b) of the summary at the end of Section 3, there are prime intervals
g’ and p’ in Cy with

a'vo = 9
and

p'p0 = pei.
(If k =0, then q’ = g, and if i = 0, then p’ = p.) By Condition (7.1), we then need only
show

if O(p") < Oy, then O(q") < Oy.
Consequently, we may assume that i = 0 and that
apo < Ppo

with
O(p) < 6y.

Since (Ip Cp)¢o contains all non-isolated elements of J(D), we may further assume that
apo < Peo

(in J(D)). Set a = qpo, b = pyo, and let [cj, cjx3] be an (a, b)-interval in Cy with
Cjr1+ G2, Gz & €. By (5-1),
Ci+2 = Cj43 (©9).

We consider the interval
(u.v] = [{¢j-dsij)- (cjsz- dsp)] €T
—see Figure 14. In Condition (5.1) set
y = (2 dsy)

and
x = (¢js dsgipr1)-

Then
y=v (¥)

and so, by Condition (5.1),

(G3+dsper) = vV x =x= (g dspn1) ().
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Taking the meet with (cj.3, ds;)), we get

(¢, doy) = (2 dsy) (P
and so
Civl = cjpa (Op).
Since
[ci+15 Cis2)wo = a = qpo,

we conclude, by (5-1), that O(q) < Oy, establishing Condition (9.1), and thereby con-
cluding the proof of Lemma 9. L]

Similarly, for L', we have:

LEMMA 10. The congruence relations of the lattice L' are precisely those of the form
(©g Xarn O[], where Oy is a congruence relation on C(’) and ©; is a congruence
relation on C\ satisfying:

(1) Foreach ik € {0,1} and each p € C}, g € Ip C with gy, < p¢!,

ifO(p) < ©;, then O(q) < 6.
We now proceed to establish the isomorphisms
0o:D—ConL

and
o':D'—ConlL.
We first define p. Let x € D. For each i = 0, 1, we define a congruence relation ©; on
C;; foru, v € C; with u < v set
u=v () < pyp; <xforeachp €Ip [u.v].

Then the congruences @, O} satisfy Condition (9.1). Consequently we have the con-
gruence ©° € Con L defined by

0" = (8} x4 ODITT.

Set xp = ©'. We show that p is an isomorphism D — Con L.

We first show that p is surjective. Let ¥ be a congruence relation on L. By Lemma 9,
there are congruence relations ¥, on Cy and '¥'; on C, satisfying Condition (9.1) such
that

Y= (Yo xan ¥DITT

Set
x=\p(pei | p €Ip C withO(p) < W,.i=0.1).

We need only show that, foreach i =0, 1, ¥; = ©].
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Letu <vinC;withu=v (¥;) and let p € Ip C;. Then
O(p) < Ou,v) <Y,

Then, by definition of x, pyp; < x. But, by definition of ©}, we conclude thatu = v (©Y),
thereby establishing

¥; <O
On the other hand, let u < v in C; with u = v (©7). Then, by definition of O], for all
p € Ip [u, v], pp; < x. By the definition of x and since p; is join-irreducible, there is a
k=0,1and q € C, with O(q) < ¥, and py; < qy,. By Condition (9.1), we conclude
that O(p) < ¥;. Consequently, u = v (¥;), and so

or <Y,
also, thereby showing that
Y =0;,
establishing the surjectivity of p.
Next, we show that
(5-2) x0 <yo & x<y.

If x <y, then, for each i, ©f < ©, and, so, xo < yp. If, on the other hand, xo < yo,
then ©f < ©) foreach i € {0,1}. Let a € J(D) with a < x. Then, by observation (a) in
the summary at the end of Section 3, there is ani € {0, 1} anda p € Ip C; with

bpi=a<x
Consequently, by the definition of O,
O(p) <6 <6;
which, by definition of ©}, implies that
a=pp; <.

Thus, if xo < yp, then x <y, establishing (5-2).
The surjectivity of g and (5-2) establish that g is an isomorphism.
Similarly, for each x € D" and i € {0, 1}, we have the congruence relation ©’; on C!
given by
u=v (@) & py! <xforeach p € Ip [u,V]

for u < v in CJ. Setting
x0' = 0" = (0 x4 x ODIT]

yields an isomorphism o’: D’ — Con L'.
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We now determine o followed by restriction to L. Let x € D. Since o’ is an isomor-
phism, the restriction to L’ of xo = ©* is of the form

yo' = 0" = (0 x4 n O]

for some y € D', where, for each i, ©'] is the restriction to C; of ©}.
We claim that
y=xy.
We need only show for each a € J(D') that

a<y < ay" <x

By (c) of the summary at the end of Section 3, there isan i € {0.1}and a p € Ip C;
with a = py;. Then

a<y <= pp] <y <> O(r) <0 in Con (]
by definition of ©". Thus, since ©" is the restriction to C; of @,
a<y <= 0O(p) <06;in Con C.

So, by definition of ©7,
a<y & pp; <x

Now,
pei = ppi* = ay*
and consequently
a<y << ay" <ux,

showing that p followed by restriction to L' is 1)0’, and thereby concluding the proof of
Theorem 1.

6. Representing groups. In this section, we construct, for each group homomor-
phism n: G — G, a simple lattice H with automorphism group isomorphic to G and
containing an ideal H' with automorphism group isomorphic to G’ such that each au-
tomorphism of H restricts to an automorphism of H’ where the restriction is naturally
equivalent to the mapping 7. The results in this section are related to results in [13]
and [1]. Although our construction is inspired by R. Frucht [4], the presentation is
self-complete and does not use any of the results in these works.

We use the term digraph for a directed graph (the edges have a direction) without
multiple edges—for each pair of vertices v, w, there is at most one edge from v to w. The
digraphs we consider here will also have no loops, that is, the ends of any edge will be
distinct. Thus a digraph D is a structure (V, R) where V is the set of vertices and R, the
set of (directed) edges, is a subset of V2 disjoint from the diagonal. We say that a digraph
D’ = (V',R') is a full subgraph of a digraph D = (V. R) if V/ C Vand R’ = RN V', that
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is, if for any v, w € V', there is an edge from v to w in D’ iff there is an edge from v to
win D.

The term graph denotes an undirected graph without multiple edges and without
loops. Thus a graph G is a structure (V, E), where V is the set of vertices and E, the set
of (undirected) edges of G, is a set of two-element subsets of V. We say that a graph G’
is a full subgraph of a graph G if all the vertices of G’ are vertices of G, and any pair
of vertices of G’ are joined by an edge of G’ iff they are joined by an edge of G.

By a labeled digraph D = (V,R. \) we mean a digraph with vertices V, a set R of
directed edges (that is, R C V? and R is disjoint from the diagonal), and a surjective
mapping A: R — X, where X is a set of labels. An automorphism o of a labeled digraph
D is a bijection &: V — V such that Re’® = R and such that, for each edge (x,y) € R,
we have that (x, y)\ = (xc. yoo) .

We associate with each group G its Cayley digraph D(G) = (G, Rg, \g), where

R ={(s.h) € G’ | g # h}
and (g, h)\g = gh~'. The automorphism group of D(G) is isomorphic to G; we associate
with the element g € G the automorphism «, defined by ha, = hg foreach h € G.
Given the groups G, G’ and the homomorphism 1: G — G’, we construct a labeled
digraph D(n) = (V,, R, \,), where
V,=GUG,
R, =RcURyU{(g.gn) | g € G},
and the labeling ), is defined by setting
(g.h) g =gh™", if(g.h) € Rg;
(g:h)xy =3 (&.h)Ae = gh™', if (g.h) € Ror;
n, ifge Gandh = gn.
Thus D(#) is the disjoint union of D(G) and D(G’) with new directed edges (g, gn),
all with label 77, added—see Figure 15. We note that the Cayley digraph D(G’) is a full
subgraph of the digraph D (7).
With each g € G, we associate a mapping o, : V, — V, by setting
hg, iftheG;
hag = . ,
hgn, ifheG.
We recall the isomorphism G’ — Aut D(G’) which associates with each g € G’ the
automorphism a;, of D(G’) determined by setting ha, = hg.
LEMMA 11. For each g € G, the mapping o, is an automorphism of the labeled
digraph D(n). The mapping 7. G — Aut D(n), defined by setting
8N = Ay,

is a group isomorphism. For each g € G, a, restricts to the automorphism a;,l of D(G').
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D(n)

FIGURE 15

PROOF. Let g € G. It is clear that o is a bijection on V.
If g1, g» are distinct elements of G, then
(21,8200 = 818" = (218)(828) " = (810, g200) N

If g1, g are distinct elements of G’, then

(81,8200 = 2187 = (€18m)(g28m) ™" = (g1t g20xg) N,
If g1 € G, then
(gr-gm)A; =n
and
gragn = (818)n = (g11)(g1) = g1 Ag.

Consequently,

(8104, g1Ng) € R,
and, clearly,

(81060, g1MA)N, = 1).

Thus, for each g € G, the mapping «, is an automorphism of the labeled digraph D(7).
We now show that each automorphism p of the labeled digraph D(#) is of the form
a, for some g € G. Let us denote the identity of G by e and the identity of G’ by ¢’. Set

g = ep.

Since the vertex e of D(7) has a directed edge labeled by 7 exiting from it, namely, the
edge (e, '), it follows that so does g; therefore,

g€G.
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We claim that ¢ = «,. Indeed, if & € G, then

h=(h e\, = (ho,eo)\, = (ho,g)\, = hog ",

and so
ho = hg = ha.
Now,
n=(e.e)Ay = (ee.e'0)\; = (g.€'0) Ay,
and so

eo=gn.
Then, if h € G, we get as above, with e replaced by €',

ho = hgn = hog,

establishing our claim.

Thus 77: G — Aut D(n) is surjective. Clearly, o, = ), implies that g = h and, equally
clearly, &), = aga—thus 7 is an isomorphism.

The final claim of the lemma is clear; the proof is complete. n

We now show how to associate a lattice with any labeled digraph in such a manner
that the automorphism group of the digraph corresponds to the automorphism group of
the lattice, and such that any full subgraph corresponds to a sublattice. This is done in
several steps; with the labeled digraph we first associate a (unlabeled) digraph, with that
digraph we then associate a graph, and, finally, with the resulting graph we associate a
lattice.

We first show how to associate a digraph with any labeled digraph. Note that any
ordinal Y can be considered to be adigraph; (3, 32) isadirected edge iff 3; < (3,;then the
only digraph automorphism of v is the identity, and distinct ordinals are nonisomorphic
digraphs. Let D = (V. R, \) be a labeled digraph and let X denote the set of labels. For
each x € X, we choose an ordinal ¥, > 3 so that distinct ordinals are chosen for distinct x.
For each directed edge (v, w) € R, we take a digraph O, ,, = (V,.,, R,,,) corresponding
to the ordinal 7, ,,y, in such a manner that the digraphs associated with distinct edges
are disjoint. Let us denote the vertex of O,,, corresponding to 0 € v, ), by 0,,,. We
construct a digraph Dy = (Vp, Ry) from D by replacing each directed edge (v, w) of D
by the subgraph depicted in Figure 16.

More formally,

Vo= VUV | (v,w) € R}

and
Ro={(v.0vy) | (v,w) € R}U{{(0y.w) | (v.w) € R} U J{R | (v,w) €R}.

Each automorphism of D extends naturally to an automorphism of Dy in a unique
manner; if v — v’ and w +— w/, then 0,,,, — o, ,+ and, since (v, w)A = (', w') ), there
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FIGURE 16

is a unique isomorphism O,,, — O, ,, with 0,,, +— o0, . It is also easy to see that
each automorphism « of Dy is such an extension of an automorphism of D. Indeed, the
elements v of V satisfy the following two conditions in Dy:

If wy 'r‘( w, and <W1. V>, <W2. V> € Ry, then <W1, W2> ¢ Ry.
If wi # ws and (v, wy), (v.w2) € Ry, then (wy, w2) ¢ Ro.
Each element of any O, fails at least one of them, since O, is an ordinal with at
least four elements. Thus, Vo = V. If vao = V' and wa = w’, then, since o, is the
unique element y of Vi with (v, y), (y,w) € Ry and o, is the unique element y of V
with (', y), (y,w') € Ry, we conclude that o, ,,a = 0,/ and so it follows easily that
Vywa = Vi, that is, that O, ,, is isomorphic to O,/ ., that is, that (v, w)A = (', w') .
We next associate with the digraph Dy a graph G = (V|, E) where E is the set of
(undirected) edges and Vy C V,. We do this, following R. Frucht [4], by replacing
each directed edge (v,w) of Dy by the graph depicted in Figure 17. It then follows

FIGURE 17

easily that any automorphism of G is the extension of a mapping Vy — V which
is an automorphism of Dy, and that any automorphism of D extends uniquely to an
automorphism of G.

Thus, summarizing, with each labeled digraph D with vertex set V we associate
a graph G = (V,.E), with vertex set V; O V and set of edges E, such that each
automorphism V — V of D extends uniquely to an automorphism V; — V; of G,
and such that each automorphism of G is so obtained. It is also clear that the above
construction preserves the property of being a full subgraph.

Finally, as in R. Frucht [5], from G we form the lattice

H=V,UEU{0,1},
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where, forall v € Vy anda € E, the relations0 < v < 1 and0 < a < 1 hold;letv < ain
H iff v € a. Note that H is of length three. It is easy to prove that the lattice H is simple
if the graph G has the following property:

6-1) For v € Vi, there are ag, a) € E withv ¢ ag.a, and ag Na, = .

The automorphisms of the lattice H correspond to automorphisms of the graph G since
the vertices of G are the atoms of H. It is also clear that the lattice associated with any
full subgraph of G is a {0,1 }-sublattice of H.

Applying these results to the labeled digraph D(#) and its full subgraph D(G),
we get a graph G and a full subgraph G’ and so, a lattice Hy, a {0,1}-sublattice Hy,
and isomorphisms 7: G — Aut Hy, 7': G’ — Aut Hj, such that, for each g € G, the
automorphism g7 restricts to the automorphism (gn)r’ of Hj. The graph G satisfies (6-1);
thus the lattice Hy is a simple lattice.

If the group G’ is the trivial group {e’}, then Hj is the three-element chain {0, ¢’, 1}
and ¢’ is fixed by each automorphism of Hy. We set H = H; and set H' = {0, ¢'}. Let us
denote the element ¢’ by iy. Then H is a simple lattice of length 3 whose automorphism
group is isomorphic to G. The lattice H contains a simple ideal H' = (iy] of length 1
such that each automorphism of H is an extension of the identity map on H’.

If the group G’ is not trivial, then the graph G’ satisfies (6-1), and so H|, is a simple
lattice. Let H' be a lattice isomorphic to H}, and disjoint from Hy, and let u: H' — Hy
denote the embedding of H' as the sublattice H(’) of Hy. Let H; be the ordinal sum of
H’ and H, with the unit element of H’ identified with the zero element of Hy—we will
denote this element of H, by iy. Let the set A of intervals of H| be defined by setting

A={lxxul | x € H —{0.iy}}

where 0 denotes the zero of H'. We apply the One Point Extension of Section 4 to
get the lattice H = H [A]—see Figure 18. It is easy to see by Theorem 5 that H is a
simple lattice. Now H’ is the ideal (iy] of H. It is also easy to see that there is a one-
to-one correspondence between the automorphisms of H and those of Hy whereby the
automorphisms of H{, correspond to the automorphisms of H'; the doubly-irreducible
element my, y,; ties together the element xu of Hy with the element x of H'. We observe
that that the length of H is 6, and that of H' is 3.

Note finally that if G and G’ are finite, then so is the labeled digraph D(n). Since there
are only finitely many labels, we can choose all the graphs O, ,, to be finite, and thus
the resulting digraph D (7)) can be chosen to be finite. Then the corresponding graph is
finite, and so the lattice H is finite.

We thus have the following lemma:

LEMMA 12. Let G, G’ be groups and let : G — G’ be a group homomorphism. Then
there is a simple lattice H of length at most 6 with an ideal H' = (iy] of length at most 3
which is also simple. There are isomorphisms

TTH: G— Aut H
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O My )

FIGURE 18

and

T G — Aut H'
such that, for each g € G, the automorphism gty of H restricts to the automorphism
gnryy of H'. Furthermore, if G and G’ are finite, then so is the lattice H.

As a final comment, we should like to remark that, starting with the labeled graph
D(G) rather than the more complicated D(7) if we wish, we have a proof that any
group G can be represented as the group of automorphisms of a graph. This proof is an
alternative to the proof in G. Sabidussi [14] and is more in the spirit of R. Frucht’s [4]
proof for the finite case.

7. The proof of Theorem 2. We show how to combine the results of Section 3 and
Section 5 to prove Theorem 2.

Let us, henceforth, denote by Oy the smallest element and by 1 the largest element
of the lattice H constructed in Section 6. We modify the chain C; by replacing d,., the
largest element of C}, by the lattice H, thereby obtaining a lattice A; which is never a
chain—see Figure 19. The ideal (Oy] of A; will be regarded the same as the chain C’I R
and the dual ideal [1) will be regarded the same as the chain [d,), that is, the same as
(C1 — C)) U {d,}.The former topmost prime interval [d._;,d,] of C| now corresponds
to [dy_1, Oy, and the former prime interval [d,, d,,, ], the bottommost prime interval of
C, that is in C}, now corresponds to [1, dy4]. We set A} to be the ideal (iy] of A;. In
the construction in this section, A; will play the role of C; and A} will play the role of
Ci.

For uniformity of notation, we henceforth set

Ay = Cy

and
Ay = Co.
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FIGURE 19

We extend the coloring ¢ of Ip (Oy] = Ip C} to A]. Since, by the hypothesis of
Theorem 2, J(D') is not empty, we choose any minimal a € J(D') and set py| = a for
all p € Ip [Og, iy]. We similarly extend the coloring ¢ by setting pp; = ayy* for all
p € Ip H. Then we still have

per = by forall p € Ip Aj.

In Section 3 we did not have with the automorphisms of L’ those difficulties associated
with the automorphisms of L discussed just before Lemma 4, essentially because Cj is
trivial if D’ is Boolean. However, here, these difficulties can arise for L'. If D’ is Boolean,
then A} = [On, inxl; if [cy_1,cylpy = a, a as above, (recall, [cy_y,cy] is the topmost
prime interval in A{)), then the doubly-irreducible (cy, Of) can be switched with some m
introduced in applying the W¢3-construction to an interval [cy_1, cg] X [0y, u], where u
is an atom of H' = (iy].

A similar difficulty can occur on the other side of L' when D’ is Boolean and G’
is trivial, that is, when iy is join-irreducible in Aj—then we may have [co, 1] =
[0n. inle).

These difficulties can be alleviated exactly as in the discussion following the proof
of Lemma 4 of Section 3—extend A{, and C} by adding more prime intervals colored a.
Finally, if D" is Boolean and G’ is trivial, we can thereby arrange that Aj, and A{, which
is in this event a chain, are of different lengths, thereby preventing the interchange of
axes in L.

Note that for each (a, b)-interval [c;j, ¢j,3] in Cy, [a, b] a prime interval in J(D') orin
J(D), we still have dj; in the chain (A} — H) U {1}. Then, exactly as in Section 3, we
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consider the sublattice of Ay X A; determined by

vEA| incase ¢og < u < cy;

v > ds(y430) incase ¢yy3 < u < cyaaipg for 0 <i <n's

(u,v) €A = .
V 2> dsge3nadiys N CASE Cyyapresi < U < Cyidniiins

for0 <i <n.

Note that Ay x H C A.
Again, as in Section 3, we define a set A of intervals of the form p x q, p € Ip Ao,
g € Ip Ay, in A by requiring that
ifp x g CAwithp €Ip Aj, q € Ip A}, then

pXqEAN & pp)=q¢),

except that if D’ is Boolean, if p is the topmost prime interval in Aj, and if q is a
bottommost prime interval in A}, then

pxaqégA,
and if D’ is Boolean and G’ is trivial, then
[co. 1] X [On.in] ¢ A;
if px g C Awithp ¢ Ip A), and with g € Ip A}, then
pxXgeAN = ppo=qpi.

except that, if D" and D are both Boolean, if p is the topmost prime interval in Ag, and if
q is a bottommost prime interval in A, then

pxqgA;
if p x g CAwithp € Ip Ay and with g ¢ Ip A}, then
PXaEA < ppo=q¢r.
except that, if D’ and D are both Boolean and q is the topmost prime interval in A, then
[co.c1] X q ¢ A.

We set
A :Aﬂ(A{, xA’,),

that is, A’ is the ideal ({cy 3, iy)] of A, where ¢y 3, is the largest element of the chain
Aj. We let A’ be the set of those intervals in A that are subsets of A’.
Then, exactly as in Lemma 3 of Section 3, we have
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LEMMA 13. The set of intervals A" of A’ satisfies Requirement 1 with respect to the
colorings p!: Ip Al — J(D'). The set of intervals A of A satisfies Requirement I with
respect to the colorings p;: Ip A; — J(D).

We then have:

LEMMA 14. The congruence relations of the lattice A[A] are precisely those of the
form ©y X4 A O where, fori =0, 1, ©, is a congruence relation on A; satisfying:
(1) Forpo €Ip Ao, b1 € Ip Ay, if Poo = P1p1, then

O(po) < Oy is equivalent to O(p;) < O.

PROOF. The proof proceeds exactly as that of Lemma 7, except that, since A; is not
a chain, we must verify Condition (6.2) and its dual. However, all the prime intervals in
H, the part of A, that is not a chain, have the same color under ¢, and this color lies in
(Ip Ap)po. Condition (6.2) and its dual thereby follow by Condition (14.1). [

Similarly, we have:

LEMMA 15. The congruence relations of the lattice A'[A'] are precisely those of the
form ©g X 4 o O where, fori =0, 1, ©; is a congruence relation on A} satisfying:
(1) Forpg € lp Ay, p1 € Ip Al if Doy = D1}, then

O(po) < Oy is equivalent to O(py) < Oy.
We now proceed exactly as in Section 5, with the obvious exception that C/ there is

now A/ and C; there is now A;. The definitions of the families of intervals T" and I'"" are
the same, and we again have lattices

L =A[A]T]
and
L' =A"AT].
The mappings
0:D—Con L
and

o': D —ConlL
are the same, and we have:

LEMMA 16. p and o' are isomorphisms, and composing o with restriction of congru-
ence relations to L' yields yg'.

We now determine the automorphism groups of L and L'.

Let g € G. We extend the automorphism g7y of H, determined in Section 6, trivially
to the rest of A;, thereby getting oy € Aut A;. We let g € Aut Ay be the identity map.
Since Aj x H C A and o maps H to H and acts trivially outside of H, it is immediate
that oy X o restricts to an automorphism of A.
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Clearly, o preserves g, and, since all prime intervals in H have the same color
under ¢, a; preserves ;. Furthermore, since automorphisms preserve height, the set of
exceptional intervals p X q that are excluded from A is preserved by the automorphism
ap X a; on A. Consequently, the restriction of op X ) to A extends to an automorphism
a[A] of A[A]. Since « acts trivially outside of H, the automorphism a[A] acts trivially
on the set of intervals I, and thereby extends to an automorphism gr: L — L.

Similarly, for each g € G', we extend gr7,, € Aut H' to gr': L' — L’. We thus have
injective group homomorphisms

7: G— Aut L,
7' G — Aut L,

where, for each ¢ € G, gn7’ is the restriction of gr to L'. To complete the proof of
Theorem 2 we need only show that 7 and 7’ are surjective.

We proceed very much as in the proof of Lemma 4. Recall that ¢( is the minimum
element of the chain Ay. For the sake of notational convenience, let p henceforth be the
length of Ag; then ¢, is the maximum element of Ag. Similarly, we denote the maximum
element of A; by d, (it covers exactly one element, denoted d,_;) and the minimum
element by dy—this could possibly be 0.

Let or: L — L be an automorphism. All the elements of L — A are doubly-irreducible
in L, and none of them lies in an interval of L that is a four-element Boolean lattice. The
only elements of A doubly-irreducible in L are {co, d;) and, in the event that both D" and
D are Boolean, (c,, dy). Since

[co.cil X [di—1,d/) ¢ A,

the interval [{co, d;—1), (c1, d;)] in L is a four-element Boolean lattice.
Thus, if at least one of D’ or D is not Boolean,

(co.di)ax = {co, d,),

that is, o maps {co} X A; onto itself. It then follows easily that « restricted to A is of the
form o X « restricted to A, where o is the trivial automorphism of Ay and «; is the
extension to A; by the trivial action of an automorphism g7y of H for some g € G. Since
the elements of Ly — A are determined uniquely by those of A, we conclude that

a=gr.
If both D' and D are Boolean, then, since
[cp-15¢pl X [do. ul & A

forany atomu of A, the elements (c,, dy) and {cy, d) are the doubly-irreducibleelements
of L that lie in an interval that is a four-element Boolean lattice. Now, the ideal

[{co.do). (cp. do)] = Ag X {do}
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is a chain. However, the ideal

[{co. do), {co.di)]1 = {co} x A

is not a chain, since H is not. So, again,

{cord)ax = {co. d,).

and we conclude that

a=gr

for some g € G. Thus, 7 is surjective.

The proof that 7’ is surjective proceeds in an identical manner, except for the case
when D’ is Boolean and when G’ is the trivial group—in this case both A}, and A} are
chains. However, by explicit construction, in this case Ay and A} have different lengths,
and we then conclude that L' has only the trivial automorphism, which is of course '7’.

This concludes the proof of Theorem 2.

We remark that, in contrast to the proof of Theorem 1, we did not treat the case when
both D’ and D are Boolean and when both v and 7 are isomorphisms as a special case.

11.
12.

13.

14.
15.
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