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Abstract. We give sufficient conditions for the essential spectrum of the Hermitian square of a class
of Hankel operators on the Bergman space of the polydisc to contain intervals. We also compute the
spectrum in case the symbol is a monomial.

The study of spectral properties of Toeplitz and Hankel operators acting on the
Bergman space is a difficult topic. In recent years, some progress has been made in
understanding spectral properties of Toeplitz operators. We highlight the result by
Sundberg and Zheng [SZ10] who have proved that the spectra and essential spectra
of Toeplitz operators on the unit disc D need not be connected. Their result shows a
sharp difference with the spectra of Toeplitz operators on the Hardy space. As is well-
known, Widom [Wid64] showed that for any L* symbol y on the unit circle, the
spectrum of the Toeplitz operator Ty, is a connected subset of C. Similarly Douglas
[Dou98, Theorem 7.45] proved that the essential spectrum of Ty, is also connected. In
this context, we also mention papers [ZZ16, GZZ23] which study spectra of certain
classes of the Bergman Toeplitz operators on the unit disk. On the other hand, we are
not aware of much work done about the spectral properties of Hankel operators.
Since the Hankel operator H,, does not map the Bergman space into itself, we will
consider the Hermitian square H} H,, and we will obtain some initial results about the
spectrum. In this paper, we will only be concerned with symbols that are continuous
up to the boundary of the domain. In the case of the unit disc, Hy is compact for
v € C(D) (see, for instance, [ACMS82, Proposition 8]); hence the spectrum of HyHy
is discrete. Like the situation on the unit disc, on bounded strongly pseudoconvex
domains in C", Hy is compact [CS09]. Then on such domains the spectrum of
HyHy is discrete as well. In this paper, we focus on the polydisc and find some
sufficient conditions in terms of behavior ¥ on the boundary so that the spectrum
of HyH, contains intervals. One of the reasons for this departure from the one-
dimensional and strongly pseudoconvex case is the fact that Hankel operators with
symbols continuous on D? may not be compact (see [CS18a, Lel0 ]). We note that, in
case the symbol is smooth on the closure the same result was proven in [C$09]. With
regard to Sundberg-Zheng result, from the same papers mentioned in this paragraph,
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we know that if the symbol v is holomorphic along any disc in the boundary of a
convex domain, then Hy, is compact [CS09, CS$S23, Zim23]; hence the spectrum of
Hy Hy is disconnected.

At this point we would like to mention the well known formula connecting Hankel
and Toeplitz operators

HjHy = Ty - Ty Ty

Thus our results could shed a new light on the spectra of semicommutators of
Toeplitz operators. For more information about Hankel and Toeplitz operators on
the unit disc, we refer the reader to a standard reference [Zhu07].

In the rest of the paper, we prove two sufficient conditions for the spectrum of
HyH, to contain intervals. We also compute the spectrum of Hy Hy, in the case y is
monomial.

1 Main results

Let Q be a bounded domain in C” and A*(Q) denote the Bergman space, the set of
square integrable holomorphic functions on Q. We denote the Bergman projection by
P2, Then for a bounded measurable function y on Q, Hankel operator H $ on A*(Q)
with symbol v is defined as

Hy f = (I-P*)(yf),

for f € A>(Q). Here I denotes the identity operator. For simplicity, we will simply
write H, when there is no confusion about the domain. We note that the Toeplitz
operator Ty is defined as

Tyf = P(vf),

for f € A2(Q).

The spectrum for H ;’,H > for symbols continuous up to the boundary, is a discrete
set for a large class of domains on which the operator is compact [C$09]. So it would
be interesting to know the sufficient conditions for the spectrum to contain intervals.

Let 0(T) denote the spectrum of a linear map T. The set of eigenvalues is called
the point spectrum g, (T') [Con90, VII Definition 6.2]. The discrete spectrum, o4 (T)
is composed of eigenvalues with finite (algebraic) multiplicity that are isolated points
of ¢(T). Finally, the essential spectrum ¢, (T) is defined as 0.(T) = a(T) \ 6,4(T).
A characterization of the essential spectrum in our set-up, called Weyl's Criterion, is
presented in Theorem A below. We note that for self-adjoint operators T; and T, we
have 0,(T}) = 0.(T2) if Ty — T, is compact (see, for instance, [HS96, Theorems 5.10
and 7.2] or [Con90, XI Proposition 4.2]).

Our first result is about the essential spectrum of Hy Hy, on A*(D") when v is a

product of two functions that depend on different variables. We note that, HE"_“ in

the theorem below denotes the adjoint of the operator H Hq?nil.
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Theorem 11 Let ¢ € C(D"'), x € C(D) and y(2',2,) = ¢(2') x(z4) for 2/ e D",
and z, € D. Then the essential spectrum of Hy Hy, contains the set

{Ix(@)Pu:qebD,peo(my " Hy )}

In case the symbol is separable we have the following corollary, proof of which will
be presented in Section 2.

Corollary 1.2 Let yj€ C(D) for j=1,...,n and y(z1,...,2z2) = 1(z1) x2(22) -+
Xn(2n). Then the essential spectrum of Hy Hy, contains the set

U{# [Tlxe(ar)l : qx € bD, p G(H?}*Hﬁ)}-

j=1 k#j

In the next theorem, we give a sufficient condition for the spectrum to contain an
interval for more general symbols than the ones in Theorem 1.1.

Theorem 1.3 Let y € C(D"),1<k<n—1, and y,(2') = y(2',q) for 2/ e D" " and
q € bD. Assume that g — HHE:_l | is non-constant. Then the essential spectrum of Hy H,
contains an open interval.

The following corollary can be proved using Theorems 1.1 or 1.3. We will mention
both in Section 2.

Corollary 1.4  Let ¢ € C(D"1) and y € C(D) such that || is not constant on the unit
circle and ¢ is not holomorphic. Then the essential spectrum of Hy Hy, contains an open

interval where y(2,z,) = ¢(2') x(z,) for 2 e D"1 and z,, € D.

Example 1.5 Let y(z1,22) = z1(22 +1). Since z; is not holomorphic and |z, + 1| is
not constant on the unit circle, Corollary 1.4 implies that o, (HyH,) contains an
interval. It is worth noting that (see Theorem 1.6 below) the spectrum of the Hermitian
square of a Hankel operator with a monomial symbol is a discrete set; yet for the a
quadratic polynomial z;(z, + 1) the spectrum contains an interval.

In Theorem 1.6 below, we give a complete characterization of the spectrum on the
polydisc for monomial symbols.

We note that Ny denotes the set of non-negative integers, {0,1,2,...}. Form,n, & €
N and @ # Bc B, = {1,2,3,...,n} we define
o + 1

Al'l,m,oc,B = >
keB ap +np+mg+1

whenever ay < my — ny for some k € B and

ag +1 (i + 1) (g + 1 = my +1)
A = -
n,m,a,B H ap +ng+my+1 g (ak+nk+l)2

>

keB

whenever ay > my — ny forall k € B.
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Theorem 1.6 Let y(z) = 2"Z" for some m,n € Ng. Then HyH, on A?%(D") has the
following spectrum
o(HyHy) = {0} U{Anmap:aeNj, @#BcB,}.

Furthermore, if ny + my > 1 for all k € B, and my, > 1 for some k € B, then all of the
eigenvalues have finite multiplicities. On the other hand, if ny + my = 0 for some k € B,
then all of the eigenvalues have infinite multiplicities.

Since the spectrum of Hy Hy on A%(D") for y(z) = z"z™ contains countably many
points it has empty interior.

Corollary 1.7 Let y(z) = 2"2" for some m,n € Ni. Then the spectrum of HyH, on
A%(D™) has empty interior.

In case the symbol is a pure conjugate holomorphic monomial in C?, we have the
following corollary.

Corollary 1.8  Let y(z1,22) =z, 25 on D? for some positive integers n, m. Then

o) o U U (L2 )

om0 La1+n+1l ay+m+1

UMZL_Jm{(oc1+n+1)(a1+1) ((x2+m+1)((x2+1)}
oo U{ n*(ay +1)* + m*(a; +1)* — n?m? }

(g +n+D)(ay+m+1)(a;+1)(ay +1)

n- D{ (ay +1)(ay +1) }

(p+n+1)(ar+m+1)

D { (ay +1)(ay +1) }

(p+n+1)(ar+m+1)

Furthermore, all of the eigenvalues are of finite multiplicity.
A precursor to the next corollary has appeared in [CS18b, Remark 4.2].

Corollary 1.9 Let y(z1,2,) =z, on D?* for some positive integer n. Then

oty = opo J {2} O { ot )

o +n+l (g +n+1)(a;+1)

Furthermore, all of the eigenvalues are of infinite multiplicity.

2 Proof of Theorems 1.1 and 1.3

In the proofs, below K and k! = K¢/| K| denote the Bergman kernel and the
normalized Bergman kernel of Q, respectlvely. We will drop the superscript QO when
the domain is clear.

https://doi.org/10.4153/50008439524000845 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000845

On spectra of Hankel operators on the polydisc 305

To prove Theorems 1.1 and 1.3, we will need the following result. We refer the reader
to [HS96] for a proof.

Theorem A (Weyl’s Criterion) Let A be a bounded self-adjoint linear operator on a

Hilbert space H. Then

i Aisin the spectrum of A if and only if there exists a sequence {u, } ¢ H such that
lun| =1forall n and ||(A - A)u,|| = 0as n — oo.

il. A is in the essential spectrum of A if and only if there exists a sequence {u,} c H
such that |u,| = 1 for all n, u, - 0 weakly, and |[(A - A)u,|| = 0 as n — oc.

The following lemma is probably well known. We include it here for completeness.
We would like to thank Tomas Miguel P. Rodriguez for the proof.

Lemma 2.1 Let Q be a domain in C" and {f;} be a sequence in A*(Q). Then
fij = 0 weakly as j — oo if and only if { f;} is bounded in A*(Q) and f; > 0 as j — oo
uniformly on compact subsets in Q).

Proof. Letusassume that {f;} isboundedin A*(Q)and f; - Oas j — oo uniformly
on compact subsets in Q. Let f € A%(Q) and ¢ > 0. Then there exists a compact set
K c Qsuchthat | f||;2(a.k) < & Then for large j, we have sup{|fj(z)|: z € K} < eand

I N < Il o I fill ey + 1L Iz I fill 2 cay
<e(If 1200V V) + sup{ il € N}

where V(K) denotes the Lebesgue volume of K. Hence (f, f;) — 0. That is, f; = 0
weakly as j — oo.

For the converse, we assume that f; - 0 weakly as j — co. We define Sf,(f) =
(f, fj) for f € A*(Q). Then Sy,(f) - 0 as j — oo. That is sup{|S;,(f)|: j € N} < oo
for all f € A*(Q2). Then by the uniform boundedness principle sup{||S,| : j € N} =
sup{| fi[ : j € N} < co. That is {f;} is bounded in A*(Q). Furthermore, f;(z) =
(fi»Kz) = 0 as j— oo for all ze Q. We will use this fact to conclude that f; - 0
uniformly on compact subsets as follows. Let K be a compact subset of Q and {fj, }
be a subsequence of {f;}. Then Montel’s theorem implies that there is a further
subsequence {fj, } that is convergent to a holomorphic function f uniformly on K.
However, fj(z) = (fj,K;) = 0 as j — co. Then f = 0. Therefore, every subsequence
{fj} has a further subsequence {f;, } converging to zero uniformly on K. Then f; —
0 uniformly on K as j — oo. Since K is arbitrary we conclude that f; — 0 uniformly
on compact subsets. u

Proof of Theorem 1.1  Let g € bDD. For p € D and j € N we define
fin(&zn) = gi(2)ky (zn),

where 2z’ = (z1,...,24-1), k? is the normalized kernel for A*(D) centered at p and
{gj} c A*(D"™"), to be determined later, such that | g;|2ps-1) = 1. We note that
{g;} is uniformly bounded on compact subsets of D" . Then sup{|f; ,(z)| : je N,z €
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K} — 0as p — g for any compact set K c D". Hence, by Lemma 2.1, for any p; — g
we conclude that f;,,, — 0 weakly j — oco.

Let us fix j and denote v, (2, z,) = w(2', q) = x(q)¢(2’). Since y, is independent
of z,, and

P(fg)(z) = (P f)(2)- (PPg)(zn),
whenever f is a function of z’ and g is a function of z,,, we have
Hy, fi.p =Vagiky ~ P(Vag;ky)
(2.0) = x(@)9giky - x(a) (P” (98))) Ky
= x(a)(Hy gk

Then |Hy, fi,| = |X(q)|HHH3ni 8jllz2(pr1y. Now we write y = v -y, + v, and

HyHy fjp = Hy Hy, fip + HyHy—y, fip + Hy_y Hy, fjp.
Hence for A € R we have

HH@H%JCLP - Afj,pH - HHJ/Hw—wqu,p + Hx;—quwqu,pH
22) < |HyHy fip = Afi

S HHI;ququ,p - Afj,pH
+ HH;waqu,p + H;/ququfj,pH :

Let {h;} be a bounded sequence in L*(D"™"). Then | (y - wq)hjkIP»H —>0asp—q
for any fixed j. This can be seen as follows. By continuity of v, for & > 0 there exists
0 > 0 such that

[y(2',2n) —wqe(2',20)| < e for |z, — q| < 8.
Then we have
LA
= ” (y- Wq)hjkﬂp?”iz({(zf,zn)eDnz|zn,q|<5}) + ” (v- Wq)hjkﬂp?H12({(21,2,1)emz|znfq|25})
< fzﬂth%Z(DH) Hk?HiZ(D)

# 1) ooy sup | (W2 20) ~ (2 20) KB (20)| 212 € D",

z,—q| > 8}.
However,
sup{|k?(z,,)| tlzw—q| 28} > 0asp —q.

Then, for any j we have limsup,,_, | (y - wq)hjk]g’ | < &||hj| for all & > 0. Therefore,

(2.3) lim |(v=wq)hik, | = 0 for any j.

https://doi.org/10.4153/50008439524000845 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000845

On spectra of Hankel operators on the polydisc 307
This fact together with h; = 1 imply that for any j we have
|HyHy-y, o] = HHV*/(I‘ P)((V/— V/q)fj)P)H —>0asp—>gq.
Next we will use the following fact (see [CS14, Lemma 1])
(2.4) H,H, = PMz(I-P)M, foru,v e L= (Q),

where M, denotes the multiplication operator by v.
Since D" is a product domain and y, is independent of z,,, the fact above, (2.1) and

(2.3) with b = Hg"_lgj imply that for any j we have

85y Hou S| = (@ [P (2 ) @ - 7o)k | = 02s p g
and
Hy Hy, fip = (@ (Hy Hy' g))kp.

Then using (2.2) for any j we have

(2.5) ||H17/waj,p = Mol HIX(q)IZHE"_“HE?"_lgj - Agj

12(Dn-1) asp—gq.

Let p e G(H?H* Hﬂ(z’"_l). Then, by i. in Theorem A, we choose a sequence {g;} c
A*(D"") such that | g;| =1for all jand

]D)nfl* ]D)nfl .
HHV’ H, gj—ugj —0asj— oco.

LZ(DW—])
Then for A = |x(q)|*u, we have

Hlx(q)leﬂ?f H]gigj_/\gj — 0as j — oo.

L2(]D)n—1)

Then using (2.5) and the limit above we choose p; € D such that p; - g as j - oo and

+ .
L2 (]D)nfl) ]

* n—1x n—1
[y i, = Sy < [IX@PHY B gy -2
for all j. Hence
“H:;vafj)Pj - /lfj)Pi ” —0as j— oo.
Finally, we use ii. in Theorem A to conclude that A = |y(q)|*u € o.(HyHy) for any

gebDand e a(H]g"_HHE’"_I). L]

Proof of Corollary 1.2 Without loss of generality let u € O'(H;]?T H;]? ). Then, by

1
Theorem 1.1 for n =2, we have pu|y2(q2)|* € G(HXIZ);HBZXZ). Hence, inductively,
we get

Ulx2(g2) - xn(qn)I” € 0o (Hy Hy)

completing the proof of the corollary. |
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The proof of Theorem 1.3 is similar to the proof of Theorem 1.1. So we will not
provide all the details but will highlight the differences and similarities below.

Proof of Theorem 1.3  Let g € bD and

]D)n—l 2

HHDn 1% ]D)n -1 _ H
L2(Dn-1) Va 21y’

Yq

Then A, € a(Hg:_”HE;_I) (see, for instance, [HS96, Theorem 5.14]). By i. in
Theorem A there exists {gj 4} ¢ A*(D"™") such that | g;,,| =1and

ID)" 1% ]D)” 1
(2.6) HH Hy &g ~Aqg8ig

—0asj— oo.
LZ(]D)YI*])

Let
fj,q,p (zl’ Zy) = 8j.q (zl)k?(zn)

(again here k? is the normalized kernel for D centered at p). As in the proof of
Theorem 1.1 we have f; ; ,, — 0 weakly as j — oo for any p; — q. Similar to (2.1), one
can show that

D" D
Hy, fiqp = (qu gj,q)kp'

Then |Hy, fj,q,p] = HH% jgllz2(1y and as in (2.2) we have

[, oS = AaSiae| - [ S+ Hia o]
S HHI*VHij,q,p - Aqu,q,p”
< [, o Fins - Aafin
" “H‘;H‘V“/’qﬂ’q’l’ tHyy, qufj,q)pH .

As in the proof of Theorem 1.1 one can show that [[(y — ¥4 ) fj.q.p| = 0 as p = g. This
fact implies that

|HyHyy, fiqp ] = HH;(I - P)((W— Wq)fj,q,p)H —~0asp—g.

Furthermore, since D" is a product domain and vy, is independent of z, using (2.3)
with

we have
|Hy—y Hyy o | = | P (D) 81,00 (F -9k} | > 0as p > .
Furthermore, by (2.1) we have

* Dn—]* ]D)n_l D
Hy Hy, fiqp=(Hy, Hy giq)k,.
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Then for any fixed j, we have
* ]Djnfl* ]anl
HHv/waj,q,p = Aofian| = Hqu Hy, 8jq~ 248

However, by (2.6) we can pass to subsequence of {g;, 4}, if necessary, and get

1

< .
L2 (Dn—l) J

PP~ asp—gq.

Dn—l* ]D)n_l
”qu qu 8j.q ~ )ngj»q
for all j. Next we choose {p;} c D such that p; > g as j - oo and

|HyHy fi.0, = Aafian | < ?
for all j. Therefore, we have
|HyHy fiq.0, = AaSiqp, | = 0as j— oo
Then ii. in Theorem A implies that A, € o, (Hy Hy).

e S .
Next we note that |H,, ~ H,, | dependson g continuously because y, depends
on g continuously and
n—lx n—-1 n—lx% n-1
H D D"t _ D D

pr-1* -t Dt
=||H +H H
H Yar~Var " Yy Yqy Va1~ Vay

Yo Yay Yay Ya
- ( D H Dt )
< +
= HHqu_qu H‘//ql quz
D D
< va - val (”qul + Hquz )

Then we conclude that {A, : g € bD} is connected. Therefore, since we assume that

; D"y s .
the mapping g > [H,, | is non-constant, we conclude that {A,: q € bD} con-
tains an open interval in (0, c0). That is, ae(H,’;HV,) contains an open interval
in (0, 00). |

The proof of Theorem 1.3 above implies the following corollary.

Corollary 2.2 Lety € C(D?) and yy,9(&) = w(e'®, &), v2.0(&) = w(&, ') for £ D.
Then

D 2 . D 2 . *
{15, 52 oy 0 € 10,271} U{[HY, | g, : 6 € [0.27]} € 0 (Hy HY).
Remark 2.3 'We note that Theorem 1.6 shows that the inclusion in Corollary 2.2
is not an equality in general. Indeed, for y(z,2,) = Z;z; the quantities HH]EL .| and
||HE2 , | are constant as functions of 6. Therefore, the left-hand side of the inclusion
in Corollary 2.2 contains at most two numbers whereas the right hand side, by
Theorem 1.6, contains infinitely many numbers.

Proof of Corollary 1.4 If ¢ is not holomorphic then HEH is non-zero operator

as H]gn_ll # 0. Hence HH?"_l | > 0. Furthermore, since | x| is non-constant on the unit
circle, the image of the mapping

anl
q9- HHW

= (@l |y

LZ(]D)n—l) LZ(]D)n—l)
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contains an open interval. Therefore, by Theorem 1.3, the essential spectrum of Hy H,,
contains an open interval. [

Remark 2.4 One can also prove of Corollary 1.4 using Theorem 1.1 as follows.
Since H]gH is non-zero operator, there exists a positive number y € o(H[gH*H Enil).
Then the image of the mapping q — |y(q)|*u contains an open interval as |y| is non-
constant on the unit circle. Therefore, by Theorem 1.1, the essential spectrum of Hy H,,
contains an open interval.

3 Proof of Theorem 1.6

Before we present the proof of Theorem 1.6, we make some elementary computations.
Let Q be a complete Reinhardt domain in C" and again Ny = {0,1,2,3,...}. The
Bergman kernel function K has the expression

K(z,w) = ). caz*W",

n
aeNg

where ¢, = 0 when | z%[ ;2(q) = 00 and ¢4 = | 2° HZZZ(Q) otherwise.
A function y is called quasi-homogeneous if there exists f:[0,00)" - C,
(ki,...,ky) € Z" such that

(3.1) y(re'®, . rae'®) = f(r, ... ry)e RO+ rknbn)
For z=(z1,...,2,) €C" and a = (ay,...,a,) € Z", we will use the notation |z]
for (|z1],...,|zn|) and write |z|* for the product [T}, |z;|*/. Then (3.1) can also be

expressed as:

¥(2) = f(l2])e™?,

wherek = (ki,...,k,),0 = (61,...,0,),and z; = |z;|e*. Now we consider the spec-
trum of Hy Hy when y is bounded and quasi-homogeneous on the complete Rein-
hardt domain Q.

By (2.4) we have

HH,z" = PMy(I - P)M,(z")
= PMy(I - P) f(|z|)[z|"e )
= PMy(z"y - P([2|*e ® 9 £ ([2)))),

for a € N7 Ifthe multi-index k + & ¢ N2, then P(|z|*e!®*%)9 £(|2])) = 0 which yields

that
. z% 2
(3.2) HWHWZO‘ — P(Z“|l//|2) _ |Z://||2L2 «
L2
Otherwise,

P(|2|"e’ ™ f(j2])) = fnK(z,W)\Wl“ei(k*“)"’f(IWI)dV(W)
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= 3 gt [ Wt 0 f(wl)av (w)
peNy
- C:x+kza+k /(;W«x+k|w|¢xei(k+a)-0f(|W|)dv(w)

_ Ja WP F(WDAV (W)
(Eaan P

>

which implies that
HyHyz" = PMy(z"y — P(12]*¢' D £ ([2])))

w Jo WP F(whdvi(w) m)
=PM-|z%y - z
*’( i [z ]2,
« WP F(IwDAV (W) | e
=P|z%y|* - o wik|2 |2*2% £ (|2
|z HLz
53 e 1mvlE o Pt F (DAY (w)]?
lz*2, |22 ]2, | z2+k] 2,

Hence the spectrum o (H, Hy ) contains the eigenvalues

lz*l3: oWl f(whdv (w)|?

2% [t PR Eamd 7

corresponding to the eigenfunction z* for k + & € Njj and

|z* vl
(Ead 78

for k + & ¢ Njj. Furthermore, since the eigenfunctions form an orthogonal basis for
A%(Q), the closure of this set is the whole spectrum o(HyHy) (see by Lemma 3.4
below).

Example 3.1 When f(|z]) = |z[X for k € N#, Equation (3.3) becomes

||Z“+kHiz ~ H22w+2kH%l ):

(e R A P Eana 79

HyHyz% = z* (
This is not surprising since in this case the symbol ¥(z) = z* is holomorphic.

Example 3.2 When y(z) = ¢™®? for k € N7, Equation (3.3) becomes

” 22a+k H %1 )

H,H Z“:z“(l—
- o= 2 T=+TE,

Example 3.3 Whenk = 0, y(z) is radial and (3.3) becomes

WHf_f“fw;_wwm)
1{/ - .

Y |1z H%z (B2 Hiz
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Lemma 3.4 Let T: H — H be a bounded linear map on a separable Hilbert space H.
Assume that Aj is an eigenvalue with a corresponding eigenvector u; for j € N and {u; :

j € N} forms an orthogonal basis for H. Then o(T) = {A;: j € N}. Furthermore, A €
0.(T) ifand only if it is the limit of a subsequence of {A;}.

Proof.  Since o(T) is a compact set containing {A; : j € N}, we have {1;: je N} c
o(T). To prove the converse, assume that A ¢ {1;: j € N}. Then we define Su; =
M%Au j for allj. Then S is a bounded operator, as {(1; — 1) ™'} is a bounded sequence,
and it is the inverse of T — A, as

(T—/\I)Suj = S(T—AI)L{]‘ = uj,

for all j. Then, A ¢ o(T). Thatis, o(T) c {A;: j e N}.

We recall that 0,(T) = 0(T) \ 04(T) where g;(T) is composed of isolated eigen-
values with finite multiplicity. To prove the last statement, let A € g, (T). Then A €
o(T) is not an isolated eigenvalue with finite multiplicity. That is, either A is not
isolated in ¢(T) or it is an eigenvalue with infinite multiplicity. Either way, there
exists a subsequence of {1} converging to A. Conversely, if A € o(T') is the limit of a
subsequence {A;, } of {A;}, then either A = A;, for infinitely many ks (hence, it is an
eigenvalue with infinite multiplicity) or A is not isolated in ¢ (T). Again, either way
Aea.(T). |

Finally, we present the proof of Theorem 1.6.

Proof of Theorem 1.6 Note that y(z) = z"Zz" = |z|m¥m gi(n-m)-6 By (3.2) and (3.3),
it follows that

I i N
X . =T, a+n-m¢Nj
(34) H HV/Z = a+n=m |2 2a+2n-m—m |2
v o il P o N"
PTG ) TR meE e
12 12 12

We note that for multi-index p € Nj we have,

l2#122 = 12 =

_ "
Mk (Bx +1)°
Substituting this into (3.4) yields that

« n ap+1 _ n

H*H.z% = {Z [Tzt apt+ngt+my+l «+n-m¢Np
[ N ™ n ag+l _rn (etD)(agtng—my+l) _ n
z (I_Ik=1 ap+ng+mi+l Hk:l (ak+nk+1)2 a+n m € NO.

Hence
* (14 o
HWHV’Z = An,m,a,BnZ N

for & € N§ where Ay m a5, is defined before Theorem 1.6 and B, = {1,2,3,...,n}.
That is, z% is an eigenvector corresponding to the eigenvalue Ay m,«,5,. Furthermore,
since {z* : @ € N{| } forms an orthogonal basis for A*(D"), Lemma 3.4 implies that

o(HyHy) = {An,ma,p, : &« € N{ }.
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We note that in case m = 0 the operator Hy H,z" is the zero operator and hence 0 is
the only eigenvalue with infinite multiplicity. For the rest of the proof, we will assume
that m # 0.

Lemma 3.4 implies that each element in the spectrum is either an eigenvalue or
a limit of a sequence of eigenvalues. To describe the spectrum outside of the point
spectrum, we assume that A € o (Hy Hy ) such that

A= ]lin; An,m,a(j),Bn,
for a sequence {&(j)} c Ni. Next we will show that either A =0 or A = A, 4,5 for
some & # B c B, and & € Nj. We assume that A # 0.
We note that z*(/) is an eigenvector corresponding to the eigenvalue A, . «(j),Bn-
Let us assume that

n ar(j) +1
A 5B = | | .
n.m, (). B e @k (F) +ne +myp +1

For each j there exists k € B, such that aj(j) < my — ny. Then there exists k such
that ax(j) < mx — ny for infinitely many js. That is, the kth sequence {ax(j)}72, has
a subsequence bounded by my — ny. We pass to that subsequence of {a(j)} and still
call it {&(j)}.

Next we construct B as follows. Let k; € B, be the smallest integer so that
{ak,(j)}72, has a bounded subsequence. Then we pass onto a subsequence, still
calling it {a(j)}, so that {ay, (j)}3, is a constant sequence. If ay(j) — oo as j — oo
for all k > k; + 1 then we stop here and B = {k; }. Otherwise, we choose k; > k; +1
to be the smallest integer so that {ax,(j)}3, has a bounded subsequence. Now we
pass onto a subsequence, again calling it {a(j)}, so that {ax,(j)}3; is a constant

sequence. After finitely many steps we obtain B = {ky,...,k,} and a subsequence
{a(j)} so that {ax(j)} is a constant sequence for every k € B and ay(j) — oo as
j— oofor k ¢ B.

Hence for this subsequence of {a(j)}, taking limit as j — oo, we have

" )
. . ar(j) +1
A=1lim A, moaciy.p, = lim -
joroo mmoali)Bn T T El ar(j) +ng +my +1

ap +1

- < = A‘nm,aq,B,
keB ock+nk+mk+1
where « € Njj such that «y is arbitrary for k ¢ B and ay = ax(j) for k € B. We note
that ay < my — ny for some k € B.

Similarly, if im;,co A, m,a(j),8, = A Where

ﬁ a(+1 (‘xk(j)+1)(“k(j)+”k_mk+1))

/ln m,a(j),B, — . -
melLp (k:l ar(j) +ng+me+1 4 (ak(j) + ng +1)2

then

A= lim /ln,m,a(j),Bn = /\n,m,a,B,

j—oo
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and «y > my — ny for all k € B. Hence we have shown that
o(HyHy) c {0} U{Anmap:aeNy, @#BcB,}.

Next we prove the converse of the inclusion above. First, we choose a(j) = j
for all k. Then it is easy to see that Ay m «(j),8, = 0 as j > co. Hence 0 € o (Hy Hy).
Secondly, let us assume that @ # B ¢ B, and ay < my — ny for some k € B. We choose
a(j) = jfor k ¢ Band ai(j) = ay for k € B. Then

An,m,a(j),Bn = An,m,a,B € O(H;Hv,) as j — oo.

Similarly, if oy > my — ny for all k € Bwe choose {a(j)} as above again and conclude
that Ay, m,q,p € 0(Hy Hy ). Therefore,

o(HyHy) = {0} U{Anmap:a €Ny, @#BcB,}.

We finish the proof by proving the claims about multiplicities. Let us assume that
ni + mg > 1forall k € B, and A is a non-zero eigenvalue of infinite multiplicity. Then
there exists a sequence of multi-indices {«(j) } such that A, i a(j),5, = A forallj. After
passing to a subsequence, we may assume that lim;_,, a; () exists allowing infinity
as the limit for all k.

If B = 0 then A = 0. For the rest of the proof, we assume that B # 0 and, by passing
to a subsequence if necessary, ay (j) = ay for k € B and ay(j) — oo for k ¢ B. In case
ax(j) < my — ny for some k € B, it follows that

ock(j)+1 06k+1
H —

A .8, < S I (P
n.m,a () B keB (Xk(j)+l’lk+mk+l keB ock+nk+mk+1

which is a contradiction with A, 4 «(jy,8, = A for all .
On the other hand, if ay(j)>my—ni for all k=1,2,...,n, the equality
An,m,a(j).B, = A forall j implies that

. a(j) +1 o (e () + D) (ag(f) + nx — mi +1)
ikes ak(j) t g +me+ 1 g (ar(j) + ng +1)2

(35 = - k() +1 1 (@ (f) + 1) (ar () + nie = my +1)
k1 k() e+ me+1 g (ai(j) + i +1)

Next we will prove that this is impossible for all j. Let us set

ar(j) +1

a:kEB ap(j) +ng+mp+1
1T (ok(G) + D) (ax(j) + ng —mg +1)
keB (a(j) + i +1)2
Then (3.5) becomes
(3.6) pea] —U)*L

kgp Ok () + ni +mg +1

(ar(j) + ) (ar(j) + ng —my +1)
”’,g (ac(j) + np +1)2

=0.
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Rearranging this equation, we obtain a polynomial equation

(a-b)[(ax(j) +nx +1)*(ax (j) + ng + my +1)

k{B
—611;[(0%(])+”k+1) (ax(j) +1)
k¢B
+bH(0¢k(])+1)(¢xk( i)+ ng —my +1)(ag(j) + ng + my +1) = 0.
k¢B

Rewriting the equality above, we get

(a=b)[](ax(j) +nx+1)° (H(ak +ng+mg+1) = [](ax(f) +1))

k¢B k¢B k¢B
(3.7) ~b[](ax(j) +1)ym} = 0.
k¢B
If my > 1for some k € Bthena — b > 0and

[TCax(j) + mi+me +1) = [T(ax(j) +1) 21

k¢B k¢B

Furthermore, [Tizp(ak(j)+ni+1)> dominates [Tjgp(ax(j)+1)m; as j— oo.
Hence, the left-hand side of (3.7) converges to oo as j — oo, reaching a contradiction.

On the other hand, if m = 0 for all k € B and since m # 0, we have m; > 1 for some
k ¢ B. Then a — b = 0 and (3.6) implies

a()+1 ey (e () + D (e () + mg —my +1)
k¢B ock(j)+nk+mk+1 k¢B (ock(j)+nk+1)2

However, the left-hand side of the equation above is equal to a positive multiple of the
following expression

=TTk (G) + me + 1) + TT ((aw(j) + me +1)* = mg)

k¢B k¢B

which is negative, reaching a contradiction again. Therefore, we showed that, if m +
ng > 1for all k € B, then each eigenvalue is of finite multiplicity.

Finally, let us define By = {k € B, : mj = nj = 0}. Now we will show that all of
the eigenvalues have infinite multiplicities when Bg # 6. We note that since m # 0
we know that By & B,,.

Assume that Ap m,«, 5, is an eigenvalue. Then either oy < my — ny for some k or
oy > my — ny for all k. In the first case, we have oy < my — ny for some k ¢ By. Then

=~ /‘n,m,a,B,,

1 ock(j)+1 o +1
H —

nma(]) . -
ooy k() + e+ my +1 kgBo Ok + Mk + My +1

for a(j) = jfor k € By and ax(j) = ay for k ¢ By. Similarly, if ay > my — ny for all k
we make the same choice a (j) = jfor k € By and a(j) = ay for k ¢ By and one can
see that

ﬁ )+1 IﬁI (o () + 1) (ax (j) + g — mg +1)
Anm,a(j).B, = (xk(])+nk+mk+1 el (ak(f) + nx +1)?
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B o +1 ~ (ag + 1) (ag + nx — mg +1)
_k¢BO ak+ng+mp+l o p (ag +ng +1)2
=An,m,a,B,-
Therefore, in either case the eigenvalues have infinite multiplicities. ]

By the proof of Theorem 1.6, we can also characterize the essential spectrum of
Hankel operators with monomial symbols.

Corollary 3.5  Let y(z) = 2"z" for some m,n € Njj. If my + ny = 0 for some k € B,
then the essential spectrum of Hy Hy, on A%(D")

oe(HyHy) = o(HyHy) = {0} U{Anmap: @€ N;, 0+ BcB,}.

On the other hand, if ny + my 21 for all k € B, and my, > 1 for some k € By, then the
essential spectrum of Hy Hy, on A%(D")

0e(HyHy) = {0} U{Anmap:@cNy,0#BcB,andB+B,}.

Proof. First let us assume that By = {k € B, : my + ny = 0} # 0. Then all of the
eigenvalues have infinite multiplicity. So the discrete spectrum is empty and the
essential spectrum is identical to the spectrum.

Next we assume that By = 0 and m. > 1 for some k € B,,. Then 0 is in the essential
spectrum because 0 = lim;_,co Ap m,a(j),5, for ax(j) = j for all k € B,,. Next one can
see that for any & € Njj, the value A, m « 5 is in the essential spectrum for 6 # B c
B, and B # B, as follows. Let {a(j)} be a sequence in Njj with a)(j) = a for k €
B and ax(j) = j for k ¢ B. Then as shown in the proof of Theorem 1.6, the constant
Anym,a(j),B, 18 an eigenvalue and Ay m,a,8 = iMoo Ap m,a(j).B,-

On the other hand, Lemma 3.4 implies that every A in the essential spectrum is
the limit of a sequence of eigenvalues. By passing to subsequences argument as in
Theorem 1.6 and the fact that By is empty, we can see that such a A will be of form
An,m,a,B for some & € Nj and some proper subset B of B,,. [ |
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