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TWISTED SHIFT-INVARIANT SYSTEM IN LZ%(R2Y)

SANTI RANJAN DAS®, RABEETHA VELSAMY® AnD RADHA
RAMAKRISHNAN

Abstract. We consider a general twisted shift-invariant system, V*(A),
consisting of twisted translates of countably many generators and study the
problem of obtaining a characterization for the system V*(A) to form a frame
sequence or a Riesz sequence. We illustrate our theory with some examples. In
addition to these results, we study a dual twisted shift-invariant system and
also obtain an orthonormal sequence of twisted translates from a given Riesz
sequence of twisted translates.

§1. Introduction

For the past two decades, shift-invariant spaces on R™ have been studied extensively and
applied in various fields such as time—frequency analysis, sampling theory, approximation
theory, numerical analysis, and electrical engineering. In the recent past, these spaces have
been studied on several locally compact groups. The main problem deals with obtaining
characterization theorems for the system of translates to form a frame sequence or a Riesz
sequence.

Bownik in [4] characterized shift-invariant spaces on R™ in terms of range functions and
obtained characterization for a system of translates on R™ to be a frame sequence and a
Riesz sequence. Later shift-invariant spaces were studied on locally compact abelian groups
in [5], [6], [17] and on a non-abelian compact group in [20].

Currey et al. in [9] characterized a shift-invariant system in terms of range function
for SI/Z-type groups. In [16], Iverson studied frames of the form {p(§)fi}eck,icr, where
p is a representation of a non-abelian compact group K on a Hilbert space H, using
operator-valued Zak transform. There are several interesting characterization theorems for
frames and Riesz sequences in connection with shift-invariant spaces on various types of
Heisenberg groups such as polarized Heisenberg group, standard Heisenberg group, and A.
Weil’s abstract Heisenberg group. We refer to [1], [2], [19] in this connection. Recently, in
[11], characterization theorems for frame sequences and Riesz sequences have been studied
for the shift-invariant system in terms of Gramian and dual Gramian, respectively, on the
Heisenberg group. In [3], Barbieri et al. investigated the structure of subspaces of a Hilbert
space which are invariant under unitary representations of a discrete group. Here, they
generalized the concepts of bracket map, fiberization map, dual integrability, and obtained
characterization of frames and Riesz bases in a more general setting.

In [18], Radha and Saswata introduced twisted shift-invariant spaces V?(¢) in L?(R?")
and studied the problem of finding a characterization for the system of twisted translates
to form a frame sequence or a Riesz sequence. The characterizations were obtained using
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certain “Condition C.” On the other hand, Das et al. in [10] introduced twisted B— splines
B,, and studied various properties. It was observed that for n > 2, these splines do not
satisfy “Condition C.” For n = 2, it was shown that the twisted translates of B,, form a Riesz
sequence using certain specific numerical computations. But, for n > 2, such computations
could not be extended. They were also not successful in proving the result for n = 2
analytically. Hence, it becomes necessary to obtain a characterization for a system of twisted
translates to form a Riesz sequence (also a frame sequence) without using “Condition C.”
In this paper, as a first step, we attempt to find such a characterization which can help us
to verify these results for some simple examples. This is the motivation of this paper.

In this paper, we focus on a twisted shift-invariant system of the form E*(A):={T (tk l)¢s :
k,l € Z™,s € Z} for a countable collection of functions A := {¢, : s € Z} in L?(R?"), where
T(thl)qﬁ denotes the twisted translation of ¢ € L?(R?"). (There exist different versions of
twisted translations depending on the definition of the Schrédinger representation [see, e.g.,
[12] for a different choice].) We define a class of operators {H;(&) :l € Z™,& € T"} using the
fiber map associated with the system E!(A). We obtain a characterization for the system
E'(A) to be a frame sequence in terms of the operators H;(¢) and their adjoints. We obtain
the corresponding Riesz sequence characterization in terms of the Gramian associated with
E'(A). We also prove that the system E'(A) is a frame sequence (Riesz sequence) if and
only if the system {r¢s({+1):1€ Z",s € Z} is a frame sequence (Riesz sequence) for
a.e. £ € T", using the fiber map 7. When A = {¢}, we prove that if E‘(A) is a frame
sequence, then the weight function Wy (&) is bounded above and below a.e. £ € T™\ N,
where N =: {£ € T : wy(§) = 0}. We also prove a similar result when E*(A) is a Riesz
sequence. We illustrate these results with examples. However, the converse need not be
true. We provide a counter example.

We then study the problem of dual twisted shift-invariant system. We consider two
twisted shift-invariant systems E*(A) and E*(D). We assume that they are Bessel sequences.
Then we obtain a characterization of E*(A) and E*(D) to be dual frames. As a consequence,
we show that if ¢ satisfies “Condition C,” then as in the classical case, the canonical dual
frame is the only dual frame that consists of twisted translations of a single function. In the
final part of the paper, we show that if the system of twisted translates {7 (tkvl)¢> k,(leZ"}
is a Riesz sequence in L?(R?"), where ¢ € L?(R?") such that it satisfies “Condition C,”
then there exists a ¢f € V*(¢) such that {T(tw)qbﬁ :k,l € Z™} is an orthonormal system in

L?(R?") and V(¢) = V*(¢*). We illustrate this with an example.

§2. Notation and background
Let H # 0 be a separable Hilbert space.

DEFINITION 2.1. A sequence {fj:k € Z} in H is called a frame for H if there exist two
constants A, B > 0 such that

AlFIP <D KL P <BISI, Y feH. (2.1)

kEZ

If only the right-hand side inequality of (2.1) holds, then {f : k € Z} is called a Bessel
sequence. If A= B in (2.1), then {fx : k € Z} is called a tight frame. If (2.1) holds with
A=DB =1, then {f; : k € Z} is called a Parseval frame. If {f : k € Z} is a frame for
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span{ fi : k € Z}, then it is called a frame sequence. The frame operator S : H — H associated
with a frame {fy : k € Z} is defined by

Sf=Y (fifx)frs YV [EH.
keEZ
It can be shown that S is a bounded, invertible, self-adjoint, and positive operator on H.
In addition, {S™1f; : k € Z} is also a frame with frame operator S~! and frame bounds
B~ AL
DEFINITION 2.2. Let {f;:k € Z} be a frame for #H, and let S be the corresponding
frame operator. Then the collection {S™!fy : k € Z} is called the canonical dual frame of

{fr:keZ}.

DEFINITION 2.3. Let {fx:k€Z} and {gx : k € Z} be two frames for H. Then {gy : k € Z}
is said to be a dual frame of {fx : k € Z} if

f=> (fafe,  VIEH
kEZ
THEOREM 2.4. Assume that {fi : k € Z} and {gr : k € Z} are Bessel sequences in H.
Then the following are equivalent:

(i) f:k§Z<fagk>fk, VfieEH.
(i) f=3X(ffulge, YV fEH.

kEZ

kEZ

When one of the above equivalent conditions is satisfied, {fi : k € Z} and {gi : k € Z} are
dual frames for H. If B denotes an upper frame bound for {fr: k € Z}, then B~1 is a lower
frame bound for {gi: k € Z}.

DEFINITION 2.5. A sequence {fi:k € Z} in H is called a Riesz basis for # if there
exists a bounded invertible operator U on H and an orthonormal basis {ey : k € Z} of H
such that Uler) = fx, V k€ Z. If {f: k € Z} is a Riesz basis for span{ fy : k € Z}, then it
is called a Riesz sequence.

THEOREM 2.6. For a sequence { fi.: k € Z} in H, the following conditions are equivalent:

(i) {fx} is a Riesz basis for H.
(ii) {fx} is complete in H, and there exist constants A,B > 0 such that for every finite
scalar sequence {cy}, one has

AZ|Ck\2 < Hzck:ka2 < BZ’%R
k k K

For further study of frames and Riesz bases, we refer to [8].

The Heisenberg group H" is a nilpotent Lie group whose underlying manifold is R™ x R™ x
R with the group operation defined by (z,y,t)(u,v,s) = (z+u,y+v,t+s+3(u-y—v-z)) and
the Haar measure is the Lebesgue measure dxdydt on R™ x R"™ x R. Using the Schrodinger
representation my, A € R*, given by

(@, ) B(€) = XTNTATER TV (e ) 6 e LP(R™),
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we define the group Fourier transform of f € L!(H") as
fo) = ; f(z,)mA(2z,t)dzdt, where A € R*,
which is a bounded operator on L?(R™). In other words, for ¢ € L*(R"), we have
FNo = | Sz tm(z edzdt,

where the integral is a Bochner integral taking values in L?(R™). If f is also in L?(H"),
then f(A) is a Hilbert—-Schmidt operator. Define

A _ 2miNt
) = / TN f (1) dt,

which is the inverse Fourier transform of f in the t variable. Then we can write
)= [ A )ma(z,0)dz.
(Cn

Let g € L'(C™). Define

Wi(g) = /ng(Z)TD\(Z,O) dz.

When A =1, it is called the Weyl transform of g, denoted by W (g). This can be explicitly
written as

W(g)o(&) = /R g(z,y)e2 @& s e o) dady, ¢ € L*(R™).

The Weyl transform is an integral operator with kernel K,(&,n) = fRn x,m—&)e™ @ EE dy,
If g€ L' NL?(C"), then K, € L?*(R?*"), which implies that W (g) is a Hilbert-Schmidt
operator whose norm is given by ||[W(g)||%, = HKgH%z(R%), where B, is the Hilbert space of
Hilbert—Schmidt operators on L?(R™) with inner product (7,5) = tr(T'S*). The Plancherel
formula and the inversion formula for the Weyl transform are given by |[W (g)||3, = llg//3 - (©)
and g(w) = tr(w(w)*W(g)), w € C™, respectively. For a detailed study of analysis on the
Heisenberg group, we refer to [14], [21].

DEFINITION 2.7 [18]. Let ¢ € L*(R?"). For (k,l) € Z*", the twisted translation T(tk o
of ¢ is defined by

Thpd(ey) =™ Po@—ky 1),  (z,y) eR™
Using the definition of twisted translation, we have

'kZ)T(tlirkmthlg)? A4 (kl,ll), (k’z,lg) € ZQn. (22)

REMARK 2.8. Let G be alocally compact group. Let II be a unitary irreducible represen-
tation of G on H. Let V, denote the matrix coefficient of II, namely V, f(x) = (Il(x)g, f),
frg € H. Then it is well known that V, is the intertwining operator between II and the
left regular representation L. More precisely V,(Il(z)f) = L,V,(f), x € G (see [13]). In
particular, if G is taken to be the Heisenberg group H", 7y, the Schrédinger representation
of H" on L?(R"), L(z,y,t), the left translation on H", then we get the corresponding
intertwining operator V. However, since the definition of twisted translation T(tk,l)’

t t . 77Ti(kl-l27l1
Ty 1) (k1) = €
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mentioned in this paper, is a projective representation, we obtain the following relation:

LEMMA 2.9 [18]. Let ¢ € L>(R?*™). Then the kernel of the Weyl transform of T&J)QZ)
satisfies

Kry | o(€m) = TR (€4 1),
DEFINITION 2.10 [18]. For ¢ € L?*(R?") and £ € R™, the function w is defined by
wo@= 3 [ K mnPn
mezn < K"

In [18], the characterization theorems such as the system of twisted translates forming a
frame sequence or a Riesz sequence are given in terms of the function wg.

DEFINITION 2.11 [18]. A function ¢ € L*(R?") is said to satisfy “Condition C” if

Z / Ky(E+m,n)Ky(E+m+1,n)dn=0, ae £€T", V1ecZ"\{0}.
Rn

mezm
83. Frame sequence in a twisted shift-invariant space

Let A := {¢s : s € Z} be the countable collection of functions in L?(R?") and
EY(A) :={T{, ;ybs 1 k,l € Z",s € Z}. We shall denote span(E*(A)) by U*(A) and U*(A) by
Vt(A). The space V¥(A) is called a twisted shift-invariant space. When A = {¢}, it is called
a twisted (principal) shift-invariant space. We define 7 : L?(R?") — L2(T", L2(R",(*(Z")))
by

(&) () == {Ks(E+m,n)}bmezn, ¥V feL*(R®™), £€ T, neR™

The map 7 is called the fiber map. It can be shown that L?(IR?") is isometric isomorphic to
L*(T", L*(R",¢%(Z"))) via the fiber map 7. Using Lemma 2.9, the image of T(; ;) f under
the fiber map 7 is given by

T(Thny /)€ =™ e 41),  feL*(R*™), k,leZ" (3.1)

Define J : T" — {closed subspaces of  L*R" ¢*(Z"))} by J(&) =
span{7¢s(§+1):1€Zm s € Z}. Then J is called a range function. For £ € T", let P(¢)
denote the orthogonal projection of L?(R™, ¢2(Z™)) onto J(£). Then the range function J is
said to be measurable if £ — (P(£)A1,Az) is measurable for each Ay,Ay € L?(R™, (*(Z™)).
The following proposition gives the connection between the image of V*(.A) under the fiber
map and the range function.

PROPOSITION 3.1. For a measurable range function J, define M ; :={® € L*(T", L*(R",
2(Z) - ®(&) € J(&) for a.e. £ € T™}. Then My and 7(V(A)) satisfy the following

properties.

(i) My is a closed subspace of L*(T", L?(R™,(*(Z™))).

(i) T(VH(A)) is a closed subspace of L*(T™,L*(R"™,(?(Z"))). Moreover 7(VI(A)) is
closed under multiplication by exponentials. In other words, ® € T7(V*(A)) implies
2R G () e T(VHA)), V ke Zm.

(iii) My =71(Vi(A)).
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The proof follows similar lines as in the proof of Proposition 1.5 in [4].
For £ € Tl € Z™, define H;(§) : (*(Z) — L*(R™,(*(Z™)) by

( {Cs ZCST¢S £+l)

SEL

Suppose H(§) is a bounded linear operator. Then we find its adjoint using the relation
<{CS}aHl ¢>£2(Z) <Hl {CS ¢>L2(Rn 2(zn))’

V {cs} € £2(Z) and ¢ € L*(R™,¢*(Z")). Thus,

(HE)(ex ). 8) g amy = { S cx0n(€+0),0)
SET L2 (Rm,£2(Zm))

=2 (705 (E+0):9) 2z 2am))

SEZ

= Z csmL2(Rn,ﬁ2(Z"))

SEZ

= ({es}sez ({0705 (E+ ) }sez) oz

Hence, by the uniqueness of adjoint of an operator, we get

Hl(g)*gb = {<¢a7—¢s(§+l)>}sez-

Now, we make use of the following result in order to obtain a characterization for the system
of twisted translates to form a frame sequence.

LEMMA 3.2. Let f € L2(R?*"), and let H)(§) be a bounded linear operator from (*(Z)
into L*(R™,0?(Z™)) for each 1 € Z™, £ € T™. Then H,(&)* satisfies

Z ‘<f7T(tk,l)¢8>‘2 —/Tn IHU(E) T F(E|T2gn g2 (zmy) € (3.2)

(k,s)eznt1
for each l € Z™.
Proof. Consider

t _ t
(f; T(kvl)¢5>L2(R2") = (T fi7 (T 1y s )>L2(T”,L2(R",£2(Zn)))
/ <Tf T(k l)¢3)(€)>L2(Rn’[2(Zn)) df

/ /n TfE) (). (T, l)¢s)(§)(77)>p(zn)dnd§
_eml/ N R IOIOREA S D )(1) 2 gy 2T S dE
- em‘k-l/Tn <Tf(§),T<Z>s(§-|-l)>L2(Rn7£2(Zn))ef2mk.g e

— eﬂ'ik-l/ Fl’s(é-)efQTrik-ﬁ df
= e "R k), (3.3)
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where F‘l,s(g) = <Tf(£)77_¢3(§+l)>L2(Rn’£2(Zn))' Hence, we get

S ATy = D Bk

kezr kezn

= |1 Fosll72 pm)
= |Fs(6)]? de, (3.4)

by applying the Plancherel formula for the Fourier series. Now, using the definition of
H;(&)*, we obtain

Z ’<f)T(k l)d)s ‘ —/ ZKTf T¢S(§+l)>L2(Rn l2(Zn))| df

(k,s)eznt1 SEZ

o MEIGRFGIES

proving our assertion. O

THEOREM 3.3. The collection E'(A) is a frame sequence with frame bounds A, B >0 if
and only if

P(&) <> H(OH()" < BP(S), for a.e. {€T". (3.5)
lezn

Proof. Suppose E*(A) is a frame sequence with frame bounds A, B > 0. In other words,

AlFIE< Y (A Thnos) <BIfI, YV FeViA). (3.6)

(k,l,s)ez2n+t1

Let ®(&) € J(§), &€ T". Consider a trigonometric polynomial

— Z Ck€27rik-§7

keF
where F is a finite subset of Z". Define f € L?(R?") by 7f(£) = ¥ (£)®(€), ¢ € T". More
explicitly, it can be written as
TF(E) =Y e ED(E).
keF

By using Proposition 3.1, we can show that 7f(£) € J(£), which implies that f € Vi(A).
Further, we have H;(§)*7f (&) =¥ (§)Hi(§)*®(§). Now, from Lemma 3.2, we get

S K Thasdf = [ X I de

(k,l,5)€Z2n+1 lezn
/Zuw VHL(E) 0 (€) |2 de
lezn
/ GO S () (e)]|? de. (3.7)

lezm
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On the other hand,

£ =117 f11?
= | lIrf©l*de
"ﬂ"n

S RLGLGIRE
GG (39

Using (3.7) and (3.8) in (3.6), we get

A/ (e Plo () 12d£</ BEP S [ Hi©) 2 (©)? £<B/ (6 21D (E) 2 de.

lezm
(3.9)

Since (3.9) holds for any trigonometric polynomial ¢ € L*(T"), we arrive at

A@©)> < D HI(©) (©)])> < B[ ®(&)])?, for a.e. & € T™ (3.10)
lezm

Now, the above equation together with ker ( > HZ(E)Hl(g)*> = J(&)* leads to (3.5).
1€Zn
Conversely, assume that (3.5) holds. Let f € V*(A). Then, 7f(£) € J(£) by using Proposition

3.1. Hence, (3.5) reduces to

AllrfEIP < Y IH(E) T f (O < Bl f(€)]%, for ae. €T
lezn

Taking integral with respect to £ in the above inequality, we get
/ I 7@l d§</ L AGREG] d£<B/ 7 £(©)|2de.
lezn

Now, using Lemma 3.2 and the isometry of 7 in the above inequality, we get

AlfIEs Y (A Thnes)|” < Bl

(k,l,s)ez2n+1
Since f € V*(A) is arbitrary, the assertion follows. 0
Now, we obtain the following corollaries as a consequence of Theorem 3.3.

COROLLARY 3.4. The collection E*(A) is a Parseval frame sequence if and only if

S H(OH() =P, forae (T
lezn

COROLLARY 3.5. The collection E*(A) is a frame sequence with frame bounds A and
B if and only if the collection {T¢s(E+1):s € Z, 1 €Z™} is a frame sequence with the same
bounds, for a.e. £ € T™.
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Proof. Assume that E'(A) is a frame sequence with frame bounds A and B. Now, by
Theorem 3.3, it is equivalent to

AlrfOIP < Y Krf©ros(E+0)1* < Blirf (€)1
(I,s)ezn+1
vV feVi(A) and for a.e. £ € T", which proves our assertion. O

THEOREM 3.6. The collection E'(A) is a frame sequence with frame bounds A and B
if and only if

Al I < (r(SFELTHE) paggn oy, < BITFEI, (3.11)
V feVHA) and for a.e. £ € T", where S is the frame operator associated with the system
Et(A).

Proof. The frame operator S associated with E*(A) is given by
Sf= Z ([ Thn®s)Thnos, ¥V FeVIA.
(k,l,s)€z2n+1
Using (3.1) and (3.3), we get
T(SNE) = D (£ Thpds) (T 6s)(E)

(k,l,s)ez?n+1

= Y (LTt P g (¢ 41)

(k,l,s)€Z2n+1

= Z ( Z <f,T(tkyl)(]ﬁS)e”k'(QEH)>T¢s(§+l)

(1,s)€Zn+1  keZr

= Y (X Ru®e™ ) ro, g+

(I,s)E€Zn+1  keZ™

= S Q) Tos(E+D)

(I,s)ezn+t

= Y (THETAEHD) a g gy TO(E D),

(I,s)€Zn+1

by applying the Fourier series of Fj 5. Now, using the definition of H;(£) and its adjoint, we

have
S H©OHE IO = Y (T T0E+D) 1o o zny TOE ]
lezn (1,s)ezn+1
=T7(Sf)(&)- (3.12)
By Theorem 3.3, the system E?(A) is a frame sequence with frame bounds A and B if and
only if

Alrf©IP < (3 H@HI(E) Tf(€).71(€)) < BIrf(©)*,

lezm

for a.e. £ € T™. Now, using (3.12) in the above inequality, we arrive at the required
result. O
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For ¢ € LZ(RZ”) and £ € T", we define

We(§) = ——= - (f) Z ‘ Z / Ky(&+m,n)Kg(E+m+1, n)dn , whenever wg (&) # 0.

¢ lezZ™ mezm™

THEOREM 3.7. Let A= {¢}, and let E*(A) be a frame sequence with frame bounds A
and B. Then A <Wy4(§) < B for a.e. £ € T\ N, where N :={£ € T" : wy4(§) = 0}.

Proof. Using Corollary 3.5, we have
A[R(E)IIP < D (@(€),mo(E+1))I” < Bll@ ()|,

lezn
V ®(&) € J(€) and for a.e. & € T™. Taking ®(§) =7¢(£) € J(&) in the above inequality, we
obtain
AllTg(©)17 < D (&), o (6 +D)I* < Bllr(€)|,
lezn
for a.e. £ € T™. Now, using the definition of the fiber map 7, we have

AZ/ |Ko(&+m,m)Pdn <> | E/ K(€+m,n) Kg(&+m+1n)dny|’

meZL™ leZr mezZm

<B Y | |Ky(&+m,n)|*dn,
mezZm™ R

which in turn implies that A < Wy (¢) < B for a.e. £ € T"\ N. 0

For I1,lo € Z™ and & € T™, using the definition of the fiber map 7, we have

<T¢(£+ll)?T¢(§+l2)>L2(Rn7Z2(Zn)) / Z K¢> E4+m+1y, )K¢(§+m+l2, n)dn

mez™

/ S Kyle+mn) K@t mt b —Ton)d.

mez™

(3.13)

COROLLARY 3.8 [18]. Let A={¢} and ¢ satisfy “Condition C.” Then E*(A) is a frame
sequence with frame bounds A and B if and only if

A<wy(§)<B, forae £€T"\N. (3.14)

Proof. Let E'(A) be a frame sequence with frame bounds A and B. Then, by
Theorem 3.7, we have A < Wy,(§) < B, for a.e. £ € T"\ N. Since ¢ satisfies “Condition
C) we get

©=57 > [ KaermnPan|

mez"
1
el
=) (3.15)
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for £ € T™\ N, which in turn implies (3.14). Conversely, assume that (3.14) holds. Let
&)= > ap(§Te(E+1) € J(&). Then, using (3.13), we have

lrezr
<(D(§)7T¢(£+l)>L2(Rn7£2(Zn)) = Z al’(€)<7¢(§+l/)77¢(€+l)>L2(Rn7e2(Zn))
ez
=S wl® [ 3 K(em Ko m =T dy
rezn R mezn
(3.16)
and
Hq)(f)H%Q(R”,ZQ(Z”)) = <®(£)7¢(€)>L2(R7b7€2(21b))
:l IZZ agy (&')al2(§)<T¢(§+ll77¢(£+l2))>L2(Rn7€2(Zn))
1,lo€Z™
= Z all(&)alz(f)/ Z K¢(§+man)K¢(§+m+12_l1777)d77'
I1,l2€Z" R mezn
(3.17)
Since ¢ satisfies “Condition C)” (3.16) reduces to
(BE), 706 +D) e sy =€) |3 1Kl mamd
mezn
—aul€) wal€) (3.18)
and (3.17) reduces to
|9 oy = X e (©F [ 3 [alé+mon)ay
L ezn R mezn
=w() D lon, (). (3.19)
lyezn
Now, using (3.18) and (3.19), we obtain
D K2, mdEHD) o oy ” = D (@) Wi ()
lezn lezn
) (w66) T (61
lezn
=ws(€) [@(E)1Z2mn 2 (zn)- (3.20)

Now, making use of (3.14), we have

Al D(E)172(mn e2(zn)) < Wb (€) 1 RET2mn 02 (zny) < BIPE)F2(mn 02 (20

for a.e. £ € T"\ N. Hence, (3.20) gives

A”(I)(g)H%P(R",lQ(Z")) < Z |<(D(§)7T¢(€+l)>L2(Rn7lQ(Zn))

lezm

2 < B[ ®(©)lI72(rn 22y (3:21)
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for a.e. £ € T"\ N. Moreover, from (3.19) and (3.20), we have
Hq)(é)H%Z(R",EQ(Z")) =0 and Z ‘<®(§)7T¢(£+l)>L2(Rn7[2(Zn))|2 :07 v fGN
lezn

Thus, (3.21) holds for all £ € N, all sides being equal to zero. Therefore, using Corollary 3.5,
we obtain the required result.

Now, we provide an example of a function ¢ € L?(R?) such that the system {T(tkvl)qﬁz
k,l € Z} forms a frame sequence (i) when ¢ satisfies “Condition C” and (ii) ¢ does not
satisfy “Condition C.” Before stating the example, we observe the following.

Let f,g € L?(R?") and [ € Z™. Then using a similar calculation as in (3.3), we get

<f’T(tkyl)g>L2(R2”) = efmk'lFl(k) )

where Fj(§) = <7'f(£),7’g(§—|—l)>L2(Rn7€2(Z")). Making use of the Fourier series of Fj, we get

F(&) =Y (Tl pg)e™™ 3+, (3.22)

kezn

On the other hand, using the definition of the map 7, we have

BO=Y [ KlermnRErmTn (323)
mez" "
Therefore, from (3.22) and (3.23), we get
> / Kp(§+mnKy(E+m+in)ydy= Y (f T} g)e™" . (3.24)
mezm Rn keZmn

Let f=g=¢ (say) in (3.24). Then the identity (3.24) can be used to verify “Condition C”
for the function ¢.

EXAMPLE 3.9. Define ¢ := x[9,91x[0,1] For k,l € Z, consider
(6:Th®) = /R S y)T(y )6, y)dyde
2 1 ) -
:/ / e ™R o (g — k,y — 1) dyda
o Jo

2—k pl—l
_/ / efﬂi((w+k)l*(y+l)k)¢(x,y)dydx
—k -1

:/ / e =kY) dydy. (3.25)
[—k,2—k]N[0,2] J [~ 1,1—1]N[0,1]

From the range of the above two integrals, we see that <<;5, T(tk,l)¢> %0 only when k= —1,0,1
and | = 0. Hence, using (3.24) for [ #0 and f = g = ¢, we have

> J Kol man e m L =3 (6, Tho )™ 54"

mEZ kEZ
=0,
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for all £ € T, showing that ¢ satisfies “Condition C.” Further, simplifying (3.25), we get

2 (k1)=(-1,0),
2, (k1) =(0,0)
T = ’ '
(6, Tl 1)) -2 (k1)=(1,0),
0, otherwise.

Using (3.24) for f = g = ¢ and [ =0, we obtain

wa(€) = Z/R\qu(&m,nﬂ?dn

meZ

- S (0 Th e

kEZ

36—27”'5 + 92_ 3627”'5
™ Iy

—9_ 3(6271'1’& _ 6—271'@'5)

N T
4
= 2— —sin(27E).
- sin(27¢)
Since |2sin(2n¢)| < 4,V £ € (0,1), we get 2 <wy(€) <2, for a.e. £ € T. Therefore, using
Corollary 3.8, we conclude that the system {T(th l)qb :k,l € Z} is a frame sequence with frame

bounds % and %.

ExXAMPLE 3.10. Let ¢ := x[0,1)x[0,2]- For k,l € Z,
(6.Tfo0) = [ STl oy

1 2 )

:/ / e m@YR) 6 (p — oy — 1) dyda
0 0
-k p2—l

:/ / e—ﬂl((z+k)l—(y+l)k)¢($7y)dydx
Kk J-

:/ / e—ﬂ*i(a:l—ky) dydz.
z€[—k,1—k]N[0,1] Jy€[—1,2—1]N[0,2]

From the range of the above integrals, we see that <¢,T(tk l)¢> =% 0 only when k£ =0 and
[ =-1,0,1. Computing explicitly, we get

=2 (k)= (0,-1),

2, (k,1)=(0,0),
. ) 3.26
<¢ (k,l)¢> %7 (k,l) = (O, 1)7 ( )
0, otherwise.
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Using (3.24) for f=g=

¢ and [ =1, we get

meZ

Z/K¢ E+m,n)Kg(§+m+1,m)dn= Z<¢7T(tk,1)¢>€”k(25“)

kEZ

:<¢7T(to71)¢>
=2 20,
T

for all £ € T, showing that ¢ does not satisfy “Condition C.” Now, using Corollary 3.5,
we aim to prove that the system {T(tk l)qﬁ : k,l € Z} forms a frame sequence. Let

() = > a
lez
and (3.24), we get

HCI)(f)H%Q(]R,P(Z)): Z o, (§)au, (€

l1,l2€Z

&) Tp(+1) € J(§) for some {ay(&) }iez € coo(Z), for £ € T. Then, using (3.13)

(O(ro(E+1),7¢(E+12)) 12 422

= Z Oéll( alz /ZK¢ §—i—m n)qu(f-l-m—i-lg—ll n)d

l1,l2€Z Rmez
= > au(©an(©) ) (6Tl ppy@)em R, (3.27)
l1,l2€Z kezZ
Now, applying (3.26) in (3.27), we get
2 2
()72 m.022y) = D u(€)(2au(€ &)+ —ar(§) — —a-a())
€z
EE}W (1§ = 1(9)+2) (@)
lez lez
2
=— (Z@l(f)alﬂ Zal §aura(§ > +2Z\al
m lez ez lEZ
2
(211111 (ZO&[ al+1 )) +2Z |Oél
i = l€Z,
fIm <Zal Yt ( ) —|—22|al (3.28)
lez leZ

Again using (3.13) and (3.24), we have

<(I>(£)a7_¢(£+l)>L2(R’g2(Z)) = Z al1(£>

11 EZ

=2 o8

1 €Z

= Z ay, (5)

l]_GZ
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keZ

(3.29)
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Now, using (3.26) in (3.29), we get

2 2
<(I)(€)7T¢(§+ l)>L2(R,42(Z)) =2y (f) + Ealfl(g) - EalJrl(&)

= %(al_ﬂf) —a41(§)) +2au(8).

Hence,

Y K@), 7A€ +D) g2z

leZ

=3 |2 (1)~ v (@) + 200(6)|
leZ
=3 Sl al+1<s>\2+24|al<f>2+Z2Re<;‘ial<5><az1<§>—am<s>>>
lEZ I€EZ IEZ
751+4Z|0¢l (&)]? +855, (3.30)
leZ
where

Z\Oéll —o1()®  and 52:ZRG(%T(&)(O@A(@—Oél+1(€)))-

LEZ lEZ
But
$1=>" (Jlor-1(&)? +|ous1(6) 1> — 2Re(an-1(€)ar11(€)))
lEZ
=2) |a(¢)* —2Re (Zaz_us)am(s)) (3.31)
LEZ LEZ
and

52 =3 R (- L€ (a1~ (€))

lez

=3 ;Im (az (&) (u—1(¢) — Oél+1(§))>

leZ
_11m<Zal al 1( Zaz a—1( >
leZ ez
—Im <211m<2al a1 ( ))
leZ
2_721111 <Zal(f)all(§)> . (3.32)
leZ
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Using (3.32) and (3.31) in (3.30), we get

Y H@E),TAE+D) ooz

lez

:;Zkﬂ(f)FﬂiRe(ZOﬂ—l ot ( ) +4Z|oq 17?1111(2:041(5)041—1(5))
l€Z. I€Z. 1€Z 1€Z.
:<4+ ;) Z]al 2——Im (Zal Eaut(€ > —;Re<2all(§)al+1(§)>

leZ leZ ez
:<4+7T82>Z]al(§ Im(Zal &ays1(€ )—Re(Zal 1(§)ai1(€ >

leZ l€Z LEZL

(3.33)

But

Re (Zal—1(§)az+1 ) Zaz 1O (8)] < Z\Oél

leZ leZ lEZ

Hence,

=D _la¢ |2<Re<2a11 Jaus ( ><Z\az : (3.34)

leZ leZ leZ

Now, using (3.34) and (3.28) in (3.33), we get

ST E 06+ ) ooy < (47 75 ) S lon(@+ 2t (L (@ @) + 55 S lon(©)F

lEZ leZ ez leZ

:<4+7r2)2|al<s>|2+ﬂIm(Zaz@am(ﬁ))

lEZ ez

<8Z|al(§)|2 + %Im <Zal(§)al+1(f)>

lEZ lez

=4 (22 lou (&) + %Im <Zaz(f)al+1(§)>)

LEZ leZ
=4)|2(&) 1 72(r,e2 () (3.35)

for all £ € (0,1] and

D K€, TIEFD) oppo(zy|” 2 Zlaz§)|+lm<zaz(€az+1§)> > leu(®)?

lEZ IEZ leZ leZ

:4Z|al(f)|2+ﬂ_Im<ZO‘l(€)O‘l+l(§)>

lEZ leZ

>4 () + %Im (Zal(f)oélﬂ (f))

LeZ leZ

=2 (22 oy (€)? —|—%Im (Zaz(f)%ﬂf)))

lEZ leZ
=2[|®(&) 172w e2(2)) (3.36)
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for all £ € (0,1]. Combining (3.35) and (3.36), we get

23z 22y < D NP THERD) gz oz < U Fam, oz
leZ

for all £ € (0,1]. Then it follows from Corollary 3.5 that {T(th)(;S :k,l €Z} is a frame sequence
with frame bounds 2 and 4.

84. Riesz sequence in a twisted shift-invariant space

For £ € T", define H (&) : (2(Z" 1) — L*(R™,(*(Z")) by

H(g)({cl,s}) = Z Cl,qubs(E"i_l)'

(I,s)€zZn+1

If H(¢) defines a bounded operator from ¢2(Z"*1) into L?(R™,(?(Z™)), then its adjoint
H(&)* : L2(R™,(2(Z™)) — 2(Z™F1) is given by

H(E)'6 = { (6,704 (E+D) g 2y |

(I,s)ezn+1’

The Gramian associated with the system {7¢s(£+1): (I,s) € Z""1}, denoted by G(£), is

defined by G(§) = H(§)*H (), and the corresponding dual Gramian, denoted by G(§), is
defined by G (&) = H(€)H(€)".

THEOREM 4.1. The family E*(A) is a Riesz sequence with Riesz bounds A and B if and
only if

Al <G) <BI, forae £€T", (4.1)
where I is the identity operator on (?(Z"+1).

Proof. Let E'(A) be a Riesz sequence with Riesz bounds A and B. Then,

All{er,s Iz @zznsny < || Z Cht,s Ty D5l T2 (rony < Bllek,is |l zantays (4.2)
k,(L,s) EF X F'

V {Chyiys } (ke (1s))eFx 7 € Coo(ZP™ 1), where F and F’ are finite subsets of Z" and Z"*,
respectively. By isometry of 7 and (3.1), we have

2 2

L2 (RZn,)

Z Ck,l,sT(T(tk,l)¢s)

(k,(l,8))eFxF'

/ S kst (Thyd)(©)]

T %k, (1,5)€Fx F'

J
J

Z Ck,l,sTgk,l)QSs

(k,(1,8))€F X F L2(T™, L2 (R™,£2(Z™)))

2

dg

L2(R",02(2)

. 2
S ey, (§+l)‘

(k’(l,S))E}'x}‘/ LZ(R”,ZZ(ZTL))

> s(©res(E+D)

(I,s)eF’

n
n

=

2

de, (4.3)

L2(R™,02(Z™))

=
3
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where p; (€)= . g™ 26+ ig a trigonometric polynomial in L2(T"). Now, for k' € Z",
keF

m(k/) :/npl’s(g)e—%rikz'-fdf

:/ (Z Ck’lysem‘k-(2£+l)>e2m‘k:’-§d§
’]I‘n

keF

— Z Ck,l,se”k'l/ e~ 2milk' =) € ge

keF "

= § Crts€ P g g

keF
:ck/,l,se”k/'l. (4.4)

Hence, we get

o aaslP= DD (k)

(k,(l,s))eFxF’ k,(,s)eFxF’

5 <z|m<k>|2)

(1,s)EF’ \kEF

= Z HprH%Q(T")

(L,s)EF'

/ |pl s ’ dgu (45)

(l,s)eF’

by applying the Plancherel formula for the Fourier series of p; 5. Using (4.3) and (4.5) in

(4.2), we get
2
A Y [ meoras [ | Y n@reern]d<s Y [ P
(s)er ’ T " ,s)eF (Ls)eF /T

(4.6)

Consider a family C := {my s € L>*(T") : (I,s) € Z”H} Then, by Lusin’s theorem,
there exists a sequence of trigonometric polynomials {p; 2}161\1 such that ||pl( )|| Leo(Tn) <
[, || Loo (1), for all i € N, and phs(f) —mys(§) as i — 0o for a.e. ¢ € T". Now, using (4.6),
we have

A [ueras [ | X semc]ass X[ pera

(1,s)EF' (L,s)EF (I,s)EF'

V ¢ € N. Taking limit as ¢ — oo and then applying Lebesgue dominated convergence theorem
in the above inequality, we obtain

AY [ maeras [ | X ma@roen|d<n X[ P

(1,s)EF’ (1,s)EF! (1,s)EF’

(4.7)
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Now, (4.1) is equivalent to

A Z ’Cl,s’2§

(I,s)e€

2
<B Y ol (4.8)

(I,s)e€

Z Cl,s7-¢s (5 + l)

(l,s)e&

for a.e. £ € T" and for every finite set & C Z"T1. Thus, we aim to prove (4.8). Suppose (4.8)
were not true. Then there would exist a Lebesgue measurable set D C T™ with positive
Lebesgue measure such that at least one of the following inequalities holds:

2
Y dresE+D|| >B > |4 VéeD, (4.9)
(1,s)€E (1,s)€E

2
S e+ <A D P VEeD. (4.10)
(l,s)e€ (I,s)eE

Assume that (4.9) holds. Define m; (§) := \/%XD( €), where u(D) denotes the Lebesgue

measure of D. Then ml’ s€C and

L]

(z%égmg’S(&)T(bs(“l)HQd&:/DH Z J%T¢s(€+l)“2d§
/H S dhuronlesn)ae

(1,s)€E

5B S Il [ ae

(1,s)EE

=B Z ’Cl,s’27

(I,s)e€

which is a contradiction to (4.7). Similarly, if we assume (4.10), we will get a contradiction
to (4.7) again. Therefore, we obtain (4.1).

Conversely, assume that (4.1) holds. We need to prove (4.2). So let {cx,1,s}(k,(1,s))eFxF €
coo(Z2™+1). For £ € T, we define

prs(€) = Z Gt 5€™ R EFD),
kEF

Using (4.1), we have

A Z ‘pl,s (é)

(I,s)e€

2
<B Y IO

(I,s)e€

> pis(©)7es(E+D)

(I,8)e€

for a.e. £ € T™. Now, integrating with respect to £ over T™, we obtain

A Y [ msers [ <BZ/|pls ,

(l,s)ee’ " (1,5)€E

> pis(©Tes(E+1)

(I,s)EE

which together with (4.3) and (4.5) gives the required result. O
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COROLLARY 4.2. The family E*(A) is a Riesz sequence with bounds A and B if and
only if the family {T¢s(E+1): (I,s) € Z"1} is a Riesz sequence with the same bounds, for
a.e. £€T".

Proof. Let the family E'(A) be a Riesz sequence with bounds A and B. Then, by
Theorem 4.1, it is equivalent to (4.1), which in turn is equivalent to

2
A Z ’cl,s’2 S S B Z |Cl,s|27

(1,s)€Zn+1 (1,5)€Zn+1

Z Cl,s7—¢s(§+l)

(I,s)ezn+t

V {c s} € £2(Z"F1) and for a.e. £ € T", proving our assertion. 0

COROLLARY 4.3. Let A= {¢}, and let E*(A) be a Riesz sequence with bounds A and
B. Then A <Wy(&) < B, for a.e. £ € T™.

Proof. Since the system E?(A) is a Riesz sequence with bounds A and B, it is a frame
sequence with the same bounds. Thus, by Theorem 3.7, we have A < W,(&) < B, for a.e.
€€ T™\ N. Now, in order to obtain the required result, it is enough to show that u(N)=0.
By Corollary 4.2, we have

2
Aasp@n <[ Y asToE+])

(I,s)€Zn+1

9

L2 (Rn 762 (Zn))

V {c,s} € 2(Z") and for a.e. £ € T™. In particular, by choosing ¢ s = 0((1,5),(0,0)»
V (I,5) € Z""1, in the above inequality, we get 0 < A < ||7¢(€)|?, for a.e. £ € T™. Hence,
wg (&) = ||7p(E)||* > 0, for a.e. £ € T", showing that u(N) = 0. [

But the converse need not be true. We illustrate it with a counter example.

EXAMPLE 4.4. We define ¢ € L?(R?) by K,(&,n) = X[0,2)x[0,1)(&,m), (§m) € R2. Then,
for £&,m €0,1), we have

1, m=0,1,

0, otherwise,

1, m=-1,0,

0, otherwise.

K¢(€+man):{ and K¢(€+m+1,n):{

Hence, we get

1
ZAK¢<m+f,n)K¢<m+f+1,n>dn=Z/O K y(mt€,m)Kp(m+ €+ 1,n)dn

meZ mMEZ

=1, vfe [071)7

showing that ¢ does not satisfy “Condition C.” Now,

wa© =Y / K o(m -+ &) 2

5 [ imeon

= |[Kg(m—+&,m)|*dn

meZ 0 ’

=2 v Eelo,1). (4.11)
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Hence, for £ € [0,1), we get
b
we(§)

1
32| X [ Ketm e FoErmt i dof

l€Z mEZ

1 L 2
:22‘/ Ky(€+1,m) + Kg(E+141,m)dn|
ez 70

1 ! 2
=3 > \/0 Ko(§4+1,m) + Kg(§+1+1,n) dn)|
l=-1,0,1

—1 X 6
2

=3, (4.12)

Wo(€) =—— 3| Z/RK¢>(m+§m)K¢(£+m+lﬂ7)dn\2

IEZ mEZ

showing that the weight function is bounded above and below for a.e. £ € [0,1). Now, we
shall make use of Corollary 4.2 in order to prove that the system {T' (tk’l)(;ﬁ k0 €7} does

not form a Riesz sequence. For {¢;} € £*(Z) and & € [0,1), we have

2
| zljc,r¢<§+z>] primanay = 2 CTOE+DTOE D)) o oo

L

:chz(z/K¢(m+§,n)K¢(m+€+l’—l,n)dn)
mez’R

L

:chcl’(

LU

MmeZ

1
Z/O K¢(m+§,n)K¢(m+§+l’—l,n d7]>

)
1
:chcy(/ Ko(€+1 — L)+ Ky(1+E+1 — L) dy
0

LU

=) ae+) atpit)y ce—i+ ) ad
l l l l

=2) "|a|*+2Re (chcl“) (4.13)
l

!
For each n € N, we define X(") € (?(Z) by

CL'1=1,2,...,20
Xl(n) — \/% b b P )
0, otherwise.

It is easy to see that || X (™ ||s2(z) =1,V n € N. For each n € N, by taking ¢; = Xl(n) in (4.13),
we obtain

2

_ (n) 2 (n) (™)
L2(R,e2<z)>_2zl:|Xl |+2Re<zl:Xl Xl“)

—2+42Re (Z X}”W}ﬂ) . (4.14)

l

[ > xro+0)|
l
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But

2n—1
WYY -1 l -1 +1
ZXz( ) x (™) 3 (—-1)" (=1)

I+1 — X
leZ 1=1 m \/%
2n—1
1
=5, 2.1
=1
1
Qn( n—1)
. 1
- 2n
Hence, (4.14) reduces to
2 1 L1
Hzl: Freetd L2(R,£2(2)) * 2n n nH le2(z), Y €

Since the above equation holds for all n € N, using Corollary 4.2, we deduce that the system
{T(tk’l)qﬁ :k,1 € Z} does not satisfy the lower Riesz condition.

COROLLARY 4.5 [18]. Let A= {¢} and ¢ satisfy “Condition C.” Then E*(¢) is a Riesz
sequence with bounds A and B if and only if

A<wy(§) < B, forae £cT". (4.15)

Proof. Let the system E'(A) be a Riesz sequence with bounds A and B. Then, from
Corollary 4.3, we have A <Wy4(§) < B, for a.e. £ € T". Since ¢ satisfies “Condition C,” by
(3.15), we have Wy (§) = wy(§), for a.e. £ € T™, which proves (4.15).

Conversely, assume that (4.15) holds. Since ¢ satisfies “Condition C,” using the similar
steps in obtaining (3.19), we can get

2

> are(E+1)

lezm

L2 (R™,£2(2™)) lezn

V {a} € coo(Z™) and £ € T™. Now, applying (4.15) in the above equation, we have

2

> are(E+)

lezn

All{eZzn) <

< Bl{ci}Z2(zn)»
L2(Rm™,£2(2m))

V {c1} € coo(Z™) and for a.e. £ € T™. Hence, the system {7¢(£+1): (I € Z"} is a Riesz
sequence with bounds A and B, for a.e. £ € T™. Therefore, using Corollary 4.2, we obtain
the required result. U

Now, we provide an example of a function ¢ € L?(R?) which does not satisfy “Condition
C” and the system {T(tk n@ ke Z} is a Riesz sequence.
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EXAMPLE 4.6. We define ¢ € L?(R?) by

K(b(gvn) = 2X[0,1)><[0,1)(§5n) +X[1,2)X[0,1)(€’n)7 (6777) € Rz'

For £,m € [0,1), using the definition of Ky, we observe that

2, m = 07 27 m= _17
Kyo(E+mm) =<1, m=1, and Ks(+m+1,n) =<1, m=0,
0, otherwise, 0, otherwise.

Hence, for £,7 € [0,1), we get

2, m=0,

0, otherwise,

Ky(E+m,n)Ky(E+m+1,n)= {

showing that

1
S [ Kol mnRolermt Lidn =3 [ K¢ moo(e-tm+ 1o)dn

meZ meZ
=2.

Thus, ¢ does not satisfy “Condition C.” We shall make use of Corollary 4.2 in order to
show that the system {T(tk )@ k,l € Z} is a Riesz sequence. For {c;} € (2(Z™), using (3.13),
we have

Hzclﬂb(f‘H))
1

2
J— = /
L2(R,e2(Z)) _;CICZ,<T¢(€ T, 7OEH) 2,

:chcl’<

L

:Zm,(

L

> /RK¢(§+m,n)K¢(§+m+l’ —1,m) dn)

meZ

1
Z/O K¢(§+mﬂ7)K¢(§+m+l’l,n)dn>.

meZ

The possible values of m and I’ —1 that can survive in the sum are m=0and I’ —1=—1,0,1.
Therefore, for € € [0,1), we get

2
Hchﬂb(f—H)‘ o :52]cl]2+2201+1cl+22q71cl

l LRe@) 4 l l
:52’Cl’2+2261+101+2zcl+101

! ! 1

:52]01]2—1—4}{6 (ch_l’_lcl).

! !
Now, using ‘Re (>, mcl)} <>, ]al?, we can show that

2
Dol < | el t Dy g oy, <OD N, VeSO

proving our assertion.

https://doi.org/10.1017/nmj.2023.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.11

TWISTED SHIFT-INVARIANT SYSTEM IN L2(R2VN) 757

§5. Dual twisted shift-invariant system

Let D = {ps:s € Z} be a collection of functions in L?*(R?*"). As we defined E'(A),
Ut(A), VI(A), and H;(&) for the collection A, we define E*(D), U*(D), V(D), and T;(&),
respectively, for the collection D.

PROPOSITION 5.1. Let E'(A) and E'(D) be two Bessel sequences. Then, for
¢, € L*>(R?™), we have the following identity:

ST (6 Ty @) Thonyesr @) = /T (H(E) (). T () iy 4 (51)

(k,s)ezZn+t
for each l € Z™.
Proof. For ¢ € L?(R?"), using (3.1), we have
<¢7T(tk;’l)¢8>L2(R2n) :<T¢7 TT(tk:J)(ZSS>L2(T7L7L2(R7L752(Zn)))

_ —mik- (2641
—/n € (2 )<T¢(£)77¢8(£+l)>L2(Rn742(Zn))d£
=e "1 (k) (5.2)

where Fj (&) = (1¢(£), T¢S(f+l)>L2(Rn 2y Similarly, for ¢ € L?(R?"), we can show that
<80,T(tk;,l)805> = e_mk'lGLs(k)a (5.3)

where Gl,S(g) = <7—90(£)’7-908 (€+l)>L2(Rn7€2(Zn))' We notice that H;(§)*7¢(§) = {Fl,S(g)}SEZ
and T;(§)*1¢(§) = {G1,5(§) }sez. Now, making use of (5.2) and (5.3), we obtain

Z <¢7Tgk,l)¢s><T{k,l)9057<p> :Z ( Z E,s(k)él,s(k))

(k,s)EZn+1 SEZ  keZn
:Z <Fl,S7Gl,S>€2(Zn)
SEZL
=Z<FZ,S7G1,5>L2(W)
SEZ
-3 [ AuoGL©«
SEZ L

= [ (PO hca GO hect) ey de
= [ (B 9(€) O 7€)

for each [ € Z™, proving (5.1). 0

THEOREM 5.2. Let E*(A) and E*(D) be two Bessel sequences. Then E*(A) and E*(D)
are dual frames if and only if

SST(OHE) =T, for ae £€T", (5.4)

lezn

where I is the identity operator on L*(R™ (?(Z"™)).
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Proof. Assume that E'(A) and E*(D) are dual frames. Then, by Theorem 2.4, we have

> ATy Thones: @) = (6,0) (5.5)

(k,l,s)ez2nt1
for all ¢, € L?(R?"). In particular, by taking ¢ = ¢ = in (5.5), we get
Yo W Thnds) (Thpesv) =017 VyeL’®™). (5.6)
(k,l,s)€Z2n+1
By using Proposition 5.1, we can rewrite (5.6) as
[ (@ o T ) gyt = 01, Yo e @Y. 6)
T jezn
Now, we aim to prove (5.4), which is equivalent to
> (H(&) @, Ty(€)*®) = |®|, for ae. (€T, ¥ &€ L*(R",(*(Z").  (5.8)
lezn

Let ® € L2(R™,(*(Z")). Then, we can write ®(n) = {C },nezn € £2(Z"), for a.e. n € R™.
For p € L?(T™), we define ¢ € L*(R*") by K (&,n) = p(é —m)C!l, where m is that unique
element in Z" for which £ —m € T™. Then, for £ € T", we have Ky ({+m,n) = p(§)C},,
V m € Z". Hence, for £ € T",n € R", we get

TP(&)(n) = {Ky(§+m,n) bmezn
=p(O{C }mezn
=p(&)®(n),

showing that 7¢(§) = p(§)®. Consequently, we get

||¢||%2(R2") = ||T¢||%Q(T”,Lz(Rn,ﬁ(Z“)))

= | 1m0l

= [ QPID sy (5.9

and
|3 e ro© e @) = [ @R ¥ (e nere) e (5.0
"lezn lezn
By making use of (5.9) and (5.10) in (5.7), we obtain
L OF 3 (e 0.5 @) ds = [ 1pOP 11 sy
lezn

Since this is true for all p € L*(T"), we arrive at (5.8).
Conversely, assume that (5.4) holds. Then, for ¢, € L?(R?") using Proposition 5.1, we
have
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Z <¢7T(tk,l)¢3><T(tk:,l)9087<p> = /’]I‘ﬂ < Z ﬂ(g)Hl(g)*T(ﬁ(g)?T¢(§)>L2(Rn732(zn)) dg

(k,l,s)€Z2n+1 lezn

= A <7—¢(5)7T¢(£)>L2(Rn7e2(zn)) dg
= <T¢)a7—90>L2(’]I‘”,L2(R”,£2(Z”)))
= <¢780>L2(R2n)-
Then the result follows by using Theorem 2.4. 0

Now, let A = {4}, and let E*(A) be a frame sequence. In other words, the system E*(A)
is a frame for

ViA) = span{T(th)qS k,leZn}.

Let D = {¢}, for some ¢ € L2(R?"). Then, the system E*(D) is said to be an oblique dual
of E*(A) if

f= 2 (FThydThye Y FeVIA).
k,l€Zn
Then we have the following theorem.

THEOREM 5.3. Let E*(A) and E*(D) be two Bessel sequences. Then E'(D) is an oblique
dual of E*(A) if and only if

> H(OTW()* =1, for ae T, (5.11)

lezn
where I¢ is the identity operator on J(§).

The proof follows similar lines as that of Theorem 5.2.

In addition, if we assume that ¢ satisfies “Condition C.” then as in the classical case
(Corollary 7.4.2 in [7]), we can show that the canonical dual frame is the only dual frame
that consists of twisted translations of a single function. Toward this end, we make use of
the following results.

PROPOSITION 5.4 [18]. Let ¢ € L*(R?™) be such that ¢ satisfies “Condition C.” Then
the map f s r initially defined on U'(A) can be extended to an isometric isomorphism of
Vi(¢) onto L2(T™, (2(Z");we).

THEOREM 5.5 [18]. Let ¢ € L?(R?*™) and a,b > 0. Suppose {T(tbk ay®: (k1) € 72"} is a
frame for L?*(R?™) with frame operator S. Then the canonical dual frame also has the same

structure and is given by T(tbk,al)S_l(j).

COROLLARY 5.6. Let ¢ € L*(R*") be such that ¢ satisfies “Condition C.” Let
{T(tk l)¢ : k,0 € Z™} be a frame sequence. Then there erists unique ¢ € V'(p) such that

f - k ZZ:Z <f’ T(tk,l)gg>T(tk7l)¢ \V/f S Vt(¢) with &;: S*lqb
NISY/AR

Proof. Let S be the frame operator associated with {T(th)qb :k,l € Z"}. Then, for all
feVHe), we have f= 3 (f,T} ST ¢)T}, o, by Theorem 5.5. Let ¢ € V*(¢). We

k,leZm™

have gg: > akJT(tk’l)(b, for some {ay } € £2(Z*"). For € € T", using (3.1), we get
k,ezn
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(&) = Y arim(Th o))

k,lezn

= Z ag e F g (£ 1)

k,lezn

= r(&To(E+1),

lezn

(5.12)

where 7(§) =) 1 czn €™ R 28D Since ¢ satisfies “Condition C,” using the similar steps

as in obtaining (3.19), we can show that

1T (E)[72(mm 2 (2 = wa(€) Y Im(E)I*.

lezm

Hence, using isometry of the fiber map 7, we get
161 5oy = [ IO

= [ Y In©Pde

l€Z7l
2
= H7"||L2(11‘n,82(Z”);W¢)’

where (&) = {r;(§) }iezn, € € T™. Further, by Theorem 5.3, we have

(&) = H(OTI() Té(¢)

lezn

=S (ro(€), d(E+ D)) T(E +1)
lezn

=> <T¢(£), > rl'(f)7¢(§+l+l')>7'¢(§+l)
lezn lezn

= > (T, TR +I+1))THE+1),
Ll'ezm

for a.e. £ € T™. Since ¢ satisfies “Condition C,” using (3.13), we get

(ro€)roe+1+10) = [ Y Kole +mn) Kot ma [+ Doy

R meZ™

=0,
whenever [+ 1’ # 0. Hence, (5.14) reduces to

7o) = roi(ws(©)Te(E+1)

ez

= > rL(©re(E+1),

ez

where
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Hence,
161 = [ I7o(€) e oy €

/ &S (€ de
lezn

= ||7"/||L2(1rn £2(Z7);we)?

where 1/(&) = {r](§) }1ez». Using (5.15), we notice that

O ={n@ws(®)} _ =wsl&r(@).

Thus, by using Proposition 5.4, 7’ € L?(T" (?(Z");wy) is uniquely determined. Hence, r €
L2(T" ?(Z"™);wy) can be uniquely determined via (5.15). Therefore, by Proposition 5.4, we
obtain the uniqueness of ¢ from (5.13). 0

86. Orthogonalization in a twisted shift-invariant space

It is well known that if {T}¢ : k € Z} is a Riesz sequence in L?(R), then there exists
#* € V(¢) such that {Ty¢* : k € Z} is an orthonormal system for V(¢). This is a useful
criterion in wavelet literature (see Lemma 1.8 in [15]). We wish to prove a similar result for
the system of twisted translates on L?(IR*"). Toward this end, we have the following result.

THEOREM 6.1 [18]. Let ¢ € L2(R?™). Then {T kl)gb (k,1) € Z*"} is an orthonormal
system in L?(R*™) if and only if wy(€§) =1 for a.e. £ € T™ and ¢ satisfies “Condition C.”
It is clear from the statement of Theorem 6.1 that it is mandatory to assume “Condition

C)” when we talk about the orthonormality of the system of twisted translates. With this
comment, we are ready to state our result.

THEOREM 6.2. Let ¢ € L*(R®") such that ¢ satisfies “Condition C.” Let E'(¢) be
a Riesz sequence. Then there exists ¢* € L?(R?") such that the system E'(¢%) is an
orthonormal system in L*(R?") with Vi(¢) = V(4*).

Proof. Since E*(¢) is a Riesz sequence, by Corollary 4.5, there exists A, B > 0 such that
A <wy(€) < B, for a.e. £ € T™. Hence, using the periodicity of wy, we have A <wy(&) < B,
for a.e. £ € R™. We define

Ky (¢,
K(&n) = ii(g (6.1)
for n € R™ and for a.e. £ € R™. Now,
K 2
[ [ imtenpagam= [ [ 1ELD e,

<3 [ ] iaten) P dedn

1
Kol zany

1
= ZH(bH%Z(R%)

< 00,
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proving that K € L?(R?"). Define © : L?(R") — L?(R") by
©f) @) = | K@y flydy, VY felL*R").
Rn

Here, © is an integral operator with kernel K in L?(R?"). Thus, © € B,. Since the Weyl
transform W : L2(R?") — B, is an isometric isomorphism, there exists unique ¢* € L?(R?")
such that W¢f = ©. Hence, we obtain

Kqﬁﬂ({an) = K(&vn)
_ Ks(&m) (6.2)
wg ()

Since ¢ satisfies “Condition C,” for [ € Z" \ {0}, we have

3 Ky(+m,n) Ky(E+m+1,n)
K K l,m)dn = E d
m@w/ M§+nmﬂ w@+nH-n n= m@w/nv@¢£+m/v®¢€+m+0

1
- K K I.n)d
W¢(5)m§n - o(E+m,n)Kg(E+m+1,m)dn

for a.e. £ € T, showing that ¢ satisfies “Condition C.” Moreover,

3 / K (€ +m, ) [2dn

mez™

:Z/n

mGZ"

°J¢ﬁ(f)

Ky(E+m, 77)‘
W §+m)

Z/ (K o€ 1) Pdn

mEZ"
= 1’

for a.e. £ € T™. Hence, by Theorem 6.1, the system E*(¢*) is an orthonormal system. Now,

it remains to prove that Vi(¢) = Vi(¢*). Let \/wys(€) = > are®™*¢ be the Fourier series
kezn

of \/wg(€). Then, by using (6.2) and Lemma 2.9, we get

Ky(&,m) = \Jwe(§,m) Ky (§,m)

=) e K (6,m)

kezn
= 2{: ap Kt T )68 (&m)
kezn
= Z ak/ T(k 0)¢ 2,0 —§)e™™ E da
kezn
/ S T gy 8 (,n — )™ €4 dy
R™ pezn

=K Z akaO)qbu(S n);
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which, by the uniqueness of the kernel, implies that ¢ = keZZ:” akT{hO)qbﬁ. Thus, using (2.2),
we get

T(tk,’l,)gb(:b,y) = Z akT(tk,yl,)T(tk’O)qSﬁ(x,y)
kezn

= Z are™ PTGy 09 (2,),
kEZ”

showing that V(¢) C V(¢*). Similarly, we can prove V*(¢*) C V¥(¢), by using the Fourier
. 1 .

series of T 0 (6.2). 0
Now, we illustrate this theorem with an example. Recall that for f,g € L?(R?"), we have

(3.24).

EXAMPLE 6.3. Let ¢(z,y) = > ﬁx[mmﬂ)x[o’l)(aj,y), (x,y) € R?. Then, for
MmeEZ
k,l € Z, we have

(6:Th®) —/ (., y) T}, b (,y) dyda
R2
1
o JRr

It is easy to see that supp ¢ =R x [0, 1] and supp T(tk n®=Rx[l,I+1]. Hence, <¢,T(tk l)¢> =0,
whenever [ # 0. Consequently, using (3.24), we obtain

Z i Ky(&+m,n)Ky(E+m+1,n)dn= Z <¢,T(tk’l)¢>e7rik(2£+l)
mezm™ " ezn

=0, VYI#0,

showing that ¢ satisfies “Condition C.” Now, we make use of Corollary (4.5) to show that
the system E*(¢) forms a Riesz sequence. From the definition of ¢, we get

613y = | lota)Pdady

-/ ol )Py

m—+1
=Y [ el

mez’ ™

m+l 1
- Z/ 100
mezZ” ™

-3 o
4=, 100/m]

_on
99’
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764

and, for k#0 and [ =0 in (6.3), we get
m+1

(. T(r.0)9) (
0 / mez” "™

[,
/( / 10|m|¢x ky)dac) e™ Yk dy

m

o(x—k,y) d:v) e™E dy

:/ (Z ‘ (b(x,y)dﬂt)@mykdy
0 mez m—k 10t
1 m+1—k
1 1 rivk
-/ (Z . da:) ivk g
0 meZ m—k

(S ) ([ ) .
meZL

But
/1 ik gy — 0, if k£ is even,
0 ——2_ if k is odd.

Hence, (6.4) gives
if k£ is even,

0,
t _
(0 Tho®) =) _ 2 s~ 11 i ki odd. (6.5)
mEeEZ
Now, we aim to compute Z 10\m\ W explicitly for odd k.
First, we assume that k 1s an odd positive integer. Then
11 =1 1 — 1 1
Z 10lml 10lm—k| - Z 10™m 10lm—Fl + Z 10—m 10lm—k|
mEZ m=0 m=—o0o
k 0o )

1 1 1 1 1 1

- Z 10™m 10k—m + Z 10™ 10m—* + Z 10™ 10l—m—Fl

m=0 m=k+1 m=1
k 0o

1 1 1

= — 49 N

E+1 2 o 1
~10F 10k 2 100m
m=1
k 101 1
(6.6)

~10F 99 10F°
Similarly, if £ is a negative odd integer, we can show that

1 1 —k 101 1
= ——. 6.7
mzezloml 107—H —10-% 99 10-* (6.7)
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Using (6.6) and (6.7) in (6.5), we get

0, if k € 27\ {0},
<¢’T(tk,0)¢> = - (1()k + 19091 kllok) if ke 2N— 1,
7?1( 10—k + 19091 (- k)llo k) if kel-2N.

Now, using (3.24), we have

}j/l@f+mnfwn

meZ
:Z ¢,Tfk70)¢>e2mk5
kEZ
= ||o|I2+ Z (6, Tl 0)8)e” ™ + Z (6, Tty 0)8)e>™ S
ke2N—-1 kel—2N

101 2 1,100 1\ poie, 2 ( 1 101 1 ) omike
99w RGQXN: 1(10kJr 99 klok)e +7rikZN 10-% 99 (—k10-*/°

101 2 L1011y o 2 <1 101 1 )_Qm.kg
T 99 7 > (10var 99 kmk) o > 10F T 99 k10%/)°

ke2N—1 ke2N—-1
_ & 3 i 101 1 2mikE —2mik€
99w ke;_ (10k KT k1ok>(e e

101 4 1 101 1
— - _Z — ork
99 7 > (10k+ 99 kmk)sm( mk¢)
ke2N—1

101

— 55— R(©), (63)

where

4 1 101 1 .
ke2N—-1

Now, we have

4 ( 1 101 1 )
= Z r Tt k
7r heoT 10 99 k10
4 [ 1 101 1 ]
4 L s L e, (6.9)
10k k
I ke2N—1 10 99 ke2N—1 k10
Decomposing
oo oo oo
1 1 1 1 1
Z 10% - Z 10k +Z 102k and Z klOk Z klOk 52 102k’
k=1 ke2N—1 k=1 b—1
we can show that
Z 1 10 d 1 | 9 n 11 99
—_—= an =—In([ — —In{ —|.
10 99 k10 10 2 100
kea2N—1 k€2N—1

https://doi.org/10.1017/nmj.2023.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.11

766 S. R. DAS, R. VELSAMY AND R. RAMAKRISHNAN

Hence, from (6.9), we obtain

4110 101 9\ 1. (99
REOI<=|=4+-| -In[ = )+=In(—
REI= 2159+ 99 n<10>+2 n<100>
< 0.26, VEelo,1).
Thus, from (6.8), we get

101
wy(€) < 99 +0.26<1.3, VEelo,1),

and

101
wg (&) > 90 —-0.26>0.7, V£&elo,1).

Therefore, by Corollary 4.5, the system E*(¢) is a Riesz sequence with bounds 0.7 and 1.3.
Now, by Theorem 5.1, there exists ¢f € L?(R?), given by

Kw(iﬂ?)—fm, (&n) € R?, (6.10)

such that the system E*(¢*) is an orthonormal system in L?(R?) with V*(¢) = V*(¢%).
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