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HOMOMORPHISMS OF DISTRIBUTIVE LATTICES 
AS RESTRICTIONS OF CONGRUENCES. 
II. PLANARITY AND AUTOMORPHISMS 

G. GRÀTZER AND H. LAKSER 

ABSTRACT. We prove that any {0,1 }-preserving homomorphism of finite distribu­
tive lattices can be realized as the restriction of the congruence relations of a finite 
planar lattice with no nontrivial automorphisms to an ideal of that lattice, where this 
ideal also has no nontrivial automorphisms. We also prove that any {0,1 }-preserving 
homomorphism of finite distributive lattices with more than one element and any homo­
morphism of groups can be realized, simultaneously, as the restriction of the congruence 
relations and, respectively, the restriction of the automorphisms of a lattice L to those 
of an ideal of L; if the groups are both finite, then so is the lattice L. 

1. Introduction. Let L be a lattice. It was proved in N. Funayama and T. Nakayama 
[6] that the congruence lattice of L is distributive. For a finite lattice L, the converse 
of this result was proved by R. P. Dilworth: Every finite distributive lattice D can be 
represented as the lattice of congruence relations of a suitable finite lattice L. The first 
published proof of this result is in G. Grâtzer and E. T. Schmidt [12]. Another proof of 
this result, in the same spirit, by the present authors, is given in [7], pp. 81-84. 

Based on the concept of coloring, which originated in S.-K. Teo [16], an entirely new 
proof of the above result was given by the present authors in [9]. It was furthermore 
proved that the finite lattice L can always chosen to be planar and to have only the 
identity mapping as an automorphism. This was applied in [9] to give a new proof of 
the following result due to V. A. Baranskiï [2], [3] and A. Urquhart [17]: for any finite 
distributive lattice D with more than one element and any group G, there is a lattice 
L whose congruence lattice Con L is isomorphic to D and whose automorphism group 
Aut L is isomorphic to G. If G is finite, then L can be chosen to be finite. 

Given a lattice L and a convex sublattice Z/, it is well known that the restriction 
map of Con L to Con Z/, sending each congruence relation of L to its restriction to 
Z/, is a lattice homomorphism preserving 0 and 1. Based on the proof of Dilworth's 
representation theorem given in [7], it was shown by the present authors in [8] that, 
conversely, any {0,l}-preserving homomorphism of finite distributive lattices can be 
realized by restricting the congruence lattice of some finite lattice L to the congruence 
lattice of an ideal L' of L. See E. T. Schmidt [15] for an alternate proof of this result. 
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4 G. GRATZER AND H. LAKSER 

In this paper we apply the methods of [9] to prove the following theorem, which 

improves the result of [8] by showing that we can enforce planarity: 

THEOREM 1. Let D and D' be finite distributive lattices, and let i/; : D —> D' be a 
{0,1}-preserving lattice homomorphism. Then there exist a finite planar lattice L, an 
ideal L' ofL, and lattice isomorphisms 

Q.D-^ Con L, Q':D' —> Con l! 

such that ipQf is the composition of g with the restriction of Con L to Con L'. Moreover, 
the lattices L and L' have no nontrivial automorphisms. 

By a nontrivial automorphism we mean one that is distinct from the identity mapping. 

In general, automorphisms of a lattice do not restrict to automorphisms of its ideals. 

However, we can construct lattices where this does happen: 

THEOREM 2. Let D and D' be finite distributive lattices with more than one element, 
and let i[i: D —> D' be a {0,1} -preserving lattice homomorphism. Let G and G' be 
groups, and let r]: G —> G' be a group homomorphism. Then there exist a lattice L, an 
ideal L' in L, lattice isomorphisms 

Q:D-+ Con L, Q': Df —• Con L', 

and group isomorphisms 

T : G —> Aut L, T'.G'^ Aut Lf 

such that, for each x G D, the congruence relation xipgf on L' is the restriction to L' of 
the congruence relation XQ on L, and, for each g G G, the automorphism gi]Tf of l! is 
the restriction of the automorphism gr ofL. 

If G and G' are finite, then the lattice L can be chosen to be finite. 

By identifying D with Con L, D' with Con L', G with Aut L, and G' with Aut / / , 

Theorem 2 can be paraphrased as follows: any pair i/>, a {0,l}-homomorphism of finite 

distributive lattices, and Q, a homomorphism of groups, can be simultaneously realized 

as the respective restrictions Con L —• Con L' and Aut L —^ Aut L' for some lattice L 

and some ideal L' in L. 

Note that we do not claim that the lattice L in Theorem 2 can be chosen to be 

planar—we do not know whether every (finite) group can be represented as the group of 

automorphisms of a planar lattice. If this were so, we could easily modify the construc­

tions in Sections 6, 7 to get the stronger result. 

The basic notation is explained in Section 2. In Section 3, we present the construction 

used to prove these theorems. It is based on the idea of coloring a chain, which originated 

in S.-K. Teo [16]. We discuss in Section 4 a generalization of this construction introduced 

in G. Grâtzer and H. Lakser [11]. This is then applied in Section 5 to prove Theorem 1. 

In Section 6, we modify a construction of R. Frucht [4] and [5] to prove the special case 

of Theorem 2 where D and D' are the two-element chain. Finally, in Section 7, we prove 

Theorem 2. 
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RESTRICTION OF AUTOMORPHISMS AND CONGRUENCES 5 

2. Notation. For any finite distributive lattice D, we denote by J(D) the partially 
ordered set of (nonzero) join-irreducible elements of D. Let SM^ denote the five-element 
modular nondistributive lattice, and let 3?5 denote the five-element nonmodular lattice. 

For a lattice A, let Con A denote the lattice of congruence relations on A, and let Ip A 
denote the the set of prime intervals in A, that is, the set of all intervals p = [w, v], where 
u < v (u is covered by v). We shall usually denote prime intervals in lower-case Fraktur 
font; p, q, and so on. If / = [w, v] is an interval of A, then for any lattice B and b G B, we 
use the notation / x {b} for the interval [(w, b), (v, b)] of A x B. Note that if p is prime, 
then p x {b} G Ip(A x B). 

For a (prime) interval / = [u1 v] in the lattice A, we shall denote by SA(I) or 0,4 (w, V) 
the congruence relation generated by the interval /. If A is understood, we use the notation 
0(7) or 0(w, v). Note that u = v (0) is equivalent to 0(7) < 0. 

For any structure A, let Aut A denote the group of automorphisms of A. 
Condition (1) of Theorem 5 will be referred to as Condition (5.1), and so on. 
We refer the reader to G. Grâtzer [7] for the standard notation in lattice theory. 

3. The basic construction. In this section we review the ideas introduced in [9] and 
show how the construction presented there can be modified to prove Theorem 1. 

The starting point is the classical duality between finite distributive lattices D and the 
posets of their join-irreducible elements J(D)—see [7], p. 62. The lattice D is naturally 
isomorphic to the lattice of hereditary subsets of J(D) (that is, those subsets H satisfying 
x G H and .y < x imply that y G //); a hereditary subset H of J{D) corresponds to the 
element \J(x\x £ H)of D. Let D and D' be finite distributive lattices and let 0̂ : D —> D' 
be a {0,1 }-preserving homomorphism. The homomorphism I/J then determines an isotone 
map ^* '- J(Df) —> J(D) determined by setting 

(3-1) ^ * = A D ( W ^ " 1 ) . 

We can recover ijj from -0* by noting that 

Finally, any isotone a: J(Df) —-> J(D) is 0*, where 0 is given by 

X0 = VD, ({a e J(D) I a < x}a']) . 

In a finite lattice L, a join-irreducible congruence is a principle congruence 0(«, b) 
where [a, b] is a prime interval in L, that is, a <b. We first show how to construct a finite 
lattice whose poset of join-irreducible congruences is isomorphic to J{D); then Con L 
is isomorphic to D. If the finite distributive lattice D has n join-irreducible elements, 
then, as the first step in our construction, we take a chain C of length n. The chain C 
has exactly n join-irreducible congruences; however, /(Con C) is a discrete poset, that 
is, any pair of elements is incomparable. 

Our first task is to force comparability between certain pairs of join-irreducible 
congruences. This can be accomplished by what we call the ^l^-construction—see 
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6 G. GRÀTZER AND H. LAKSER 

M(ao,a3) 

FIGURE 1 

Figure 1. The lattice depicted there is the nonmodular lattice 3?5, and it has exactly 

three join-irreducible congruences, 0(ao, a\), 0 ( a i , a2), 0(#2, #3)> and 

0(^1,^2) -< 0(^0? #l) 

&(a\,a2) <Q(a2la3). 

We think of 9?5 as a modification of the chain {ao, a\, a2l a^} obtained by adding the 

atom w(tfo, #3), as indicated by how we draw the lattice. Now, using this idea alone, we 

can only get a poset of join-irreducible congruences of length 1 in which each minimal 

element is covered by either 0 or 2 elements, and each maximal element covers at most 

one element. 

To get more general posets we must provide a construction that identifies various 

join-irreducible congruences. For example, to get a three-element chain, we take the 

lattice L depicted in Figure 2, a modification of the chain 

FIGURE 2 

{tf0, a\,a2, a3,a4,a5,a6} 

by the 9?5 -construction, and extend it to a lattice L' where the congruences 

0(<2o, a\), ®(02i 03), 0(^4, cis) 
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are identified and the congruences 

0(03,04), 0(05,06) 

are identified. If we can accomplish this, the poset /(Con L') is then the chain 

0(01,02) < 0(04,05) < 0(03,04). 

Given a chain Co, various join-irreducible congruences can be identified by a con­
struction we call the Tl3-construction. We take a second chain C\ and consider the 
product lattice Co x C\. Then 

Con (Co x Ci) = Con C0 x Con d , 

and so we have a natural isomorphism 

(3-2) /(Con (C0 x CO) = /(Con C0) U/(Con Cx). 

Given two prime intervals [00,01], [bo, b\] in Co, we choose a prime interval [co, c\] in 
C\ and add in the lattice Co x C\ a new atom m\ to the interval [(00, Co), (a\ •> c\ )] a nd a 
new atom ra2 to the interval [(Z?o? ^o), (&i, c\ )], thereby getting a lattice L in which the 
intervals [(00, Co), (01, ci)] and [(Z?o, Co), (/?i, ci)] are isomorphic to 2ft 3—see Figure 3. 
Then, in Con L, 0(00,01), 0(Z?o,^i), 0(CQ,CI), the three join-irreducible congruences 

L 

FIGURE 3 

under the isomorphism (3-2), are identified. Consequently, we can identify arbitrary 
join-irreducible congruences in a chain Co by taking a chain C\ with the right number 
of prime intervals and applying the 33?3 -construction sufficiently often. We call Co the 
working axis and C\ the control axis. Of course, we can also use Co as a control axis 
to identify distinct join-irreducible congruences of C\. Indeed, since, in the notation of 
Theorem 1, distinct join-irreducible congruences of L' may need to be identified in L, 
identifying distinct join-irreducible congruences in C\ may be necessary. 
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8 G. GRATZER AND H. LAKSER 

The 2)?3 -construction can be formalized by the concept of coloring, an idea which 
originates in S.-K. Teo [16]. Let J be a set, which in practice will be the poset J(D) of a 
finite distributive lattice D. A coloring of a chain C is a mapping 

<p: Ip C —> J. 

Following S.-K. Teo [16], for the chains Co and C\ and colorings 

(fo ' ip Co —» y 

and 

<^i: Ip Ci — • / , 

we define the lattice K, as follows: the lattice K is Co x C\ augmented with the elements 
m(p0, Pi), whenever p0 = [«o, v0] G Ip Co, pi = [«i,vi] G Ip Ci,andp0^o = Pi^i; we 
require that the elements 

(3-3) ("O,MI), (v0,«i), (w0, vi), m(p0,Pi), (v0,vi) 

form a sublattice of AT isomorphic to 29?3, as illustrated by Figure 4. Then the poset of 

FIGURE 4 

join-irreducible congruences of K is isomorphic to the discrete poset 

(Ip C0)^oU(Ip C\)ip\. 

In Teo's paper, Co = C\ and <̂o = <£i > but the idea is the same. 
Actually, in order to accomplish our purposes it is not necessary to apply the sSl^-

construction to all intervals of Co x C\ of the form po x pi with po^o = Pi^i- Indeed, 
in order to prove Theorem 1, it will be essential to use only a proper subset of that set of 
intervals. The following requirement is sufficient: 
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A is a set of intervals in Co x C\ of the form po x pi satisfying 

(3-4) Ifpo x pj G A, thenp0^o = Pi^i-

(3-5) For each x G (Ip Co)^o H (Ip C\)(f\, there is a po x pi G A 

withpo^o = Pi^i =x. 

(3-6) For each / = 0, 1, if p, p' G Ip Ct are distinct and p(̂ / = pVô 

then there are p G Ip C/, q, q' G Ip C\-t with 

p x q , p x q , p' x q', p x q' G A, if / = 0, 

q x p, q x p, q' x p', qf x p G A, if/= 1. 

Then, if A' is the lattice we get by adding to Co x C\ the elements m(po, Pi) for all 
intervals po x Pi G A, we again find that 7(Con K) is isomorphic to the discrete poset 
(Ip Co)(fo U (Ip C\)(f\—condition (3-6) guarantees that distinct prime intervals of C; 
with the same color determine the same congruence. 

It is tempting to apply the !W5 -construction on top of the 39^3-construction to get an 
arbitrary poset of join-irreducible congruences. Let us introduce some more terminology. 
If (f : C —> J is a coloring of a chain C and ifx,y G J, then by an (JC, y)-interval ofC with 
respect to ip we mean an interval {a, b, c, d} in C with 

« -< b -< c < d 

and with 

[a, b]tp = [c, d](/? = y, 

[£, c]<̂  = x. 

Now, for example, to get a poset of join-irreducible congruences isomorphic to J = 
{x, y1 w, v}, the (unordered) union of two two-element chains, with 

x < y and u -< v, 

we set the working axis to be the chain 

Co : ao < a\ < ci2 < a?, < ci4 < as < a^ 

with the coloring (fo : Ip Co —> / such that [a$, «3] is an (JC, _y)-interval and [«3, a^\ is a 
(M, v)-interval, that is, with 

[a0lai]if0 = [a2,a3]if0 -y 

[a3,a4](fQ = [a5ja6](f0 = v 

[aua2](fo =x 

[a4,a5](fo = w, 
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10 G. GRÀTZER AND H. LAKSER 

and let C\ be the chain 

b<c< ••• 

with a coloring (p\: Ip C\ —• J and with at least one prime interval [co, cj] with 

[c0,c\](pi = v, 

and at least one prime interval [ Q , C3] with 

We then apply the 33?3-construction to Co x Ci, getting a lattice AT identifying (using 

somewhat loose notation, that is, ao for (ao, £), etc.) the congruences 

and identifying the congruences 

0 (« 3 , «4), ®(a5la6). 

See Figure 5, where the colors are indicated on the "inside" of the intervals. 

FIGURE 5 

We then apply the 3^5-construction to the chains [a^ «3] and [03, a^] of K to get a 

lattice L where 

0 ( a i , «2) < 0(#o? fli) = 0(#27 03) and 0(«4, «5) < 0(^3, «4) = 0(^5, 00)1 

seemingly accomplishing our purpose. However, a close look at Figure 6, depicting the 

part of L involving only the bottom interval of C\, yields a nasty surprise, 

ao = a\ (0(&, c)) and «3 = ^4 (0(£, c)), 
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FIGURE 6 

that is, 0(7?, c) is a join-irreducible congruence that includes both 0(<2o, «i)and0(a3, a^)\ 

Indeed, proceeding in the above manner to attempt to get any arbitrary poset always 
results in getting a join-irreducible congruence that includes every nonisolated join-
irreducible congruence. (An element of a poset is isolated if it is incomparable to 
every other element.) This problem is a familiar phenomenon in attempting to control 
congruences—it is usually easy to make congruences do at least what we desire, but 
much harder to make them do no more! It is precisely to avoid nasty surprises that we 
developed the rather technical theorems of Section 4. 

The above difficulty is not hard to rectify. Rather than taking all of Q x Ci, we take, 
for each (x, _y)-interval [a1 b] of Co, only the part [a1 b] x [c) of Q x C i , where [c, d] is a 
prime interval of C\ colored by y. After applying the Sft3 -construction to this sublattice 
A, we then apply the 3̂ 5 -construction to the intervals of the form [(a, c), (&, c)] by adding 
a new element u(a, b) with 

(«, c) -< u(a,b) -< (b,c). 

We note that, in order for A to be a sublattice of Q x Ci, the colorings tpo and <p\ 
must be coordinated—if [a\,b\\ is an (*i,;yi)-interval in Co and [«2, b{\ is an fe?^)-
interval and \lb\ < «2, then there must be prime intervals [c\,d\], [ Q , d^\ in C\, where 
[c\,d\](p\ = y\, [C21d2](f\ = y2, with d\ < Q . For example, the coloring depicted in 
Figure 5 will not work—instead, we must color [<?o, c\\ withy and [C2, C3] with v. 

Reverting to our example, given the poset J = {w, v, x, y} with x < y and u < v, we 
get the lattice K depicted in Figure 7 whose join-irreducible congruences represent J. 

Note that we will always get a planar lattice since we apply the 3̂ 5 -construction to 
the leftmost side of A. 

As above, in order to apply the SW3-construction to the sublattice A of Co x C\ we 
have the requirement: 
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12 G. GRATZER AND H. LAKSER 

REQUIREMENT 1. A is a set of intervals in A of the form p0 x Pi satisfying 

(3-4) Ifpo x p{ G A, thenpo<£o = Pi<£i. 

(3-5) For each x G (Ip Cb)<̂ o H (Ip C\)<p\, there is a po x p\ G A 

withp0^o = Pi^i = *. 

(3-6) For each / = 0, 1, if p, pf G Ip C; are distinct and p(pi = pV/? 

then there are p G Ip Q, q, q' G Ip Ci_/ with 

p x q, p x q, p' x q', p x q' G A, if/ = 0, 

q x p, q x p, q7 x p'', q' x p G A, if/ = 1. 

Actually, in most cases, we shall have the following stronger form of (3-6): 

(3-6') For each / = 0, 1, if p? p' G Ip C, are distinct and ptpj = pVn 

then there is a q G Ip Ci_; with 

p x q, p' x q G A if/ = 0, 

q x p, q x p' G A if/= 1. 

We then have (3-6) with q' = q and p = p (or, if we wish, p = pf). 
We also observe, for later use, that (3-5) and (3-6) together imply the following 

stronger form of (3-5): 

(3-50 For each / = 0, 1, if p G Ip Q and ptpt G (Ip Ci_/)<^i_/, 

then there is a q G Ip C\-i with 

p x q G A, if / = 0, 

q x p G A, if / = 1. 

Indeed, and letting / = 0 without loss of generality, 

x = p(fo G (Ip Co)(foD(lp C\)ip\, 

and so, by (3-5), there are p' G Ip Co and qo G Ip C\ with 

p' x q0 G A and pVo = x = p^0-
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If p' = p, set q = qo and we are done. Otherwise, the hypothesis of (3-6) holds, and so 
we are assured a q G Ip C\ with 

p x q e A 

and, again, we are done. 
Except for ensuring that we have only the identity automorphism, this concludes the 

outline of the construction in [9]. 
We now apply these ideas to supply a construction for Theorem 1. Let D and D' be 

distributive lattices and let ip : D —* D' be a {0,1}-preserving homomorphism. Note that 
if D' is the one-element lattice, then J{D') is empty. If D is also the one-element lattice, 
then we set L = L' to be the one-element lattice. So, in the sequel, we assume that \D\ > 1 
and thereby that \J(D)\ ^ 0. The homomorphism i/> yields the isotone mapping 

V?* : J(Df) —• J(D) 

of (3-1). Of course, if \Df\ = 1, then \jj* is the empty mapping. We must construct a lattice 
L with 

/(Con L) ^ /(D) 

and with an ideal L' with 
/(Con Z/) * Z(D') 

such that each join-irreducible congruence O of U extends to the congruence &i/j* of L. 
We take chains Co, a working axis for L, and C\, a control axis for L. The chain Co 

will have an ideal C'0, which will be a working axis for Z/, and the chain C\ will have an 
ideal C[, a control axis for L'. For each / = 0, 1, the chain C\ will have a coloring 

^ : I p C ; - . / ( D / ) , 

and the chain d will have a coloring 

^ : IpC/->/(D). 

Thus, each prime interval p of C- will have two colors, p<pf
t and p(/?/. The colorings (ft 

will determine the lattice L, and the colorings ip\ will determine its ideal L'. 
The colorings on the working axis Co will have two tasks to perform. The first is to 

ensure that the partial orderings in /(Con L) and /(Con L') are correct, exactly as in the 
above outline of the construction in [9]. The second task, which was not required in [9], 
is to ensure that each x G J(D') is identified, in Con L, with x0* • 

We first describe the chain Cf
0 and its coloring (p'0. Let sf be the number of isolated 

elements of Z(D'), that is, the number of elements of J(Dr) that are incomparable to all 
other elements of J(D'). Let 

h^h\,...,h's,_x 

be an arbitrary listing of the isolated elements. Then Cf
0 has an ideal 

co <c\ < <<v, 
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14 G. GRÀTZER AND H. LAKSER 

and, for each /, 0 < / < s', we set 

[C|,c/+i](^o = h[. 

We list all the covering pairs in J(Df): 

a0 <b'0, a\ <b\,..., an,_x <b'n,_x 

(note: a\ < b\ in J(Dr), not in D'), so that 

(3-7) whenever b\ < bj in D', then / >j, 

this latter to ensure that Requirement 1 be satisfied. We then set the rest of CQ to be 

Cs> < Csf+\ -<••'< <V+3n'-

We extend the coloring ip'0 so that, for each /, the interval [cv+3z, Q/+3/+3] is an (<a-, b't)-
interval, that is, for each /, 0 < / < n\ we set 

[<V+3n Q '+3 /+ l ] ^0 = [<V+3i+25 Q '+3/+3]^0 = */> 

We have thus defined the chain C'0, 

co < c\ <- • • < cs>+3n' 

and its coloring 
<p'0: Ip C0^J(D'), 

which, in contrast to the construction in [9], is always surjective. 
We now describe the control axis C\. Let 

«?o,ei,. . . ,^_i 

list all the nonisolated elements of J{D') in such a manner that 

(3-8) e\ < e'j implies j < /, 

in order to ensure, again, that Requirement 1 be satisfied. We set C\ to be the chain 

do -< d\ - < • • • - < dyj 

and define the coloring ip[ : Ip C\ —+j(Df) by setting 

[di,di+\]<p[ = e\ 

for each /, 0 < / < r'. Note that, since each isolated color occurs exactly once on the 
working axis C'0, we do not need any isolated color on the control axis C\. Note also 
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that, in contrast to the example of Figure 7, any nonisolated color may occur many times 
in C0—it may have many upper covers in J(D')—and so, for the sake of uniformity, the 
coloring of C\ includes all nonisolated elements of J{D'). 

We now extend C0 to a chain Q>. Let 

a0 <bQ, a\ -<&!,..., an-\ < bn-\ 

be a listing of all the covering pairs of J(D), where, again, 

(3-9) bi < bj implies y < /. 

We extend C0 by taking elements 

cs'+3n' "^ cs'+3n'+\ "^ ' ' ' ""̂  cs'+3n'+3n 

and defining the coloring (fo : Ip Co —> J(D) by setting 

[Cs'+3n'+3ii cs'+3n/+3i+\](P0 ~ [cs'+3n'+3i+2i <V+3n'+3/+3]</>() = b(, 

frV+3n'+3/+l ? Cs'+3n'+3i+2~\{P0 = ai-> 

for each /, 0 < / < n, and setting 

PV?o = P^o^*, 

for each prime interval p G Ip C0. 
Thus, for each / < n, 

\.cs'+3n'+3ii cs'+3n'+3i+3\ 

is the unique (#/, Z?/)-interval in 

Co — [Co,£V+3/i/_i]. 

Finally, let 

eo,e\,.. .,er-\ 

be a listing of all the elements of J(D) with 

(3-10) et < ej implying./ < /. 

We extend C\ to a chain C\ by adding elements d^+\,..., d,>+r with 

dyj < dfj+\ -<•••< dr>+r. 

We define the coloring Lp\\ Ip Ci —> J(D) by setting 

[dtJ+hdr>^M}^\ =et 
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16 G. GRATZER AND H. LAKSER 

for each /, 0 < / < r, and setting 

pipi =pip[xlj* 

for each prime interval p G Ip C\. Observe that (f\ is surjective on Ip [dr>, dr>+r]. 
Note the asymmetry between the roles of J{D') and J(D) in the construction. All 

elements of J(Df) appear as colors in C0, since we must control -0* as well as the partial 
order in C0, and so no isolated element of J(D') need appear as a color in C\. On the 
other hand, in the chain [cv+3n'? (V+3n'+3n], we need only control the partial order, and 
thus no isolated colors appear. But, then, all elements of J(D) must appear as colors in 
the chain [dr',dr'+r]. This latter is also required to control xjj*, as will be evident shortly. 

We are now ready to describe the construction of the lattice L and its ideal L'. For 
each /, 0 < / < n', there is exactly one 8{sf + 3/) with ds(S'+3i) < d'n that is, with 

[d^s'+ityd^s'+^+x] G Ip C b 

satisfying 

Similarly, for each/, 0 < / < n, there is exactly one 6(s'+3nf+3/) with d^ < d^^n'+'H) < 
dr+r>, that is, with 

s'+3n'+3i)'> <^e(s'+3n'+3i)+l 1 G Ip [dsids+r], 

satisfying 

[d6(s'+3n'+3i)i ^ ' + 3 n / + 3 / ) + l ] V ? l = [<V+3«'+3n cs'+3n'+3i+\]l*PQ-

Let the sublattice A of Co x C\ be defined by requiring that 

in case CQ < u < csi ; 

in case cy+3/ < u < Q'+3/+3 for 0 < / < n'\ 

in case c5/+3„/+3l- < u < csr+3n>+3i+3 

forO <i<n. 

That A is a sublattice of C0 x C{ follows easily from (3-7), (3-8), (3-9), and (3-10). Note 
that A is the union of the sublattices 

[c0,<v] x Ci, 

[cs'+3hcs'+3i+3] X fr4(j'+3o)Ci 

for all /, 0 < / < n\ and 

[Cs'+3n'+3iics,+3n,+3i+3] X fcfe(j'+3/i'+3/))c, 

for all /, 0 < / < n. 
We define a set A of intervals of the form p x q, p G Ip Co, q G Ip Ci, in A by 

requiring that 

(M,V) G A 

f v e C i , 

V > ds(s'+3i)j 
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if p x q Ç A with p G Ip C0, q G Ip C[, then 

p x q G A <=^ p(^o = qc^i, 

if p x q Ç A with p G Ip [cy+3n', Q'+3rc'+3nL that is, with p fi Ip C0, and with 
q G Ip C\, then 

p x q G A «=> p(^0 = q^ i , 

if p x q Ç A with p G Ip Co and with q G Ip [d,*, d^+r], that is, with q ^ Ip C\, 
then 

p x q G A <^> pip0 = C(<p\. 
We set 

A ' = A n ( C 0 x C i ) , 

that is, A' is the ideal ((cs>+3n>, d/)] of A. We let A' be the set of those intervals in A that 

are subsets of A'. Thus 

A' = {p x q Ç A | p G l p C 0 , q G Ip C',, ppf
0 = q ^ } . 

LEMMA 3. 77ze 5 ^ of intervals A' o /A ' satisfies Requirement 1 with respect to the 
colorings (/?•: Ip C- —> J{D'). The set of intervals A of A satisfies Requirement 1 with 
respect to the colorings (/?,•: Ip C; —> */(£*)• 

PROOF. We first establish Requirement 1 for A'. Condition (3-4) for A' and the 

colorings ip -, and the implication 

if Po x Pi ^ A ' , thenpoy>o = Pi</n 

follow immediately from the definition of A' by virtue of the definition of A. It is also 

easy to see that condition (3-5), 

for each x G (Ip C0)(/?0n(Ip C[)ip[, there is a po x p\ G A'withpo^o = p\ip[ = 
x, 

holds. Indeed, since (Ip C\)p\ consists only of nonisolated elements of J(D'), there is 

an /, 0 < / < n\ with either 

•*= [Q'+3n<V+3/+l]^0 

or 
x ~ ics'+3i+l ? cs'+3i+l](*Po-

In the first case, set 

Po = lA'+3n<V+3/+lL Pi = [dô(s'+3i)i dô(sf+3i)+\]. 

Then, by definition of A', we have po x pi G Af. 

In the second case, there is exactly oney, 0 <j < r[ with 

x = [dj,dj+\]<p\. 
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18 G. GRATZER AND H. LAKSER 

Set 
Po = [cy+31+i, cv+3/+2], Pi = [dj, dj+\]. 

Since 

X= [Cs'+3i+\i Cs'+3i+2]<Po < IA'+3M Cs'+3i+\ 1^0 = M5(s'+3i> d<5(s'+3/)+l 1^17 

it follows by (3-8) that dy > d^+n) in Cj, and so that 

p0 X p! GA', 

establishing (3-5). 
Finally, we establish (3-6), 

for each 1 = 0, 1, if p, p7 G Ip C- are distinct and p(^- = p7(/?7, then there are 
p G Ip C7, q, q7 G Ip C[^ with 

p x q, p x q, p7 x q7, p x q7 G A7, if / = 0, 

q x p, q x p, q7 x p7, q7 x p G A7, if/ = 1, 

for A7. We, in fact, establish the stronger form (3-67). Since y>\ is injective, we need 
only take / = 0. Again, since tpf

0 is injective on Ip [co, <v] and (Ip [co, <v])(/?0 consists 
of isolated elements of J(Df) while (Ip [cs>, Q'+3n'])v?o consists of nonisolated elements, 
there are7, k withy < k and, without loss of generality, with 

P G Ip fc,/+37-,Cy+37+3] 

and 
P7 G Ip ta/+3jfc,Cv/+3*+3]. 

Then, as in the proof of (3-5) above, there is a t > 5(sf + 3k) with 

[dt,d,+\]ip[ = pV0 . 

Setting q = qf = [dt,dt+\] and p = p establishes (3-6) with / = 0, concluding the proof 
that A7 satisfies Requirement 1 with respect to the colorings (/?7. 

We now establish Requirement 1 for A. Condition (3-4) for A and the colorings (/?/ 
follows immediately from the definition of A—we need only observe that </?,- = (/?7^* on 
ipc;. 

To establish (3-5) and (3-6) for A, we observe that the full product is contained in A: 

(3-11) CQ x [d^d^A ÇA. 

We now establish condition (3-5), 

foreachx G (Ip Co)<£on(Ip Ci)</?i, there isapoxpi G Awithpo^o - Pi^i =•*, 
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RESTRICTION OF AUTOMORPHISMS AND CONGRUENCES 19 

for A. If x G (/(D'))^*» then, since 

<p'0: lpCf
0^J(Dr) 

and 
ip\: Ip [ds,d,>+r]-+J(D) 

are surjective, and since (fo = (f'0i/j*, there are po G Ip C0, pi G Ip [d^, d^+A with 

* = Po^o = Pi^i-

Then, by (3-11) and the definition of A, 

po x pi G A. 

Otherwise, 
x G (Ip [c5/+3n/, cs,+w+in\)ipo H (Ip [d^,d^+r])ipu 

and we proceed in a manner similar to our proof of (3-5) for A' above. Indeed, there is 
an /, 0 < / < n, with either 

X = [Cj/+3w/+3/, Cs'+2n'+3i+\](fO 

or 

* = [ÉV+3«'+3/+I ? C ^ / I ^ H ^ I ^ O -

In the first case, set 

Po = [<V+3n'+3n <V+3n'+3/+lL Pi = W<5(J'+3/I'+3/)? ^(j'+Sn'+SO+l3• 

Then, by definition of A, we have po x pi G A. 
In the second case, there is exactly oney, r7 <j < r1 + r with 

x = [dj,dj+\]v\. 

Set 

PO = [Cs'+3n'+3i+l, Cs'+3n'+3i+2], Pi = [dj,dj+\]. 

Since 

* = [Cs'+3n'+3i+\i cs'+3n'+3i+2](PO < [A'+3n'+3n CV'+3AI'+3/+1 ](f0 

= [ds(s'+3n'+3i) ? *4(A7+3W'+3/)+1 1 ̂  17 

it follows by (3-10) that dj > dfa'+w+u) in [d^, dr>+r], and so that 

Po x pi G A, 

concluding our verification of (3-5). 
Finally, we establish (3-6), 
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20 G. GRÀTZER AND H. LAKSER 

for each / = 0, 1, if p, p' G Ip C/ are distinct and pipt = p'ipt, then there are 
p G Ip Ch q, q' G Ip CX-i with 

p x q, p x q, p' x q', p x q' G A, if / = 0, 

q x p, q x p, q' x p', q' x p ç A, if/ = 1, 

for A. 
First, let / = 0, that is, let p, p' G Ip Co with p(̂ o = PVo- We establish the stronger 

(3-60. 
If both p, p' G Ip C0, then, since <p\ is surjective on Ip [d^, dr>+r], let q be a prime 

interval in [d^, ^ + r ] with 
q^i = p(f\ =pVi -

By (3-11), 
p x q, p x q' G A. 

If both p, p' G Ip [cy+3n/,c, 
'+3/i'+3wL then we proceed as for Af above. There are j , k 

withy < k and, without loss of generality, with 
P G I p [cs>+3n'+3j^Cs'+2n'+3j+3] 

and 

P €lp [Cs
f+3^+310 Cs'+3n'+3k+3]-

Then, there is a r > 6(s' + 3w' + 3k) with 

U/„</f+i]^i = pVo-

Setting q = [d„ dr+i] establishes (3-60 in this case. 
If p Glp C0 and p' G Ip [cs '+3/!', <V+3/i'+3nL then, as above, there is a prime interval q 

in [drf^dfj+r] with 
p' x q G A. 

Then, by (3-11), 
p x q G A, 

concluding the verification of (3-6) for the case / = 0. 
Finally, we consider the case / = 1 of (3-6). Since (f\ is injective on Ip [d^, dr>+r], we 

may assume, without loss of generality, that 

P G i p c ; . 

Since (p'0 is surjective on Ip C0, we conclude, by (3-50 for A', that there is a q G Ip CQ 
with 

q x p G A' Ç A. 

If p' G Ip [djj, dfS+r], then, again by (3-11), we have 

q x p ' G A , 
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establishing the stronger version (3-6') of (3-6) again. If, on the other hand, p' £ Ip C\, 
then, as above, there is a qf G Ip C0 with 

q ' x p ^ A ' Ç A. 

Observe that 

and 

QVO = PVÎ-

Then 

Choose p £ Ip [d^,dr'+r] with p(/?i = q^o- Then, by (3-11), 

q x p , q' x p G A, 

establishing (3-6) in this final case. Note that it is only here that we can verify only (3-6), 
rather than the stronger (3-6'). 

The proof of the lemma is hereby concluded. • 

We now apply the 2ft3 -construction to all of the intervals in A, thereby obtaining 
the lattice K and its ideal K' = ((cv+3«s d^)}, which is the lattice obtained from A' by 
applying the 33?3-construction to all the intervals in A'. It should be fairly clear that 
7(Con K) is isomorphic to the discrete poset J(D), that /(Con K') is isomorphic to the 
discrete poset J(Df), and that restriction of congruences from K to K' yields, under these 
isomorphisms, the set mapping 

xl>*:J(D')^J(D). 

We then apply the 3?5-construction to each of the intervals 

[Cs'+3iics'+3i+3] X {^6(s'+3i)} 

for 0 < / < n', adding a new atom denoted w(cy+3/, Cs'+3/+3), and to each of the intervals 

[cs'+3n'+3i'>cs'+3n'+3i+3] X Wè(s'+3n'+3i)} 

for 0 < / < n, adding a new atom denoted u(cs>+$n>+-$i, CS'+3W'+3H-3), thereby getting the 
lattice L and its ideal L' = ((c5/+3^, d/)]. We then get isomorphisms of posets 

/(Con L) = J(D) 

and 
7(Con L') * J(D') 
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such that the restriction of congruences from L to L' yields, under these isomorphisms, 
the isotone map 

^* : J(Df) —> 7(D), 

that is, we have lattice isomorphisms 

Con L * D 

and 
Con L' * D' 

such that, under these isomorphisms, the restriction of congruences from L to L' is the 
homomorphism i/\ A formal proof will be given in Section 5. 

We now turn to the automorphisms of L and its ideal L\ as constructed above. In all 
cases, L' will have only the identity automorphism, but, in certain special cases, L may 
have other automorphisms—in these cases our construction will have to be modified. 

One such special case occurs when J(Df) is not empty and 

(3-12) [co,c\]<po = [c0,ci](ff
0ip* = [ds+r-uds+rlipi, 

that is, when the bottommost prime interval in Co has the same color under <̂o as the 
topmost prime interval in C\ under <p \. Then the interval 

[C0,Ci] X [drt+r-ud^+r] <G A, 

and so, in constructing L, we end up applying the ^^-construction to this interval by 
adding the new element 

m = m([c0,ci], [dr>+r-Udr>+r]). 

Then, interchanging m and (co^d^+r) (and fixing all other elements) yields an auto­
morphism of L. The relevant part of L is depicted in Figure 8. Usually, there is some 
freedom in coloring the intervals in Co and C\, and so the difficulty (3-12) can be avoided. 
Sometimes, though, such avoidance is impossible. For example, if J(D) has a unique 
minimal element x, and if J(D') has isolated elements all of which map under ^* to x, 
then, under the construction presented above, (3-12) will always occur. 

Other sources of difficulty can occur when both J(D) and J(D') are discrete, that is, 
when both D and D' are Boolean. Then 

n = n = 0 

and 
r' = 0, 

and so Co = C0 is a chain of length s' = |/(Z)% C\ = {do}, and C\ is a chain of length 
r = \J(D)\. The 9?5-construction is not applied, and so L = K. One difficulty, similar to 
that of (3-12), that can then occur is that the colorings are chosen so that 

(3-13) frV-i,<v]y>o = fc'-i,Q']^f = [do,d\]y\, 
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FIGURE 8 

that is, when the topmost prime interval in Q has the same color under (fo as the 
bottommost prime interval in C\ under <p\. Then, as above, we get the new element 
m([csf_\,csr],[do,d\]) which can be interchanged with (cS',do) to get a non-identity 
automorphism of L. 

A second type of difficulty, for the case of both D and D' Boolean, can occur if 

(3-14) X/J: D —> D' is an isomorphism. 

Then s' = r and so Co = C\. If the colorings <p'0 and ip\ are chosen so that 

[chci+i]ifo = [di,di+i]ip\ 

for all /, then the automorphism of A = Q x C\ 

{ci,dj)*-+(cj,di) 

determined by interchanging the axes extends to an automorphism of L. For example, let 
D' and D be the four-element Boolean lattice {0, a, b, 1} with 0 < a < 1 and 0 < b < 1, 
and let i/> be the identity mapping. Then the chain Co is 

and C\ is the chain 
do < d\ < d2-

If we chose the coloring ip'0 with [co, c\]ip'0 = a and [c\, C2](̂ 0 = b and the coloring <p\ 
with [do,d\]ip\ - a and [d\,d2]<f\ - b, the resulting lattice L is depicted in Figure 9. 
(The ideal L' is the ideal whose maximal element is depicted as •.) The interchange of 
the two axes is an automorphism. 

We first present a formal proof that the difficulties (3-12), (3-13), and (3-14) are the 
only difficulties that can occur. Then, we discuss how these difficulties can be overcome. 
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FIGURE 9 

LEMMA 4. The lattice L' has no automorphism other than the identity mapping. The 
lattice L has no automorphism other than the identity mapping unless one of the following 
three conditions holds: 

(1) [c0,Ci](/?o = [d^ + r - l ,^ + r ]^ i . 
(2) D and D' are both Boolean and [cs>^[, cs>](fo = [do^il^i-
(3) D and D' are both Boolean and ip: D —> D' is an isomorphism. 

PROOF. We first show that L' has no automorphism other than the identity mapping. 
Let a: U —> L' be an automorphism. If D' is Boolean, then C\ is a singleton; so A is a 
chain isomorphic to C'0, and l! = A. Thus, a is an automorphism of a finite chain, and so 
is the identity mapping. 

Otherwise, n' > 0. All the elements of L' —A' are doubly irreducible in Z/, and none of 
them lies in an interval of L' which is a four-element Boolean lattice. The only elements 
of A' doubly irreducible in A' are the (cv+3,+3, 45(s'+3/)) for 0 < / < n' and (co, d^). But, 
in L1', we have the proper join 

(Cs'+3i+3idô(sf+3i)) = (cs>+3i+2, ^ ( J ' + 3 / ) ) V u(cs>+3h Csf+3i+3). 

Thus, the only element of A doubly-irreducible in L' is (co, ̂ ) . Now, observe that 

Indeed, if s' > 0 then [c0, cj]^Q is an isolated element of J(D'), while, by definition of 
ip[, no image of ip[ is isolated. If sf = 0 then [co, c\]ip'0 is not minimal in J(D'), while, 
by (3-8), [^_i, dfj](f[ is minimal. Consequently, 

[c0,Ci] X [dri-i,dr>] £ \' 

and so it remains an interval after we apply the 3ft3-construction to A'. Thus, (co^d^) is 
the only doubly-irreducible element of L' contained in an interval that is a four-element 
Boolean lattice. Thus, 

(c0ldrf)a= (co ,^) 

and so 
(Lf - A')a = Z/ - A7, 
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that is, a restricts to an automorphism of A' that fixes (co ,^) . But, then, the chain 
{co} x C\ is fixed by a. It then follows easily that a is the identity mapping on A'. Since 
the elements of L' — A' are determined uniquely by those of A7, we conclude that a is 
the identity on l!. Thus, l! has only the identity automorphism. 

Now, let none of (4.1), (4.2), (4.3) hold, and let a be an automorphism of L. We first 
consider the case when at least one of D, D' is not Boolean. Then, we proceed exactly 
as we did above for L' with D' not Boolean. Since (4.1) fails, we have 

(3-15) [c0,ci] x [dr>+r-i,dr>+r] £ A, 

and (c5/+3n/+3n, do) is join-reducible in L. Thus, 

Aa = A 

and 
(cçhdr>+r)a= (co,dr>+r). 

Consequently, as above, a is the identity mapping on A, and so is the identity mapping 
on L. 

Next, we consider the case when both D and D' are Boolean. Then, since (4.2) fails, 
we also have 

(3-16) to-i^lx^dil^A. 

Note that, in this case, n' - n = 0 and cs> is the maximum element of Co, and (cs>,do) 
is join-irreducible in L = K. Also, r7 = 0. Then, by (3-15) and (3-16), (csr,do) and 
(co, dyj+r) = (co, dr) are the only doubly-irreducible elements of L that lie in an interval 
that is a four-element Boolean lattice. Then, again, 

Aa = A, 

and, also, 
[{(cs^do),(c0,dr/+r)})a= {(cy, d0), ( c 0 , ^ + r ) } . 

Since (4.3) fails, either 
s' = \J(Df)\^r=\J(D)\ 

or 
^ : J{D') - • 7(D) 

is not surjective. Now, the height in A of (cs/,do) is ^ and that of (co, ^ + r ) is r. Thus, 
if ^r ^ r, then both {cs',do) and (co, d^+r) are fixed by a. Consequently, a is the identity 
mapping on A, and therefore on L. If, on the other hand, s' = r, then either a is the 
identity mapping on A or 

(3-17) (cs',d0)a = (c0, ̂ + r ) and (c0, ̂ +r>« = (<V^o). 
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Since ijf is not surjective, there is an /, 0 < / < r = s\ with 

p x [dhdi+i] £ A 

for all p G Ip Co, that is, such that the interval 

[(co,ûf,-), (c,/, J/+i>] 

of L is distributive. But, if (3-17) holds, then the interval 

[(ci,d0), (ci+\,dr)] = [(c0 ,d |) , (c,/,^-+i)]a 

of L contains the non-distributive interval 

[(ci,dj),(ci+\,dj+\)] 

isomorphic to 2W3, where [df7-, d/+i] is an interval of C\ with color [ Q , C/+I](/?O under (p\. 

Thus, (3-17) is impossible, and so in this case also a is the identity mapping on L, 

concluding the proof of the lemma. • 

We now describe how the exceptional cases described by (4.1), (4.2), (4.3) can be 

handled. 

We first treat the case when at least one of D', D is not Boolean and (4.1) holds. There 

is some freedom in assigning the colorings po and ip \, and we can often redefine these 

colorings so that (4.1) fails. There are certain cases, though, when that cannot be done. 

One such case is when J(Df) has isolated elements, J(D) has a unique minimal element 

a, and ip* maps all the isolated elements of J(D') to a. Then, no matter how we assign 

the colorings, [co, ci l^o ls isolated, and, because of (3-10), 

[d^+r-\,d^+r\(f\ -a. 

Thus, perforce, 

[c0,ci]v?o = [co,ci]<^o0* = [ds+r-\,d,j+r],p\. 

Note that the length of Co is greater than 1. We can get around the difficulty presented 

by (4.1) by modifying the chain C\ by adding a new maximal element dr>+r+\. We extend 

the coloring <p \ by setting 

(3-18) [d^+r,d^+r+\](p\ = [ci ,c2]^o, 

extend A by adding Co x { ^ + r + i } , (that is, the definition of A reads as before, except 

that r is replaced by r + 1), and extend A by adding all intervals 

p X [dr>+r,dr>+r+\] 

with 

p(fo = [d^+rjd/+r+i]if\ andp ^ [ c 0 , c i ] , 
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thereby ensuring that 
[c0 ,Ci] X [ds+n dr>+H.i] £ A. 

Note that Co, C0, C[ and their colorings, and A', A' remain unchanged. Then, after 
applying the 3D?3- and 315 -constructions to this new A, the new lattice L has the property 
that (co, dr>+r+\), its only doubly-irreducible element that lies in A, is the only doubly-
irreducible element that lies in an interval that is a four-element Boolean lattice. As is 
evident by the relevant part of the proof of Lemma 4, L then has no automorphism other 
than the identity mapping. We must verify that Requirement 1 still holds. All that needs 
to be verified is (3-6) when / = 1 and when one of p, pf equals [^+/-, d^+r+\]. So, let 

p = [d^+rjd^+r+\]. 

Then p ; is in [d^d^+r\, the "old" C\. Then, by (3-50 for the "old" situation, there is a 
q' G Ip Co with 

q' x p' G A. 

If qVt co,ci], then 
qf x p G A 

also, and we have (3-67). Otherwise, 

q' = [c0 ,c i ] . 

Set 
q = [c\,c2]. 

Then 
q x p G A 

and 

qVo = pVi = P^i = Q^o, 

the last equality by (3-18), the definition of p(f\. Then, by definition of the "old" A, there 
is a unique 

p E Ip [d^d^] 

with 
q x p , q' x p G A, 

concluding the verification of (3-6). 
Now, we consider the cases when both D and D' are Boolean. Then L' is a chain 

isomorphic to Co. 
If ^* '. J(Df) —> /(D) is an isomorphism, we can dispense entirely with the above 

construction. We let L be a chain of length \J(D)\, and set L' = L. It is then immediate 
that neither L nor Z/ has any automorphism other the identity mapping, that Con L = D, 
Con L' = D\ and that restriction of congruences is thereby the isomorphism ifi. 
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Thus, we may assume, henceforth, that (4.3) fails. Note that, since J(D) and J(Df) are 
discrete, the colorings of Co and C\ can be assigned in a completely arbitrary manner, 
subject only to the condition that they be injective. In most cases (4.1) and (4.2) can be 
avoided. Specifically, if there are a, b G J(D') with aijj* ^ bip*, then we can define ip'0 

and if i so that 
[co,c\](ff

0 -a, [d^d\]f\ =a^* 

and 

fo-ii^o = ^ [dr-\,dr~\if\ = bx/j*. 

See Figure 10 for a sketch of the resulting lattice L, where, again, the maximal element 

FIGURE 10 

of the ideal L' is denoted by •. 
Similarly, if the image of V>* is a singleton {a} and J(D) has at least three elements, 

that is, if r > 3, then we can chose the coloring f\ so that the interval in C\ colored by 
a is [dx.dj] and, again, both (4.1) and (4.2) fail—see Figure 11 for an example. 

FIGURE 11 

However, if the image of ^* is a singleton {a} and r < 2, then, if we color [do, d\ ] by 
a, we have at least (4.1), and, if r = 2, if we color [d\,d2] by a, we have (4.2). Thus, L 
as constructed will have an automorphism other than the identity map—see Figure 12a) 
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a\±/a 

a) b) 

FIGURE 12 

for an example. In this case, we must modify our construction of L. We extend the chain 
Co to a chain Co by adding a new maximal element cs>+\ and extend the coloring <po by 
setting 

frv,<V+i]<A) = #> 

and we extend the chain C\ to a new chain C\ by adding at least two new elements 
J r + i , . . . , dr+<7 so that 

d r -< J r + 1 <• • • < dr+q 

and so that r + (7 ^ s ' + 1, that is, so that Q and C\ have different lengths. We extend the 
coloring <p\ to the new prime intervals by setting 

[dr+hdr+i+\](f\ -a 

for all /, 0 < i < q. We set 
A = C0 x C\ 

and 

A = {p x Q I pif0 = q^i}-{[c J/ ,c J/+i] x [ûf0,^i], [co,ci] x [ ^ _ i , J r + 9 ] } . 

We then perform the ^^-construction on each interval in A to get our new L. Note that in 
this modification the ideal L' remains unchanged—it is still the chain [(co, ̂ 0), (<V, do)]. 
The modification of Figure 12 a) is depicted in Figure 12 b), where, again, the maximal 
element of L' is depicted by •. 

We observe that our new L has no non-identity automorphism. The elements (csi+\, do) 
and (co,dr+q) are the only doubly-irreducible elements of L that lie in an interval that 
is a four-element Boolean lattice, and, since s1 + 1 ̂  p + q, they have different heights, 
and so are fixed by any automorphism. We then immediately conclude that there are no 
automorphisms other than the identity. 

We observe, also, that the new A still satisfies Requirement 1. Indeed, only (3-6) needs 
verification. First, let / = 0. Then, for any prime intervals p, p' of Co (they all have the 
same color a) set q = [dn dr+\], thereby verifying the stronger (3-6'). Finally, let / = 1, 
and let p, p' be distinct prime intervals of C\ with ptp\ = pVi • Then 

p(fi = pVi =0, 
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since tp\ ls injective on the prime intervals of the subchain C\. If neither p nor p7 is 

[dr+q-\,dr+q], then we get (3-67) with q = [co, ci] . Otherwise, if, say, p = [dr+q-\,dr+q], 

then we set 

q = [ci ,c2] , q' = [c0 ,c i] , p = [dr,dr+\], 

thereby getting (3-6). 

Summarizing this section, we have: 

SUMMARY. If D and D' are both boolean and </? : D —•* Z)7 is an isomorphism, we set 

L = U = a chain of length | /(D)| = | / (D') | . 

Otherwise, we have chains C/ containing ideals C7, / = 0 ,1 , and colorings </?; : Ip C; —> 

7(D), </?; : Ip C7 —• 7(D7) satisfying the following: 

(a) ( I p C o ) ^ o U ( I p C , ) ^ i = 7 ( D ) . 

(b) If JC G 7(D) is not isolated, then x G (Ip Co)v?o H (Ip Ci)(^i. 

(c) (ipc^^uapc;)^7^/^7). 
(d) If JC G J(D') is not isolated, thenx G (Ip C0)(/?0 H (Ip C\)ip\. 
(e) For each / = 0, 1, and each p G Ip C7, we have pLpt = piffy*. 

(f) For each covering pair a -< b in J(D'), there is an (a, fr)-interval 

{9,9+1,9+2,9+3} 

in C0, that is, 

[ 9 , C/+i]^o = [C/+2. 9+31^0 = ^ 

and 

[Cj+\,cj+2]<Po = a. 

(g) For each covering pair a < b in 7(D), there is an (a, fr)-interval 

{9,9+1,9+2,9+3} 

in Co with 9+1, 9+2, 9+3 ^ C0, that is, 

[9 , 9+i]^o = [9+2, 9+3 ]^o = & 

and 

[9+1, 9+2]^0 = «• 

(h) For each covering pair a -< b in 7(D7) and each (a, b)-interval 

{9,9+1,9+2,9+3} 

in CQ, there is a prime interval [d^), d^+i] in Cj with 

[dt(j), d6(J)+\](p[ =b. 

https://doi.org/10.4153/CJM-1994-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-001-7


RESTRICTION OF AUTOMORPHISMS AND CONGRUENCES 31 

(i) For each covering pair a -< b in J(D) and each (a, /?)-interval 

{Cj,Cj+\,Cj+2,Cj+3} 

in Co with 9+1,9+2,9+3 ^ CQ, there is a prime interval [d^), ds(j)+\] in Ci with 

^(5(/)+i ^ ^1 a n c ^ w i t n 

There is a sublattice A of Q x Cj. For each covering pair a -< b in /(£>') and each 
(a, Z?)-interval 

{cj,Cj+UCj+2,Cj+3} 

in CQ, ifx G Co with* > 9, then 

(JC,J) G A if and only if _y > dè(J). 

Similarly, for each covering pair a -< & in /(£)) and each (a, b)-interval 

{c,-, 9+1,^+2,^+3} 

in Co with 9+1, 9+2, 9+3 ^ C0, if x G Co with x > q, then 

(JC, y ) G A if and only if j > d ^ . 

There is a set A of intervals po x pi, p/ G Ip C/ with 

[9,9+1] x [</$(/), dfe(/)+i], [9+2,9+3] x [cfe(/)^«o')+i] e A 

for each (a, Z?)-interval 
{9,9+1,9+2,9+3} 

in CQ, for a <b in /(Z)'), a nd each (a, b)-interval 

{9,9+1,9+2,9+3} 

in Co with 9+1, 9+2,9+3 ^ C0, for a < b in 7(D). 
The set A of intervals of A satisfies Requirement 1 with respect to the colorings 99/. 
We have the ideal A' =AH (C0 x C\) of A. Let us denote its maximal element by iA>, 

that is A' = (ÎA']A- The set of intervals A', those elements of A that are intervals in A7, 
satisfies Requirement 1 with respect to the colorings </?-. 

We extend A first by applying the the 2ft3-construction to all intervals in A, and then, 
in the resulting lattice, applying the 315-construction to all intervals 

[(cj,d6(j)),(cj+3,dsu))] 

where [9,9+3] is either an (a, &)-interval in Cf
0 for a < b in J(Df) or [9,9+3] is an 

(a, Z?)-interval in Co, with 9+1, 9+2, 9+3 ^ Cf
0, for a <b in J(D). The resulting lattice L 

is planar, and neither it nor its ideal L' = ((4/], determined by A', has any automorphism 
other than the identity mapping. 
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4. Generalized coloring. In [11], we presented a generalization of the SJW3- and 
9?5-constructions of Section 3 as follows. 

Let L be a lattice and let A be a set of proper intervals in L, that is, intervals with more 
than one element. We define a lattice L[A] by adjoining the family of new pairwise distinct 
elements {ra/ | / G A} to L, and requiring that u <m\ <v, for each / = [w, v] G A. 

We associate with x G L[A] the elements x and x of L: for x G L, set x = x = JC; for 
/ = [w, v] G A, set m j = u and râ/ = v. We then, more formally, define the relation < on 
the set L[A] as follows: 

x < y if and only if je = y or Jc <^ _y, 

where <i denotes the partial ordering in L. 
Then it follows easily that ( L[A], < ) is a lattice extending L. If X is a subset of L[A], 

then V ^ exists in L[A] if and only if either there is an x G X such that, for all y G X, 
we have x > y9 in which case V ̂  = *; or there is no such x and \lL{x \ x G X) exists, in 
which case 

\IX = \JL(x\xeX), 

where V L is the complete join in L; and dually for /\. 
For the 2W3-construction, A is a set of intervals in the lattice A that satisfy Require­

ment 1 of Section 3. For the ^5-construction, A is the set of intervals 

[{ci,dm),(cM,dm)'\ 

in the lattice obtained by applying the Wl3-construction to A, where the [c/,c/+3] are 
(a, Z?)-intervals in the chain Q . 

The following result describes which congruences extend from L to L[A] : 

THEOREM 5 (ONE POINT EXTENSION THEOREM [11]). Let A be a set of nontrivial, 
nonprime intervals in the lattice L, and let G be a congruence relation on L. Then 0 has 
an extension 0[A] to L[A] if and only if S satisfies the following conditions and their 
duals (see Figure 13): 

V W 

u 

Condition (3.1) Condition (3.2) 

FIGURE 13 

( 1 ) For [w, v] G A, x, y G L with y < v and u < x, 

y = v (0) implies that x = vV x (0). 
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(2) For [w, v], [u, w] G A, with v ^ w and y G L with y < v, 

y = v (0) implies that v A w = u (0 ) . 

The extension 0[A] of 0 to L[A] /s unique. It can be described as follows: For all 
a G L[A], set a = a (0[A]). For all a, b G L[A], vWfft a ^ ft, sétf 

a = b (0[A]) 

if and only if the following three conditions hold: 
(3) aAb = aVb (0) . 
(4) aAb^LoraAb^L and there is an xaAb € L w/f/i 

iflAi? > aAb and xa/\b = aAb (0 ) . 

(5) aVb^LoraVb^L and there is a ya\/b G L with 

yavb <aV b and yayb = aVb (0 ) . 

An interesting special case can be developed by generalizing the concept of coloring 

from Section 3. Let P be a set of nontrivial intervals in a lattice L. A (generalized) 

coloring </? of L by a set X is a map (f : P —» X. In this generalization, L need not be a 

chain, nor need the intervals in P be prime—they need only be nontrivial. 

For each / = 0, 1, let A/ be a lattice with a coloring (ft : Pi —> X. Let A be a sublattice 

of Ao x A\. We consider a set A of intervals in AQ X A\ of the form IQ X /] with /Q G Po 

and /i G P\ such that each interval in A is a subset of A. In analogy to Requirement 1 of 

Section 3, we require of A: 

REQUIREMENT 2. A is a set of intervals in A of the form / 0 x / i , // G Pi, satisfying 

(4-1) I f / o X / i G A, then/o<£o = / i ^ i . 

(4-2) For each x G Po^o D P\Lp\, there is a /0 x /j G A 

with/oV^o = I\(f\ = x. 

(4-3) For each / = 0, 1, if/, / ' G P/ are distinct and lift = /V / , 

then there are 7 G P/, / , / G P i - / with 

I x J, I x J, I' x J', 7 x f e A, if i = 0, 

Jxl, Jx7, f xi', f xleA, if/ = 1. 

We form the lattice A [A]; let us denote the element m/oX/, G A [A] by m(/o, / i ) . 
Recall that any congruence relation 0 on the lattice Ao x A\ is of the form 0o x 0 i , 

where, for / = 0, 1, 0/ is a congruence relation on A/. We consider congruence relations 
0 on A which are restrictions of such congruence relations 0o x 0 j on AQ X A\. The 
next result is an application of the One Point Extension Theorem to determine which 
such congruence relations on A extend to A [A]. 

THEOREM 6 (EXTENDED COLORED PRODUCT EXTENSION THEOREM). Let the set of 

intervals A satisfy Conditions (4-1), (4-2), and (4-3). The congruence relation S on A 
that is the restriction of 0o x 0 j G Con (Ao x A\) extends to A [A] if and only if the 
following two conditions and the dual of the second condition1 hold: 

In dualizing, we only dualize for the lattices, not their congruences; thus, Condition (6.1) is self-dual. 
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(1) Forl0 G P0 , I\ G Pi, ifloipo = I\<f\, then 

0(/o) < 0o is equivalent to 0 ( / i ) < ©i. 

(2) For i - 0, 1, if[u, v] G P; WJY/Z [w, v]<£; G Po^o H Pi v?i, am/ if there is ay < v with 

y = v (©,-), then 0(w, v) < 0/. 
In that event, the extension is unique. 

PROOF. Since none of the intervals in A are prime, the One Point Extension Theorem 
applies. We note that in the present case Condition (5.1) is equivalent to the stronger 
condition: 

(5.1+) If [«, v] G A and there is ay < v withy = v (0) , then u = v (0 ) . 

Indeed, if u = (MQ, u\),v = (vo, vi), JC = {UQ, V\) then, by Condition(5.1), 

v = (v0 ,vi) = (w0,vi) V(v 0 ,v i ) = (uo,v\) (0) , 

and, similarly, 

v= (vo,vi) = (v0,wi) (0 ) . 

Consequently, 

u = (UQ,U\) = (w0, vi) A (vo,«i) = v (0) , 

establishing Condition (5.1+). 

Note also that Condition (5.2) follows immediately from Condition (5.1+). Thus, in 

view of the One Point Extension Theorem and the principle of duality, we need only 

show that the conjunction of Conditions (6.1) and (6.2) is equivalent to Condition (5.1+). 

Let Conditions (6.1) and (6.2) hold. Let [(wo,wi), (vo, vi)] G A, and let (yo*y\) < 

(vo, vi) with (yo,y\) = (vo, vi) (0) . Without loss of generality, we may assume that 

yo < vo. Since vo = vo (©oX it follows from Conditions (4-1) and (6.2) that UQ = vo 

(0o). Again, since [uo, vo]v?o = [wi, v i ]^ i , it follows from Condition (6.1) that u\ = vi 

(0i ), establishing Condition (5.1+). 

Now let Condition (5.1+) hold. Then the following condition is an immediate conse­

quence: 

(4-4) If [(UQ,U\), (VO, VI)] G A, then UQ = vo (0o) if and only if u\ = v\ ( 0 i ) . 

Indeed, if UQ = vo (©oX then set y = («o, v\) in Condition (5.1+), and conclude that 

(uo,vo) = («i ,vi) (0) , that is, that u\ = vi (0 i ) . Similarly, if u\ = vi (©i), then 

setting y - («i, vo) yields u$ = VQ (©o). 

We first establish Condition (6.1). Let /Q G Po, h G Pi with ZoV̂ o = I\V\ = x- Then, 

by Condition (4-2), there is / x J G A with Iip0 = J<p\ = i . B y Condition (4-4), 

(4-5) © ( / ) < © 0 <=> 0(7) < 0 i . 
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If 7 = /o, then, obviously 

(4-6) 0(/o) < 0O ^=> 0(7) < 0o. 

If, on the other hand, I ^ 70, then, by Condition (4-3) with / = 0 and 1' = 70, there are 
7 G P0, 7, f G Pi with 

7 x 7 , 7 x 7 , 70 x / , 7 x f G A. 

Then, by Condition (4-4), 

0(7) < 0O «=> 0(7) < 0i <=> 0(7) < 0O <=^ 0(7') < 0i <=» 0(/o) < 0O. 

That is, if 7 ^ 7o, we again have (4-6). 
Similarly, 

(4-7) 0 ( / , ) < 0 , <=» 0(7) < 0 i . 

Combining (4-5), (4-6), and (4-7) we get 

0 (7 o )<0o 4=^ 0 ( / i ) < 0 , , 

establishing Condition (6.1). 
Next, we establish Condition (6.2). 
Let / = 0. Let [w, v] G Po with [w, v](fo G Pi (^i, and let y < v with _y = v (0o). By 

Conditions (4-2) and (4-3), there is an interval [u\1 v\] G Pi with [(w, u\), (v, vj)] G A. 
Now (j, vi) < (v, vi) and (y, vi) = (v, vi) (0). Then, by Condition (5.1+), (M, U\) = 
(v, vj ) (0), and so w = v (0o), establishing Condition (6.2) for / = 0. A similar argument 
establishes Condition (6.2) for the case / = 1. 

Consequently, we conclude that the conjunction of Conditions (6.1) and (6.2) is 
equivalent to Condition (5.1+). Theorem 6 then follows by the One Point Extension 
Theorem. • 

We denote the extension of 0 to A [A] by 0o X^.A 0 I . 
Theorem 6 is a generalization of the Colored Product Extension Theorem, introduced 

in [ 11 ], and also used in [9]. 

5. The proof of Theorem 1. We refer the reader to the summary at the end of 
Section 3. If D and D' are both Boolean and V7 is an isomorphism, then, as observed 
there, taking L = L' a chain of length \J(D)\ establishes the theorem. Otherwise we 
proceed via the chains Co and Ci and their colorings. 

The lattice L and its ideal 7/ are planar and admit only the identity automorphism, as 
demonstrated in Section 3. We need only formally establish isomorphisms 

g : D —> Con L 
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and 

g' : D' —> Con L' 

such that g followed by restriction to L' is ipg1'. 

The result of applying the 3W3-construction to the lattice A for all the intervals in A 

is, in the notation of Section 4, the lattice A [A], and its ideal (iA>] is A'[A']. In Section 3 

these lattices were denoted K and K' respectively. We first determine the congruence 

relations on these lattices. 

LEMMA 7. The congruence relations of the lattice A [A] are precisely those of the 

form 0o XA,A ©1 where, for i = 0, 1, 0 / is a congruence relation on C/ satisfying: 

(I) For po e Ip Co, pi G Ip Ci, if P0V0 = P\V\, then 

©(Po) < 00 is equivalent to 0 (p i ) < ©1. 

PROOF. Denote the largest element of C\ by dt—usually, t = r + r\ but it may be 

larger, as in the discussion following the proof of Lemma 4 in Section 3. The smallest 

element of Co is denoted Co- Since 

Co x {dt} Ç A 

and 

{c0} x d Ç A, 

it follows easily that any congruence relation on A is the restriction of a congruence 

relation 0 O x 0 j , where 0 / is a congruence relation on C/ for / = 0, 1. 

We apply Theorem 6, the Extended Colored Product Extension Theorem. For each 

/ = 0 , 1 , we set Pj = Ip Ci. Since A satisfies Requirement 1 of Section 3, Conditions (4-1 ), 

(4-2), and (4-3) hold. Furthermore, Condition (7.1 ) is equivalent to Condition (6.1). Since 

all the intervals in Po and Pi are prime, and since Co and C\ are chains, Condition (6.2) 

and its dual hold trivially. Thus the lemma follows from Theorem 6. • 

Recall that A7, the set of those elements of A that are intervals in A7, satisfies Require­

ment 1 with respect to the colorings ip\. Thus, exactly as above, we have: 

LEMMA 8. The congruence relations of the lattice A'[A'] are precisely those of the 

form 0o XA'.A' ©1 where, for i = 0, 1, 0 / is a congruence relation on C\ satisfying: 

(I) Forpo e Ip C0, pi G Ip C\, if pov'o = P i ^ i , then 

©(Po) < ©0 is equivalent to ©(pi) < ©1. 

We now formally describe the application of the 5Î5-construction to the lattice A [A] 

referred to in the summary at the end of Section 3. We let T be the set of those intervals 

of the form 

[Cj,Cj+3] X {d6(j)} 
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where [c/,c;-+3] is either an (a, Z?)-interval in C0 for some a -< Z? in J(D'), or is an 
(a, /?)-interval in Co for some a < b in /(D) with c/+i, c/+2? 9+3 ^ CQ. Then 

L = A[A][H. 

If Tf is the set of those elements of T that are intervals in ̂ '[A'], then it is the set of those 
intervals of the form 

[cj,cj+3] x {dS(j)} 

where [c/, C/+3] is an (a, Z?)-interval in C0 for some « -< b in /(£>'). Then 

L' =A'[A!W']-

We describe the congruence relations of L: 

LEMMA 9. The congruence relations of the lattice L are precisely those of the form 
(0o XA.A ©I)IT] , where 0o w a congruence relation on Co tfftd 0i /s « congruence 
relation on C\ satisfying: 

(1) For each /, k G {0, 1}, and each p G Ip C/, q G Ip Q w//7z q ^ < p</?;, 

z/*0(p) < 0/, ^ ^ 0(q) < 0*. 

PROOF. By Lemma 7, the congruence relations of A [A] are precisely those of the 
form *F = (0o x^A ©1 ) such that Condition (7.1) is satisfied. Any congruence relation on 
L = A[A][F] is the extension of a congruence relation on A [A]. Note that Condition (7.1) 
is just the special case of Condition (9.1) with / ^ k and q(fk = p</?;. Thus, we need only 
show that a congruence relation on A[A] of the form 

V = 0o xA A 0 , 

extends to A[A][T] if and only the full Condition (9.1 ) holds. 
We apply Theorem 5. Note that no interval in T is prime. Condition (5.2) and its dual 

hold vacuously. Consequently, *¥ extends to L if and only if Condition (5.1) and its dual 
hold for *F and T, and then the extension is unique. 

We show that in the present situation Condition (5.1) and its dual are equivalent to 
Condition (9.1). 

Let Condition (9.1) hold. 
First, we show that Condition (5.1) holds: If [w, v] G T, then there are a, b in J(D) or 

J(Dr) with a <b and u = (c;-, d^)), v = (9+3, d^)) where [c7-, 9+3] is an (a, Z?)-interval in 
Co—see Figure 14. Now, y < v in A[A] implies that y < (9+2, d^)), by the définition of 
A. Thus, y = v (*F) implies that 

Cj+2 = Cj+3 (©()) . 

Since the intervals [(c,-,^-)), {CJ+\ , d^)] and [ (c^ ,^ - ) ) , (CJ+3, d^))] are projective in 
A [A], we conclude that 

Cj = Cj+\ (©()). 
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u 

FIGURE 14 

Furthermore, and using the fact that ip* is isotone in the case of a, b G J(Df), we observe 
that 

[cj+ucj+2](fo < [cj+2,cj+3]ipo; 

consequently, by Condition (9.1) with / = k = 0, 

Cj+\ = Cj+2 ( 0 0 )• 

Thus 
Cj = C/+3 (®o), 

and so u = v OF), and Condition (5.1) follows immediately. 
Next, we verify the dual of Condition (5.1). Set 

m = m([cj, c/+i], [dSij), d6ij)+i]), 

the element that was added to [c,-, Cj+\] x [^(/),^(/)+i] in going from A to A [A]. Let 
y> u= (cj.dsij)). Then 

y> (cj+udm), 

or 
y> {cj,db{j)+x), 

or 
y > m 

—see Figure 14. If j = u (VF) we conclude, in each case, that 

Cj = C/+i ( 0 O ) , 

and so, exactly as above, that u = v (XF), establishing the dual of Condition (5.1). 
Finally, let Condition (5.1) and its dual hold—all we really need is Condition (5.1). 

We, of course, have Condition (7.1). We next establish Condition (9.1). 
We first consider the case where ç\tpk = ptpi in the hypothesis of Condition (9.1). If 

/ T̂  k, then the conclusion follows by Condition (7.1 ). If / = k and c\ = p, the conclusion is 
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immediate. If / = k and q ^ p, then, since A satisfies Condition (3-6) of Requirement 1, 

we get 

(5-1) if 0 (p) < 0,-, then 0(q) < 0/ 

by Condition (7.1). 

We are then left with the case q<pk < p(fi. We can restrict ourselves to the case 

/ = k = 0. Indeed, by (b) of the summary at the end of Section 3, there are prime intervals 

q' and p ' in Co with 

qVo = qifk 

and 

pVo = p(fi. 

(If k = 0, then q' = q, and if / = 0, then p ' = p.) By Condition (7.1), we then need only 

show 

if 0(p ' ) < 0O , then 0(q ' ) < 0 O . 

Consequently, we may assume that / = 0 and that 

q<po < p(f0 

with 

e(P) < e0. 
Since (Ip Co)v?o contains all non-isolated elements of J(D), we may further assume that 

(in J(D)). Set a = qtpo, b = pipo, and let [c/, 9+3] be an (a, Z?)-interval in Co with 

Cj+\, cj+2l cj+3 £ C 0 . By (5-1), 

Cj+2 = Cj+3 ( 0 O ) . 

We consider the interval 

[w, V] = [(cj, dS(J)), (cj+3,dS(j))] € T 

—see Figure 14. In Condition (5.1) set 

y=(cj+2,d6(j)) 

and 

x = (cj,d6(j)+i). 

Then 

y = v m 
and so, by Condition (5.1), 

(c/+3, d8(j)+{ ) = VVX = X=(CJ, d6(J)+l ) (VF). 
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Taking the meet with (c7-+3, <%))' w e Set 

(cJ+3,d5(J)} = {Cj,d6{J)) (40, 

and so 

Cj+\ = C/+2 ( 0 0 )• 

Since 

[c/+i,c/+2]^o -a- Q^o, 

we conclude, by (5-1), that 0(q) < 0o, establishing Condition (9.1), and thereby con­
cluding the proof of Lemma 9. • 

Similarly, for L', we have: 

LEMMA 10. The congruence relations of the lattice L' are precisely those of the form 
(0o x^/ A/ 0i)[r ' ] , where 0o is a congruence relation on C0 and 0i is a congruence 
relation on C\ satisfying: 

(1) For each /, k G {0, 1} and each p G C-, q G Ip C'k with q(ff
k < p<^, 

(f0(P) <©/, f/ie?w0(q)<0*. 

We now proceed to establish the isomorphisms 

Q: D —> Con L 

and 
p': D'—>ConL'. 

We first define g. Let x e D. For each / = 0, 1, we define a congruence relation 0J on 
C[\ for w, v G C/ with u < v set 

w = v (0?) ^=^> p(/9/ < x for each p G Ip [w, v]. 

Then the congruences 0Q, 0f satisfy Condition (9.1). Consequently we have the con­
gruence 0* G Con L defined by 

Set xg = 0 \ We show that g is an isomorphism D —» Con L. 
We first show that 0 is surjective. Let *¥ be a congruence relation on L. By Lemma 9, 

there are congruence relations 4*0 on Co and *¥\ on C\ satisfying Condition (9.1) such 
that 

4' = (4 '0xA .A4'1)[r] . 

Set 
x = VD{P^I I P e ip C/ with 0(p) < V/, i = o, l). 

We need only show that, for each / = 0, 1, 4// = &•. 
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Let u < v in C; with u = v (4^) and let p G Ip C/. Then 

0 (p )<0 (w ,v )< l F / . 

Then, by definition of x, p</?/ < x. But, by definition of 0*, we conclude that u = v (0*), 
thereby establishing 

On the other hand, let u < v in C; with w = v (0*). Then, by definition of 0*, for all 
p G Ip [w, V], pLpt < x. By the definition of x and since p^pt is join-irreducible, there is a 
k = 0, 1 and q G Q with 0(q) < 4^ and p(/?/ < q(fk. By Condition (9.1), we conclude 
that 0(p) < ^F/. Consequently, « = v (*F;), and so 

0? < ¥ / 

also, thereby showing that 

¥« = ©?, 

establishing the surjectivity of £. 
Next, we show that 

(5-2) xg < yg <=> x < y. 

If x < y, then, for each /, 0* < 0 j , and, so, xg < yg. If, on the other hand, xg < yg, 
then 0* < 0 j for each / G {0, 1}. Let a G J(D) with a < x. Then, by observation (a) in 
the summary at the end of Section 3, there is an / G {0, 1} and a p G Ip C; with 

p(fi = a < x. 

Consequently, by the definition of 0*, 

0(p) <Qï <&? 

which, by definition of 0 j , implies that 

a- p^pi <y. 

Thus, if xg < yg, then* < y, establishing (5-2). 
The surjectivity of g and (5-2) establish that g is an isomorphism. 
Similarly, for each x G D' and i G {0, 1}, we have the congruence relation 0'* on C\ 

given by 
u = v (0'*) <=^> P^p'i <x for each p G Ip [u, v] 

for u < v in C-. Setting 

xg' = &x = o'o xA,.A, &])[?] 

yields an isomorphism g' : D' —> Con L'. 
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We now determine g followed by restriction to L'. Let x G D. Since g' is an isomor­
phism, the restriction to L' ofxg = Qx is of the form 

yQ> = e'y = (&l xA,A, e'ï)[r'] 

for some y G D\ where, for each /, &] is the restriction to C\ of 0*. 
We claim that 

y = xip. 

We need only show for each a G J{D') that 

a < y <f=> aip* < x. 

By (c) of the summary at the end of Section 3, there is an / G {0, 1} and a p G Ip C-
with a = p(/?-. Then 

a < y <=> pip- < y <^> 0(p) < 0'J in Con C\ 

by definition of &y
r Thus, since &J is the restriction to C\ of 0^, 

a < y <=> 0(p) < 0? in Con Q. 

So, by definition of 0^, 
a < y <=> pipi < x. 

Now, 

p(fi = ptp'i^* =a^ 

and consequently 
a < y =̂4> a^* < JC, 

showing that g followed by restriction to L' is ipgf, and thereby concluding the proof of 
Theorem 1. 

6. Representing groups. In this section, we construct, for each group homomor-
phism 7] : G —+ G', a simple lattice H with automorphism group isomorphic to G and 
containing an ideal H' with automorphism group isomorphic to G' such that each au­
tomorphism of H restricts to an automorphism of H' where the restriction is naturally 
equivalent to the mapping ij. The results in this section are related to results in [13] 
and [1]. Although our construction is inspired by R. Frucht [4], the presentation is 
self-complete and does not use any of the results in these works. 

We use the term digraph for a directed graph (the edges have a direction) without 
multiple edges—for each pair of vertices v, w, there is at most one edge from v to w. The 
digraphs we consider here will also have no loops, that is, the ends of any edge will be 
distinct. Thus a digraph D is a structure (V, R) where V is the set of vertices and /?, the 
set of (directed) edges, is a subset of V2 disjoint from the diagonal. We say that a digraph 
D7 = (V',/?') is afull subgraph of a digraph D = (V,R) if V Ç VandT?' = RH V'2, that 
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is, if for any v, w G V', there is an edge from v to w in D ' iff there is an edge from v to 
w in D. 

The term graph denotes an undirected graph without multiple edges and without 
loops. Thus a graph G is a structure (V, E), where V is the set of vertices and E, the set 
of (undirected) edges of G, is a set of two-element subsets of V. We say that a graph G' 
is a full subgraph of a graph G if all the vertices of G ' are vertices of G, and any pair 
of vertices of G ' are joined by an edge of G' iff they are joined by an edge of G. 

By a labeled digraph D = ( V, R, A) we mean a digraph with vertices V, a set R of 
directed edges (that is, R Ç V2 and R is disjoint from the diagonal), and a surjective 
mapping A : R —> X, where X is a set of labels. An automorphism a of a labeled digraph 
D is a bijection a : V —> V such that /ta2 = /? and such that, for each edge (je, j ) G /?, 
we have that (x,y)\ = (xa,ya)\. 

We associate with each group G its Cayley digraph D(G) = (G,RGl\G), where 

flG = {<£,/*) £ G 2 | S ^ } 

and (g, h)XG = gh~l. The automorphism group of D(G) is isomorphic to G; we associate 
with the element g G G the automorphism ag defined by /za^ = % for each h G G. 

Given the groups G, G' and the homomorphism rj: G—+ G', we construct a labeled 
digraph D(r?) = ( V7/, 7?7/, Ar/), where 

Vn = GU G', 

/ ? ? / = / ? G U / ^ U { ( g , C T ) | g G G } , 

and the labeling Â  is defined by setting 

Ug,h)\G=gh-\ if (g,h)eRG; 

(g,h)\r, = {g,h)\G,=ghrX, if (g,h) G RGr, 

[77, if g G G and /z = gr/. 

Thus D(7y) is the disjoint union of D(G) and D(G') with new directed edges (g,gri), 
all with label 77, added—see Figure 15. We note that the Cayley digraph D(G') is a full 
subgraph of the digraph D(rj). 

With each g G G, we associate a mapping a^ : V̂  —> Vr? by setting 

f%, if/zGG; 
k o = < 

* [hgri, if/zGG'. 

We recall the isomorphism G' —» Aut D(G') which associates with each g G G' the 
automorphism a^ of D(G') determined by setting ha'g = hg. 

LEMMA 11. For each g G G, f/ie mapping ag is an automorphism of the labeled 
digraph D(ry). 77ie mapping f): G —> Aut D(r/), defined by setting 

is a group isomorphism. For each g £ G, ag restricts to the automorphism agî] ofT>(Gf). 
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D(G) 

D(TI) 

FIGURE 15 

PROOF. Let g G G. It is clear that ag is a bijection on V^. 

If gi, g2 are distinct elements of G, then 

(g\,g2)><T, = g\g2l = (g\g)(g2g)~l = (g\ag,g2(xg)\n-

If g\, g2 are distinct elements of G', then 

(gi,g2)Arç = gig2~
1 = (g\gr])(g2griT] = (giag,g2ag)\1}. 

If gi G G, then 

and 

5i«g»/ = (gig>7 = (g\V)(gV) = g\Wg-

Consequently, 

(g\<xg,g\r]ag) eRrj 

and, clearly, 

{g\<Xg,g\'n<Xg)^r, =1-

Thus, for each g G G, the mapping o^ is an automorphism of the labeled digraph D(ry). 

We now show that each automorphism g of the labeled digraph D(r/) is of the form 

a# for some g G G. Let us denote the identity of G by e and the identity of G' by e'. Set 

g = eg. 

Since the vertex g of D(r/) has a directed edge labeled by 77 exiting from it, namely, the 

edge (<?, ef), it follows that so does g; therefore, 
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We claim that g = ag. Indeed, if h G G, then 

h = (h, e)X7] = (hg, eg)X1 = (hg, g)Xn = hgg~\ 

and so 
hg = hg = hag. 

Now, 
T) = (e, e)\ = (eg, e'g)\71 = (g, e'g)\Tt, 

and so 
eg = grj. 

Then, if h G G', we get as above, with e replaced by e', 

hg = hgr\ - hagJ 

establishing our claim. 
Thus fj: G —• Aut D(r/) is surjective. Clearly, ag = ah implies that g = h and, equally 

clearly, agh = agah—thus f\ is an isomorphism. 
The final claim of the lemma is clear; the proof is complete. • 

We now show how to associate a lattice with any labeled digraph in such a manner 
that the automorphism group of the digraph corresponds to the automorphism group of 
the lattice, and such that any full subgraph corresponds to a sublattice. This is done in 
several steps; with the labeled digraph we first associate a (unlabeled) digraph, with that 
digraph we then associate a graph, and, finally, with the resulting graph we associate a 
lattice. 

We first show how to associate a digraph with any labeled digraph. Note that any 
ordinal 7 can be considered to be a digraph; ((5\, fc) is a directed edge iff f3\ < ^2; then the 
only digraph automorphism of 7 is the identity, and distinct ordinals are nonisomorphic 
digraphs. Let D = ( V, /?, A) be a labeled digraph and let X denote the set of labels. For 
each x G X, we choose an ordinal 7* > 3 so that distinct ordinals are chosen for distinctx. 
For each directed edge (v, w) G R, we take a digraph Ov,w = ( Vv,w> Rv,w) corresponding 
to the ordinal 7/v.wu in such a manner that the digraphs associated with distinct edges 
are disjoint. Let us denote the vertex of Ov?vv corresponding to 0 G 7(V,W)A by ov,w. We 
construct a digraph Do = (Vo,Ro) from D by replacing each directed edge (v, w) of D 
by the subgraph depicted in Figure 16. 

More formally, 

Vo = VÙ|j{Vv,w | (v,w)GR} 

and 

Ro = {(v, <w) I (v, w) G R} U {(ov,w, w) I (v, w) G R} U \J{RV,W | (v, w) G R}. 

Each automorphism of D extends naturally to an automorphism of Do in a unique 
manner; if v 1—> v' and w 1—> w', then oVtW ^ ov>^> and, since (v, w)X = (vf, w')X, there 
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O 

FIGURE 16 

is a unique isomorphism Ovvv, —> Ov/<vv/ with ov,w i—> < w - It is also easy to see that 
each automorphism a of D0 is such an extension of an automorphism of D. Indeed, the 
elements v of V satisfy the following two conditions in Do: 

If w\ ^ W2 and (w\, v), (vt>2, v) G Ro, then (w\, W2) ^ Ro-
If w\ ^ W2 and (v, w\ ), (v, wi) G Ro, then (wi, W2) ^ Ro-

Each element of any Ovvv fails at least one of them, since Ovvv is an ordinal with at 
least four elements. Thus, Va = V. If va = v' and wa = w', then, since oVM> is the 
unique element _y of Vo with (v, y), (_y, w) G Ro and cyv is t n e unique element _y of Vo 
with (v',;y), (y, w') G 7?o, we conclude that oVMa = ov>^w> and so it follows easily that 
Vv,wa = Vv',ws that is> m a t Ov>. is isomorphic to Ov/<vv/, that is, that (v, w}\ = (v', w')A. 

We next associate with the digraph Do a graph G = (V\,E) where £ is the set of 
(undirected) edges and Vo Ç Vj. We do this, following R. Frucht [4], by replacing 
each directed edge (v, w) of Do by the graph depicted in Figure 17. It then follows 

FIGURE 17 

easily that any automorphism of G is the extension of a mapping Vo —-> Vo which 
is an automorphism of Do, and that any automorphism of D 0 extends uniquely to an 
automorphism of G. 

Thus, summarizing, with each labeled digraph D with vertex set V we associate 
a graph G = (V\,E), with vertex set V\ 2 V and set of edges E, such that each 
automorphism V —> V of D extends uniquely to an automorphism V\ —> V\ of G, 
and such that each automorphism of G is so obtained. It is also clear that the above 
construction preserves the property of being a full subgraph. 

Finally, as in R. Frucht [51, from G we form the lattice 

H=V] U£U{0 , 1}, 
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where, for all v G V\ and a G £, the relations 0 < v < 1 and 0 < a < 1 hold; let v < a in 

H iff v G a. Note that H is of length three. It is easy to prove that the lattice H is simple 

if the graph G has the following property: 

(6-1) For v G V\, there are «o? a\ £ E with v ^ ao, #i and floHai = 0. 

The automorphisms of the lattice H correspond to automorphisms of the graph G since 

the vertices of G are the atoms of H. It is also clear that the lattice associated with any 

full subgraph of G is a {0,l}-sublattice of//. 

Applying these results to the labeled digraph D(ry) and its full subgraph D(G'), 

we get a graph G and a full subgraph Gf and so, a lattice //o, a {0,l}-sublattice Hf
0, 

and isomorphisms r : G —• Aut //o, T' \ G' ^ Aut //Q such that, for each g £ G, the 

automorphism gr restricts to the automorphism (grj)^ of Hf
0. The graph G satisfies (6-1 ); 

thus the lattice //o is a simple lattice. 

If the group G' is the trivial group {<?'}, then HQ is the three-element chain {0, e', 1} 

and e' is fixed by each automorphism of//0. We set H = / / 0 and set / / ' = {0, e'}. Let us 

denote the element e' by /#. Then H is a simple lattice of length 3 whose automorphism 

group is isomorphic to G. The lattice H contains a simple ideal H' = (iH] of length 1 

such that each automorphism of H is an extension of the identity map on H'. 

If the group G' is not trivial, then the graph G ' satisfies (6-1), and so Hf
0 is a simple 

lattice. Let H' be a lattice isomorphic to H'0 and disjoint from //o, and let fi : H' —> //o 

denote the embedding of / / ' as the sublattice H'0 of //o. Let //i be the ordinal sum of 

H' and HQ with the unit element of H' identified with the zero element of H$—we will 

denote this element of H\ by /#. Let the set A of intervals of H\ be defined by setting 

A = {[x,x^i] | x G / / / - { 0 , / ^ } } 

where 0 denotes the zero of H'. We apply the One Point Extension of Section 4 to 

get the lattice H = H\[A]—see Figure 18. It is easy to see by Theorem 5 that H is a 

simple lattice. Now H' is the ideal (/#] of H. It is also easy to see that there is a one-

to-one correspondence between the automorphisms of H and those of HQ whereby the 

automorphisms of HQ correspond to the automorphisms of H'\ the doubly-irreducible 

element m[x^Xjl] ties together the element JC/I of HQ with the element x of H'. We observe 

that that the length of H is 6, and that of H' is 3. 

Note finally that if G and G' are finite, then so is the labeled digraph D(T/) . Since there 

are only finitely many labels, we can choose all the graphs Ovvv to be finite, and thus 

the resulting digraph D(ry)o can be chosen to be finite. Then the corresponding graph is 

finite, and so the lattice H is finite. 

We thus have the following lemma: 

LEMMA 12. Let G, G' be groups and letrf. G —> G' be a group homomorphism. Then 
there is a simple lattice H of length at most 6 with an ideal H' = (/#] of length at most 3 
which is also simple. There are isomorphisms 

TH: G—>Aut/ / 
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H 

H 

FIGURE 18 

and 
T'H, : G' -> Aut H' 

such that, for each g G G, the automorphism grn of H restricts to the automorphism 
gr\r'H, ofH'. Furthermore, if G and G' are finite, then so is the lattice H. 

As a final comment, we should like to remark that, starting with the labeled graph 
D(G) rather than the more complicated D(7/) if we wish, we have a proof that any 
group G can be represented as the group of automorphisms of a graph. This proof is an 
alternative to the proof in G. Sabidussi [14] and is more in the spirit of R. Frucht's [4] 
proof for the finite case. 

7. The proof of Theorem 2. We show how to combine the results of Section 3 and 
Section 5 to prove Theorem 2. 

Let us, henceforth, denote by 0// the smallest element and by \H the largest element 
of the lattice H constructed in Section 6. We modify the chain C\ by replacing dr>, the 
largest element of C[, by the lattice H, thereby obtaining a lattice A\ which is never a 
chain—see Figure 19. The ideal (OH] of A\ will be regarded the same as the chain C\, 
and the dual ideal [lH) will be regarded the same as the chain [d^), that is, the same as 
(C\ — C[) U {d^y.The former topmost prime interval [d^-i, d^\ of C\ now corresponds 
to [drJ-\, OH], and the former prime interval [d^, d^+\], the bottommost prime interval of 
C\ that is in C[, now corresponds to [1//, d^+\]. We set A\ to be the ideal (iH] of A\. In 
the construction in this section, A\ will play the role of C\ and A\ will play the role of 
c\. 

For uniformity of notation, we henceforth set 

Ï.V..VM] 

and 
A0 = C0. 
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dr'+r 9 

8 
d0 6 

A 

FIGURE 19 

We extend the coloring <p[ of Ip (OH] = Ip C\ to A[. Since, by the hypothesis of 
Theorem 2, J{D') is not empty, we choose any minimal a G J(D') and set p(f[ -a for 
all p G Ip [0//, ///]. We similarly extend the coloring <̂ i by setting pc î = a^* for all 
p G Ip //. Then we still have 

pifi = p(//j^*for all p G Ip Aj. 

In Section 3 we did not have with the automorphisms of L' those difficulties associated 
with the automorphisms of L discussed just before Lemma 4, essentially because C[ is 
trivial if D' is Boolean. However, here, these difficulties can arise for L'. If D' is Boolean, 
then A\ = [0#,/#]; if [cs'-\,csr](p'0 = a, a as above, (recall, [cv_i,cv] is the topmost 
prime interval in Af

0), then the doubly-irreducible (cs>, OH) can be switched with some m 
introduced in applying the 2^3-construction to an interval [cv-i, cy] x [0^, u], where u 
is an atom of H' = (///]. 

A similar difficulty can occur on the other side of L' when D' is Boolean and G' 

is trivial, that is, when /# is join-irreducible in Aj—then we may have [CO,CI]</?Q = 

[0//,///]<^i. 

These difficulties can be alleviated exactly as in the discussion following the proof 
of Lemma 4 of Section 3—extend AQ and C\ by adding more prime intervals colored a. 
Finally, if D' is Boolean and G' is trivial, we can thereby arrange that AQ and A\, which 
is in this event a chain, are of different lengths, thereby preventing the interchange of 
axes in L'. 

Note that for each (a, b)-interval [c7-, Cj+i] in Co, [#, b] a prime interval in J(D') or in 
7(D), we still have dè(j) in the chain (A\ — H) U {1//}. Then, exactly as in Section 3, we 
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consider the sublattice of AQ X A\ determined by 

in case CQ <u < cs> ; 

in case cs>+3i < u < cs>+3i+3 for 0 < i < n; 

in case cs>+3n>+3l <u< cs>+3n>+3i+3 

forO <i<n. 

Note that A0 x H Ç A. 
Again, as in Section 3, we define a set A of intervals of the form p x q, p G Ip AQ, 

q G Ip A\, in A by requiring that 
if p x q Ç A with p G Ip AQ, q G Ip A\, then 

p x q G A 4=^ p(/?0 = q(/1? 

except that if D' is Boolean, if p is the topmost prime interval in A0, and if q is a 
bottommost prime interval in A\, then 

p x q ^ A, 

and if D' is Boolean and G' is trivial, then 

[c0,c\] x [0HJH] i A; 

if p x q Ç A with p ^ Ip A0, and with q G Ip Aj, then 

p x q G A <^> p<po = q(f\, 

except that, if D' and D are both Boolean, if p is the topmost prime interval in A(), and if 
q is a bottommost prime interval in A\, then 

p x q ^ A; 

if p x q Ç A with p G Ip A0 and with q ^ Ip A\, then 

p x q G A «=> p(^0 = q^i, 

except that, if D' and D are both Boolean and q is the topmost prime interval in A\, then 

[c0,ci] x q ^ A. 

We set 
A' = An(A0 xAJ), 

that is, A' is the ideal ((cs>+3n>, /#)] of A, where cs>+3n> is the largest element of the chain 
A0. We let A' be the set of those intervals in A that are subsets of A'. 

Then, exactly as in Lemma 3 of Section 3, we have 

(w, v) eA 

y G A i , 

V > dô(s'+3n'+3i)i 
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LEMMA 13. The set of intervals A' of A' satisfies Requirement 1 with respect to the 
colorings ip\\ Ip A- —» J(Df). The set of intervals A of A satisfies Requirement 1 with 
respect to the colorings (fi : Ip A/ —> J{D). 

We then have: 

LEMMA 14. The congruence relations of the lattice A[A] are precisely those of the 
form 0o X^.A 0 j where, for i - 0, 1, 0/ is a congruence relation on A/ satisfying: 

(I) Forpo G lpA0, p\ G IpAj, ifp0(p0 = Pi<^i, then 

©(Po) < ©o is equivalent to 0 (p j) < ©i. 

PROOF. The proof proceeds exactly as that of Lemma 7, except that, since A\ is not 

a chain, we must verify Condition (6.2) and its dual. However, all the prime intervals in 

/ / , the part of A\ that is not a chain, have the same color under (f\ and this color lies in 

(Ip Ao)v?o- Condition (6.2) and its dual thereby follow by Condition (14.1). • 

Similarly, we have: 

LEMMA 15. The congruence relations of the lattice A'[A'] are precisely those of the 
form 0o XA'.A' ® I where, for i = 0, 1, 0 , is a congruence relation on A\ satisfying: 

(I) ForpQ G lpA 0 , px e!pA\, ifPo<Po = Pw'\, then 

©(Po) < ©o is equivalent to 0 (p i ) < 0 i . 

We now proceed exactly as in Section 5, with the obvious exception that C\ there is 

now Aj and Q there is now Aj. The definitions of the families of intervals V and V are 

the same, and we again have lattices 

L = A[A][T] 

and 

L '=A ' [A ' ] [ r ' ] . 

The mappings 

Q : D —> Con L 

and 

Q'\D' -* Con Z/ 

are the same, and we have: 

LEMMA 16. Q and Q' are isomorphisms, and composing g with restriction of congru­
ence relations to L' yields ïpgf. 

We now determine the automorphism groups of L and L'. 

Let g G G. We extend the automorphism grn of H, determined in Section 6, trivially 

to the rest of A\, thereby getting a\ G Aut A\. We let a 0 G Aut AQ be the identity map. 

Since A'0 x H Ç A and aj maps H to H and acts trivially outside of // , it is immediate 

that ao x a\ restricts to an automorphism of A. 
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Clearly, ao preserves ipo, and, since all prime intervals in H have the same color 
under (p\,oc\ preserves ip\. Furthermore, since automorphisms preserve height, the set of 
exceptional intervals p x q that are excluded from A is preserved by the automorphism 
ao x a\ on A. Consequently, the restriction of ao x cc\ to A extends to an automorphism 
a[A] of A [A]. Since ct\ acts trivially outside of//, the automorphism a[A] acts trivially 
on the set of intervals T, and thereby extends to an automorphism gr : L^ L. 

Similarly, for each g G G7, we extend gr'H, G Aut H' to gr' : L' —^ L''. We thus have 
injective group homomorphisms 

T: G-^AutL , 

r\ G'—>AutL', 

where, for each g G G, gr\r' is the restriction of gr to L'. To complete the proof of 
Theorem 2 we need only show that r and r' are surjective. 

We proceed very much as in the proof of Lemma 4. Recall that co is the minimum 
element of the chain Ao. For the sake of notational convenience, let/7 henceforth be the 
length of Ao; then cp is the maximum element of Ao. Similarly, we denote the maximum 
element of Ai by dt (it covers exactly one element, denoted dt-\) and the minimum 
element by do—this could possibly be 0//. 

Let a : L —> L be an automorphism. All the elements of L — A are doubly-irreducible 
in L, and none of them lies in an interval of L that is a four-element Boolean lattice. The 
only elements of A doubly-irreducible in L are (co, dt) and, in the event that both D' and 
D are Boolean, (cp, do). Since 

[c0,ci] x [dt-.udt] i A, 

the interval [(co, dt-\ ), (c\, <//)] in L is a four-element Boolean lattice. 
Thus, if at least one of D' or D is not Boolean, 

(co,dt)a= (c0,df), 

that is, a maps {co} x A\ onto itself. It then follows easily that a restricted to A is of the 
form ao x cc\ restricted to A, where ao is the trivial automorphism of Ao and a\ is the 
extension to Aj by the trivial action of an automorphism grn of H for some g G G. Since 
the elements of L^ — A are determined uniquely by those of A, we conclude that 

a = gr. 

If both D' and D are Boolean, then, since 

[cp-i,Cp] x [d0,u] £ A 

for any atom u of A\, the elements (cp, Jo) and (co, ûfr) are the doubly-irreducible elements 
of L that lie in an interval that is a four-element Boolean lattice. Now, the ideal 

[(c0, do), (cp, do)] = A0 x {do} 
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is a chain. However, the ideal 

[(co, do), (c0, </,)] = M X AI 

is not a chain, since H is not. So, again, 

(co,dt)a= (co,dt), 

and we conclude that 
a = gr 

for some g E G. Thus, r is surjective. 
The proof that r' is surjective proceeds in an identical manner, except for the case 

when D' is Boolean and when G' is the trivial group—in this case both Af
0 and A\ are 

chains. However, by explicit construction, in this case Af
Q and A\ have different lengths, 

and we then conclude that L' has only the trivial automorphism, which is of course e'r'. 
This concludes the proof of Theorem 2. 
We remark that, in contrast to the proof of Theorem 1, we did not treat the case when 

both D' and D are Boolean and when both -0 and r\ are isomorphisms as a special case. 
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