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Abstract

In maximum likelihood factor analysis, we need to solve a complicated system of algebraic equations,
known as the normal equation, to get maximum likelihood estimates (MLEs). Since this equation is difficult
to solve analytically, its solutions are typically computed with continuous optimization methods, such as
the Newton–Raphson method. With this procedure, however, the MLEs are dependent on initial values
since the log-likelihood function is highly non-concave. Particularly, the estimates of unique variances can
result in zero or negative, referred to as improper solutions; in this case, the MLE can be severely unstable.
To delve into the issue of the instability, we algebraically compute all candidates for the MLE. We provide
an algorithm based on algebraic computations that is carefully designed for maximum likelihood factor
analysis. To be specific, Gröbner bases are employed, powerful tools to get simplified sub-problems for
given systems of algebraic equations. Our algebraic algorithm provides the MLE independent of the initial
values. While computationally demanding, our algebraic approach is applicable to small-scale problems
and provides valuable insights into the characterization of improper solutions. For larger-scale problems,
we provide numerical methods as practical alternatives to the algebraic approach. We perform numerical
experiments to investigate the characteristics of the MLE with our two approaches.

Keywords: computational algebra; Gröbner basis; improper solutions; maximum likelihood factor analysis

1. Introduction

Factor analysis is a practical tool for investigating the covariance structure of observed variables by
constructing a small number of latent variables referred to as common factors. Factor analysis has been
used in the social and behavioral sciences since its proposal more than 100 years ago (Spearman, 1904),
and it has been recently applied to a wide variety of fields, including marketing, life sciences, materials
sciences, and energy sciences (Kartechina et al., 2020; Lin et al., 2019; Shkeer & Awang, 2019; Shurrab
et al., 2019; Vilkaite-Vaitone et al., 2022).

In exploratory factor analysis, the model parameter is often estimated by the maximum likelihood
method under the assumption that the observed variables follow the multivariate-normal distribution.
The maximum likelihood estimates (MLEs), solutions that maximize the likelihood function, are
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Figure 1. Convergence values of the discrepancy function and MLEs of unique variance for the second observed variable, ψ̂2.

Note: These convergence values are obtained by applying three estimation algorithms to an artificial dataset with 100 different initial

values of unique variances, and the horizontal axis indicates the indices for these 100 initial values.

obtained by solving a complicated system of multivariate algebraic equations called the normal equation.
The solutions to the system are usually intractable; that is, it is difficult to solve the system analytically
from the standpoint of computation time/memory. Thus, these solutions are typically computed using
continuous optimization techniques.

One of the most common approaches is to use the gradient of the log-likelihood function, such
as the Newton–Raphson method or Quasi-Newton method (Jennrich & Robinson, 1969; Jöreskog,
1967; Lawley & Maxwell, 1971). For given unique variances, the estimation of the loading matrix turns
out to be the eigenvalue/eigenvector problem for the standardized sample covariance matrix, which is
similar to the problem of the principal component analysis (Tipping & Bishop, 1999). Substituting the
loading matrix into the log-likelihood function, it is regarded as a function of unique variances, and
these unique variances are optimized by the Newton–Raphson method or Quasi-Newton method. The
above algorithm has been widely used for several decades; indeed,factanal function, one of the most
popular functions that implements the maximum likelihood factor analysis in R, is based on Lawley
and Maxwell’s (1971) algorithm. Another algorithm is the expectation–maximization (EM) algorithm
(Rubin & Thayer, 1982), in which the unique factors are regarded as latent variables. The complete-
data log-likelihood function corresponds to the log-likelihood function in multivariate regression; thus,
the EM algorithm can be directly utilized in the penalized likelihood methods, such as the lasso and
minimax concave penalty (Choi et al., 2010; Hirose & Yamamoto, 2015), allowing to achieve high-
dimensional sparse estimation.

Although the above-mentioned algorithms often converge, the convergence value is not always
optimal due to the non-concavity of the log-likelihood function. To illustrate the potential issues
with convergence in factor analysis, we present an example demonstrating how the converged values
depend on the initial values and the estimation algorithm. Figure 1 shows the convergence values of
the discrepancy function that corresponds to the negative log-likelihood function and the MLEs of
unique variance for the second observed variable, say ψ̂2. These convergence values are obtained by
applying estimation algorithms to an artificial dataset generated from “simulation model S2,” where the
communality is relatively small, leading to unstable estimation. A detailed description of the simulation
model S2 will be provided in Section 4. We employ three estimation algorithms: (i) the factanal
function in R (i.e., Lawley and Maxwell’s (1971) algorithm), (ii) the Quasi-Newton method based on
Jennrich & Robinson (1969), and (iii) the EM algorithm (Rubin & Thayer, 1982). One hundred different
initial values for unique variances are generated from a uniform distribution U(0,1) to investigate
whether the convergence value depends on the initial value. It should be noted that we use the same
sets of 100 initial values for these three algorithms.

The results indicate that the convergence values are dependent on the initial values and estimation
algorithms. In particular, the estimate of unique variance, ψ̂2, is sensitive to the initial values with the
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Quasi-Newton method based on Jennrich and Robinson’s (1969) algorithm. We observe that improper
solutions are obtained; that is, the estimates of unique variances turn out to be zero or negative.
The Quasi-Newton method based on Jennrich and Robinson’s (1969) algorithm allows the estimates
of unique variances to take zero or negative values; thus, the ψ̂2 becomes exceptionally unstable.
Meanwhile, thefactanal function outputs parameters such that all of the unique variances are greater
than some small threshold values; by default, this threshold is set to 0.005. The EM algorithm also does
not produce negative estimates of unique variances because the update equation for unique variances in
the M-step produces non-negative values (see Theorem 1 of Adachi, 2013). Although the factanal
function and EM algorithm do not yield negative unique variances, their results are dependent on the
initial values. Consequently, it is quite difficult to evaluate whether an optimal value of the parameter is
obtained with these estimation algorithms.

As shown in the above example, the instability of the numerical estimates is often observed when we
obtain an improper solution in our experience. To our knowledge, a theoretical approach to elucidate
improper solutions has not yet been provided due to the complexity of the log-likelihood function; thus,
the improper solutions remain to be a challenging problem. Instead of theoretical approaches, numerical
approaches have been employed to investigate the characteristics of improper solutions for the last five
decades (e.g., van Driel, 1978; Hayashi & Lu, 2014; Jöreskog, 1967; Kano, 1998; Krijnen et al., 1998;
Sato, 1987). However, with the numerical approaches, the result is highly dependent on the estimation
algorithm and its initial values, as shown in Figure 1.

To address this issue, it is essential to compute exact algebraic solutions to the system of multivariate
algebraic equations (i.e., all candidates of the MLEs). Here, “exact” specifically refers to solutions
computed without rounding errors. In this study, we employ an algebraic approach based on compu-
tational algebra to obtain the exact algebraic solutions. Computational algebra can solve complicated
systems of multivariate algebraic equations by using the theory of Gröbner bases. Several software that
implement computational algebra, such as Magma, Maple, and Mathematica, have been developed
considerably in the last two decades. Thanks to the development of the algorithm and the rapid progress
in computational technology, several real problems have been resolved by computational algebra (e.g.,
Hinkelmann et al., 2011; Laubenbacher & Sturmfels, 2009; Veliz-Cuba et al., 2014).

In maximum likelihood factor analysis, we observe that the original system of multivariate algebraic
equations requires a lot of computer resources from an algebraic viewpoint, due to the existence of
the inverse covariance matrix. To reduce the heavy computational loads, we introduce an algorithm
specifically designed for maximum likelihood factor analysis. In our algebraic algorithm, we employ
the theory of Gröbner bases to get simplified sub-problems for a given system of algebraic equations.
After getting the simplified sub-problems, we compute all exact solutions to the system. The MLEs
can be obtained by selecting a solution that maximizes the likelihood function. The estimates are
independent of the initial value and estimation algorithm because the algebraic algorithm produces all
exact solutions. Furthermore, based on the MLE obtained by this method, we classify the solutions into
three patterns: no solution, positive solution, and negative solution. While computationally demanding,
our algebraic approach is applicable to small-scale problems (e.g., five variables and two factors) and
provides valuable insights into the characterization of improper solutions. For larger-scale problems,
we provide numerical methods as practical alternatives to the algebraic approach.

Algebraic approaches to factor analysis have been explored by several earlier studies, as highlighted
by Ardiyansyah & Sodomaco (2023), Drton & Xiao (2010), Drton et al. (2007), and Drton et al. (2025). In
particular, Drton et al. (2007) employ computational algebra to study model invariants in factor analysis,
and the final section spotlights algebraic study for maximum likelihood estimation and singularities as
the next steps. These earlier works mostly focus on perspectives from mathematics. This study, however,
aims to develop an algorithm for computing estimates, enabling us to delve into the characteristics of
the MLEs. Specifically, an extensive Monte Carlo simulation is conducted to provide a detailed analysis
of these characteristics. We observe that sometimes the dimension of the solution space can be more
than zero, that is, the solution space can be a curve, a surface, etc. Furthermore, the MLEs do not
exist in some cases, even if the parameter space for unique variances includes negative values. Such
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a discussion is impossible with existing algorithms. Consequently, the proposed algorithm provides not
only theoretical insights but also numerical analyses that significantly advance the understanding of the
behavior of MLEs, including a characterization of improper solutions. The insights gained through our
approach may potentially guide future methodological development for practical data analysis.

The remainder of this article is organized as follows: Section 2 briefly reviews the maximum
likelihood factor analysis. A system of algebraic equations to get MLEs is also discussed. In Section
3, we introduce a novel algorithm for computing MLEs via computational algebra. Section 4 presents
numerical results for artificial datasets. In addition, Section 5 reports numerical results for actual
datasets. Conclusion and future perspectives are given in Section 6.

2. Maximum likelihood factor analysis

2.1. Maximum likelihood estimation
Let X = (X1, . . . ,Xp)⊺ be a p-dimensional observed random vector. The factor analysis model is

X = μ+Λf +ε,

where μ is a mean vector, Λ = (λij) is a p × k matrix of factor loadings, and f = (f1, . . . ,fk)⊺ and
ε = (ε1, . . . ,εp)⊺ are unobservable random vectors. Here, A⊺ denotes the transpose of a matrix A. The
elements of f and ε are referred to as common factors and unique factors, respectively. It is assumed that
f ∼Nk(0,Ik) and ε ∼Np(0,Ψ) and f and ε are independent. Here, Ik is an identity matrix of order k and
Ψ is a p×p diagonal matrix with the i-th diagonal element being ψi, referred to as a unique variance.
Under these assumptions, the observed vector X follows multivariate-normal distribution; X ∼Np(μ,Σ)
with Σ = ΛΛ⊺ +Ψ. When the observed variables are standardized, the i-th diagonal element of ΛΛ⊺ is
called communality, which stands for the proportion of variance in Xi explained by common factors.

It is well-known that factor loadings have a rotational indeterminacy since both Λ and ΛT generate
the same covariance matrix Σ, where T is an arbitrary orthonormal matrix. To obtain an identifiable
model, we often use a restriction that Λ⊺Ψ−1Λ is a diagonal matrix or the upper triangular elements of
Λ are fixed by 0.

Suppose that we have a random sample of N observations x1, . . . ,xN from the p-dimensional normal
population Np(μ,Σ). The MLEs of factor loadings and unique variances are obtained by maximizing
the log-likelihood function

log f (x1, . . . ,xN ∣Λ,Ψ) = −
N
2
{p log(2π)+ log ∣Σ∣+ tr(Σ−1S)}, (1)

or equivalently, minimizing the discrepancy function:

q(Λ,Ψ) = log ∣Σ∣+ tr(Σ−1S)− log ∣S∣−p, (2)

where S = (sij) is the sample variance–covariance matrix,

S = 1
N

N
∑
n=1

(xn − x̄)(xn − x̄)⊺, x̄ = 1
N

N
∑
n=1

xn.

We remark that it is common to use the unbiased sample covariance matrix with n = N − 1, and the
choice between N and N − 1 slightly affects the statistical properties of the estimator. In this study,
however, the focus is on computing estimates rather than analyzing estimator properties. Since factor
analysis typically uses the sample correlation matrix, the choice between N and N−1 does not affect the
discrepancy function.

We assume that S is non-singular to ensure the existence of S−1, which plays an important role in
constructing an algorithm to find MLEs. This assumption can be violated when the number of variables
exceeds the sample size. In such a case, we may employ the ridge regularization on S; that is, we use
Sλ ∶= S+λIp with λ > 0 (Yuan & Chan, 2008).
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2.2. Numerical algorithms
We briefly review the algorithms for computing the MLEs (Jöreskog, 1967; Lawley & Maxwell, 1971).
The candidates of the MLEs, say (Λ̂,Ψ̂), are given as the solutions of

∂q(Λ,Ψ)
∂Λ

= 0, ∂q(Λ,Ψ)
∂ψi

= 0. (i = 1, . . . ,p) (3)

The solution to the above equation is given by

Σ−1(Σ−S)Σ−1Λ = 0,

diag(Σ−1(Σ−S)Σ−1) = 0,
(4)

where diag(A) denotes the diagonal matrix consisting of the diagonal elements of a matrix A.
Since the solutions are not expressed in a closed form, some iterative algorithm is required. Typically,

we use an algorithm based on the gradient of the log-likelihood function, such as the Newton–Raphson
method or Quasi-Newton method. When Ψ is not singular, Eq. (3) results in the following expressions
(Lawley & Maxwell, 1971, page 28, Eq. (4.10)):

(Ψ−
1
2 SΨ−

1
2 )Ψ−

1
2 Λ = Ψ−

1
2 Λ(Ik +Λ⊺Ψ−1Λ), (5)

Ψ = diag(S−ΛΛ⊺). (6)

Let Λ⊺Ψ−1Λ = Δ. The rotational indeterminacy is resolved when Δ is a diagonal matrix (e.g., Lawley
& Maxwell, 1971); in this case, (5) is an eigenvalue/eigenvector problem. Let (θ1,e1), . . . ,(θp,ep) be
the eigenvalues and eigenvectors of Ψ−

1
2 SΨ−

1
2 , respectively, where the eigenvalues are rearranged in a

weakly decreasing order; that is, θ1 ≥ θ2 ≥ ⋯ ≥ θp. Let P = (e1, . . . ,ek) and Θ = diag(θ1,θ2, . . . ,θk). Eq.
(5) implies

P(Θ− Ik)
1
2 = Ψ−

1
2 Λ (7)

or equivalently,

Λ = Ψ
1
2 P(Θ− Ik)

1
2 . (8)

Thus, for given Ψ, Λ can be calculated using (8). For given Λ, one can update Ψ with (6). However,
the update with (6) can be slow when some of the diagonal elements of Ψ̂ are small. Thus, the
unique variances are often updated by using the Newton–Raphson method or Quasi-Newton method
(Jöreskog, 1967; Lawley & Maxwell, 1971). The factanal function in R uses the optim function to
update the unique variances.

To summarize, the estimation algorithm in Jöreskog (1967) is given as follows:

1. Set an initial value of Ψ.
2. For given Ψ, Eq. (8) implies that Λ is a function of Ψ; that is, Λ can be written as Λ = Λ(Ψ).

Substituting Λ(Ψ) into the discrepancy function (2), it is a function of Ψ. The elements of Ψ are
then optimized by Newton–Raphson method or Quasi-Newton method.

2.3. A system of algebraic equations for the MLEs
In this study, we will employ a computational algebraic approach to get exact algebraic solutions to the
system (4) (i.e., all candidates of the MLEs). However, Eq. (4) may not be directly used as it includes an
inverse matrix Σ−1 that consists of significantly complicated rational functions. Consequently, a simpler
system of algebraic equations is required. One may use (5) and (6) as they do not include Σ−1, but Eq.
(5) includes Ψ−1, which is unavailable when Ψ is singular. As will be demonstrated in the numerical
example in Section 4, there exist many estimates whose unique variances are exactly zeros. Thus, it is
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essential to derive a system of algebraic equations that does not include complicated rational functions
and also satisfies (4), even when Ψ is singular.

In the following theorem, we provide a necessary condition for (4) that does not have rational
functions and holds even when Ψ is singular. Therefore, all solutions of (4) must satisfy that necessary
condition.

Theorem 2.1. Whether Ψ is singular or not, if (4) is satisfied, then we have

Λ = (ΛΛ⊺+Ψ)S−1Λ, (9)

Ψ = diag(S−ΛΛ⊺). (6)

Proof. It is shown that Eq. (9) is equivalent to the upper part of Eq. (4), since we have

Σ−1(Σ−S)Σ−1Λ = 0 ⇐⇒(ΣS−1Σ)Σ−1(Σ−S)Σ−1Λ = 0

⇐⇒ ΣS−1Λ = Λ ⇐⇒(ΛΛ⊺+Ψ)S−1Λ = Λ.

Therefore, what we need to prove is that Eq. (4) implies Eq. (6). First, we have

Σ−S = (ΛΛ⊺+Ψ)Σ−1(Σ−S)Σ−1(ΛΛ⊺+Ψ)

by Σ = ΛΛ⊺+Ψ. Hence, the upper part of (4) implies that

Σ−S = ΨΣ−1(Σ−S)Σ−1Ψ.

To handle the case where Ψ is singular, suppose that ψ1, . . . ,ψq are not equal to zero and ψq+1, . . . ,ψp are
equal to zero, where q ≤ p. Let J = {1, . . . ,q},K = {q+1, . . . ,p}, and let

T = diag( 1
ψ1

, . . . ,
1

ψq
,1, . . . ,1), Iq≤p = diag

⎛
⎜⎜
⎝

q
���������������
1, . . . ,1,

p−q
���������������
0, . . . ,0

⎞
⎟⎟
⎠
.

Let MJK denote a submatrix of a matrix M from which the rows corresponding to the indices in J and
the columns corresponding to the indices in K are selected, respectively. Since T is not singular,

Σ−S = ΨΣ−1(Σ−S)Σ−1Ψ ⇐⇒ T(Σ−S)T = TΨΣ−1(Σ−S)Σ−1ΨT

= Iq≤pΣ−1(Σ−S)Σ−1Iq≤p

= ((Σ−1(Σ−S)Σ−1)JJ 0
0 0) .

As (T(Σ− S)T)JJ = (Σ−1(Σ− S)Σ−1)JJ holds, the lower part of (4) implies that diag((T(Σ− S)T)JJ) =
0. Hence, ΨJJ = diag((S−ΛΛ⊺)JJ) holds because T is diagonal. Since (Σ− S)KK = Ip−q(Σ− S)KKIp−q =
(T(Σ−S)T)KK = 0 holds, we also have sii −∑k

j=1 λ2
ij = 0 = ψi for each i ∈ K. Consequently, we obtain Eq.

(6) without an assumption that Ψ is not singular. ◻

Remark 1. As an alternative algorithm to obtain the MLEs given by Lawley & Maxwell (1971), Jennrich
& Robinson (1969) used the eigenvalue/eigenvector problem of S−

1
2 ΨS−

1
2 instead of Ψ−

1
2 SΨ−

1
2 by using

the following equation:

(S−
1
2 ΨS−

1
2 )S−

1
2 Λ = S−

1
2 Λ(Ik −Λ⊺S−1Λ), (10)

which is equivalent to Eq. (9). Hence, Jennrich and Robinson’s (1969) algorithm can produce zero or
negative unique variance estimates.

Downloaded from https://www.cambridge.org/core. 09 Oct 2025 at 04:25:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 7

System of
Algebraic Equations

Affine Variety (§ 3.1.1)

Ideal (§ 3.1.2)

Sum (§ 3.1.2) Saturation (§ 3.1.2)

Gröbner Basis (§ 3.1.3) Monomial Ordering (§ 3.1.3)

Figure 2. Algebraic concepts reviewed in Section 3.1.

3. MLEs via Gröbner bases

Theorem 2.1 implies that all solutions to (4) must satisfy (6) and (9); therefore, we first solve all exact
solutions to (6) and (9) in order to find all the solutions of (4), and then obtain an optimal solution
that maximizes the likelihood function. In this section, we propose an algebraic approach to finding
exact solutions to (6) and (9). Section 3.1 reviews the theory of Gröbner bases for systems of algebraic
equations (see Cox et al., 2015 for details). A simple illustrative example concluding Gröbner bases in
maximum likelihood factor analysis is also presented. We provide an essential idea for constructing an
algorithm to find the MLEs through the illustrative example. In particular, Section 3.1.1 explains the
relationship between the concept of systems of algebraic equations and the concept of affine varieties;
Section 3.1.2 describes properties of two ideals (sum and saturation) associated with affine varieties
used in our algorithm; then, in Section 3.1.3, we review the concept of monomial orderings necessary
to define Gröbner bases, and the theory of Gröbner bases necessary to compute the ideals reviewed in
Section 3.1.2. For clarity, Figure 2 shows the relationship among these concepts reviewed in Section 3.1.
With the algebraic concepts in this section, we can guarantee the correctness of our algorithm from
properties of each algebraic concept by citing theorems and propositions from a textbook (e.g., Cox
et al., 2015).

In Section 3.2, we introduce an algorithm for finding all candidates for the MLEs by using each
concept reviewed in Section 3.1. Particularly, we decompose an original system of algebraic equations
into several sub-problems, allowing us to get the MLE within a feasible computation time. Furthermore,
Section 3.3 proposes an algorithm to obtain an optimal solution from the candidates for MLEs. Our
proposed algorithm identifies a pattern of MLE among “Proper solution,” “Improper solution,” and “No
solutions.”

3.1. Gröbner bases and systems of algebraic equations
3.1.1. Affine varieties and systems of algebraic equations
Let R[z] denote the set of all polynomials in m variables z = (z1, . . . ,zm) with coefficients in the real
number field R. Recall that R[z] is a commutative ring, which is called the polynomial ring in variables
z with coefficients in R. For details of fields and commutative rings, please refer to Appendix A. Let
f1, . . . ,fr be polynomials in the polynomial ringR[z]. We consider a system of algebraic equations which
has the following general form:

f1(z) = ⋯ = fr(z) = 0. (11)
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Define

VW(f1, . . . ,fr) = {z ∈ Wm ∶ f1(z) = ⋯ = fr(z) = 0} ⊂ Wm,

where W = R or C. The set VW(f1, . . . ,fr) is referred to as an affine variety defined by f1, . . . ,fr in Wm

(Cox et al., 2015, Section 1.2, Definition 1). Note that the solutions to (11) in Wm form the affine variety
VW(f1, . . . ,fr), that is, the solution space to (11) in Wm coincides with the affine variety VW(f1, . . . ,fr).

Here, let us consider an illustrative example related to the system of algebraic equations (6) and (9).
Example 1. Let

S =
⎛
⎜
⎝

1 1
2

1
31

2 1 2
31

3
2
3 1

⎞
⎟
⎠
, Λ =

⎛
⎜
⎝

λ11
λ21
λ31

⎞
⎟
⎠
, Ψ =

⎛
⎜
⎝

ψ1 0 0
0 ψ2 0
0 0 ψ3

⎞
⎟
⎠
.

We consider the system of algebraic equations (6) and (9) for the above S,Λ,Ψ, that is,

{ 0 = (Ψ−diag(S−ΛΛ⊺))11 = (Ψ−diag(S−ΛΛ⊺))22 = (Ψ−diag(S−ΛΛ⊺))33,
0 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)11 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)21 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)31.

(12)

Because we have

S−1 =
⎛
⎜
⎝

4
3 − 2

3 0
− 2

3
32
15 − 6

5
0 − 6

5
9
5

⎞
⎟
⎠
,

we consider polynomials f1, . . . ,f6 ∈R[ψ,λ] =R[ψ1,ψ2,ψ3,λ11,λ21,λ31] defined by

f1 = (Ψ−diag(S−ΛΛ⊺))11 = ψ1 −(1−λ2
11),

f2 = (Ψ−diag(S−ΛΛ⊺))22 = ψ2 −(1−λ2
21),

f3 = (Ψ−diag(S−ΛΛ⊺))33 = ψ3 −(1−λ2
31),

f4 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)11

= λ11 −(
λ11 (− 2

3 λ11λ21 + 4
3(λ2

11 +ψ1))
+ λ21 ( 32

15 λ11λ21 − 6
5 λ11λ31 − 2

3(λ2
11 +ψ1))+ λ31 (− 6

5 λ11λ21 + 9
5 λ11λ31)

),

f5 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)21

= λ21 −(
λ11 ( 4

3 λ11λ21 − 2
3(λ2

21 +ψ2))
+ λ21 (− 2

3 λ11λ21 − 6
5 λ21λ31 + 32

15(λ2
21 +ψ2))+ λ31 ( 9

5 λ21λ31 − 6
5(λ2

21 +ψ2))
),

f6 = (Λ−(ΛΛ⊺+Ψ)S−1Λ)31

= λ31 −(
λ11 ( 4

3 λ11λ31 − 2
3 λ21λ31)

+ λ21 (− 2
3 λ11λ31 + 32

15 λ21λ31 − 6
5(λ2

31 +ψ3))+ λ31 (− 6
5 λ21λ31 + 9

5(λ2
31 +ψ3))

) .

All solutions of the above equation form the affine variety defined by f1, . . . ,f6. Indeed, there are seven
real solutions to (12), and these solutions, (ψ,λ) = (ψ1,ψ2,ψ3,λ11,λ21,λ31) ∈R6, form the following affine
variety:

VR(f1, . . . ,f6)

= {(0, 3
4
,

8
9
, ±1, ± 1

2
, ± 1

3
),(3

4
,0, 5

9
, ± 1

2
, ±1, ± 2

3
),(8

9
,

5
9
,0, ± 1

3
, ± 2

3
, ±1), (1,1,1,0,0,0)} .

3.1.2. Sums and saturations
In Example 1, we obtain only seven solutions to the system of algebraic equations (12). For a larger
model, however, the number of solutions of (6) and (9) is considerably large and the solution space
(i.e., the affine variety) is too complicated. In some cases, there are an infinite number of solutions.
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Therefore, it is essential to enhance an efficient computation for obtaining all solutions. A key idea is
a decomposition of (6) and (9) into several simple sub-problems. This decomposition is related to the
theory of polynomial ideals and Gröbner bases.

We define the following set of polynomials:

⟨f1, . . . ,fr⟩ = {
r
∑
i=1

qifi ∶ qi ∈R[z]},

where f1, . . . ,fr ∈ R[z]. The above set is an ideal in the polynomial ring R[z]. So, it is called the ideal
generated by f1,...,fr (Cox et al., 2015, Section 1.4, Definition 2). Let

J = ⟨f1, . . . ,fr⟩ ⊂R[z].

For details of the ideal in the commutative ring, please refer to Appendix A. The affine variety defined by
J in Wm is expressed as VW(J ) = {z ∈ Wm ∶ f (z) = 0,∀f ∈ J }. Since VW(f1, . . . ,fr) =VW(J ) holds,
the solution space of (11) coincides with VW(J ).

Since ideals are algebraic objects, there exist natural algebraic operations. Essentially, such algebraic
operations give us some simple sub-problems of the system of algebraic equations (6) and (9). Let K be
an ideal in R[z]. We note that any ideal in R[z] is finitely generated by the Hilbert Basis Theorem (Cox
et al., 2015, Theorem 4, Section 2.5), that is, there exist h1, . . . ,hs ∈ K such that K = ⟨h1, . . . ,hs⟩.

Now, we define two operations. As the first operation for ideals, we define the sum of J and K, say
J +K, by

J +K = {f +h ∶ f ∈ J ,h ∈ K}.

For details of the definition of sums, see (Cox et al., 2015, Section 4.3, Definition 1). Note that any
sum of ideals is an ideal in R[z] (Cox et al., 2015, Proposition 2, Section 4.3). Moreover, the affine
variety VW(J +K) coincides with VW(J )∩VW(K) (Cox et al., 2015, Corollary 3, Section 4.3), that
is, VW(J +K) is none other than the solution space of the equations

(11) and h1(z) = ⋯ = hs(z) = 0.

As the second operation, we define the saturation of J with respect to K, say J ∶ K∞, by

J ∶ K∞ = {f ∈R[z] ∶ for any h ∈ K there exists t ∈ Z≥0 such that fht ∈ J },

where Z≥0 = {t ∈ Z ∶ t ≥ 0}, and fht means the product of the polynomial f and the t-th power of h
denoted by ht . For details of the definition of saturations, see (Cox et al., 2015, Section 4.4, Definition
8). Note that any saturation is an ideal inR[z] (Cox et al., 2015, Proposition 9, Section 4.4). If W =C, the
affine variety VC(J ∶ K∞) coincides with the Zariski closure of the subset VC(J )/VC(K) ⊆Cm (Cox
et al., 2015, Theorem 10, Section 4.4), that is, the VC(J ∶ K∞) is none other than the Zariski closure of
the solution space over C of

((11) and h1(z) ≠ 0) or ⋯ or ((11) and hs(z) ≠ 0),

where VC(J )/VC(K) ⊆C
m is defined by

VC(J )/VC(K) = {z ∈VC(J ) ∶ z /∈VC(K)}.

Recall that the Zariski closure of a subset in Wm =Rm or Cm is the smallest affine variety containing the
subset (see Appendix A for details of Zariski closures).

Now, we provide a proposition that gives theoretical correctness to divide Eqs. (6) and (9) into some
sub-problems (Cox et al., 2015, Theorem 10, Section 4.4).
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Proposition 3.1. We have VW(J ) =VW(J +K)∪VW(J ∶ K∞).

Proposition 3.1 tells that if we obtain generator sets of the sum J +K and the saturation J ∶ K∞,
and both of their affine varieties are not empty, we get meaningful sub-problems of (11).

Now, let us turn our attention to the system of algebraic equations for the maximum likelihood
factor analysis. The result of Example 1 shows that the affine variety includes many solutions whose
Ψ is singular; 6 out of 7 solutions are singular. In fact, as we will see in the numerical example presented
in Section 4, the solution space of (6) and (9) includes a surprisingly large number of solutions whose Ψ
is singular. Therefore, we propose to decompose the original problem into the following sub-problems:
ψj = 0 and ψj ≠ 0 for j = 1, . . . ,p. Now, we provide a simple example based on Example 1 to illustrate how
the decomposition can be achieved. A rigorous procedure will be provided in Section 3.2.

Example 2. We illustrate the usefulness of Proposition 3.1 using the same example as in Example 1.
Let us consider the ideal J = ⟨f1, . . . ,f6⟩ in the polynomial ring R[ψ,λ], where f1, . . . ,f6 are polynomials
given in Example 1. We construct some ideals sequentially as follows: first, by using the ideal J , we
construct the following sum and saturation:

I0 = J +⟨ψ1⟩, I1 = J ∶ ⟨ψ1⟩∞.

Next, by using the ideals I0 and I1, we construct the following sums and saturations:

I00 = I0 +⟨ψ2⟩, I01 = I0 ∶ ⟨ψ2⟩∞, I10 = I1 +⟨ψ2⟩, I11 = I1 ∶ ⟨ψ2⟩∞.

Last, by using the ideals I00, I01, I10, and I11, we construct the following sums and saturations:

I000 = I00 +⟨ψ3⟩, I001 = I00 ∶ ⟨ψ3⟩∞, I010 = I01 +⟨ψ3⟩, I011 = I01 ∶ ⟨ψ3⟩∞,
I100 = I10 +⟨ψ3⟩, I101 = I10 ∶ ⟨ψ3⟩∞, I110 = I11 +⟨ψ3⟩, I111 = I11 ∶ ⟨ψ3⟩∞.

It follows from Proposition 3.1 that

VR(J ) =VR(I0)∪VR(I1)
= (VR(I00)∪VR(I01))∪(VR(I10)∪VR(I11))
= ((VR(I000)∪VR(I001))∪(VR(I010)∪VR(I011)))
∪((VR(I100)∪VR(I101))∪(VR(I110)∪VR(I111))) = ⋃

b∈{0,1}3
VR(Ib).

The affine varieties VR(I000),VR(I100),VR(I010),VR(I001) are empty sets. On the other hand,

VR(I011) = {(0, 3
4
,

8
9
, ±1, ± 1

2
, ± 1

3
)}, VR(I101) = {(

3
4
,0, 5

9
, ± 1

2
, ±1, ± 2

3
)},

VR(I110) = {(
8
9
,

5
9
,0, ± 1

3
, ± 2

3
, ±1)}, VR(I111) = {(1,1,1,0,0,0)}

are non-empty proper subsets of VR(J ). Thus, the solution space of (12) is divided into the four affine
varieties: VR(I011), VR(I101), VR(I110), and VR(I111).

3.1.3. Gröbner bases
Example 2 showed that the solution space can be successfully decomposed by constructing sums
and saturations. To obtain some simple sub-problems of the system of algebraic equations (6) and
(9) for maximum likelihood factor analysis, in addition, we need to compute generator sets of the
sum J +K and the saturation J ∶ K∞. The sum J +K is generated by f1, . . . ,fr,h1, . . . ,hs, that is,
J +K = ⟨f1, . . . ,fr,h1, . . . ,hs⟩. A generator set of the saturation J ∶ K∞ is obtained by using a Gröbner
basis. The definition of the Gröbner basis requires a monomial ordering. Therefore, we define monomial
orderings before giving the definition of Gröbner bases.
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Let us denote za = za1
1 . . . zam

m for a = (a1, . . . ,am) ∈ Zm
≥0, which is called a monomial, where Z

m
≥0 =

{(α1, . . . ,αm) ∈Zm ∶ α1, . . . ,αm ≥ 0}. Let M(z) = {za ∶ a ∈Zm
≥0}. The definition of monomial orderings is

the following (Cox et al., 2015, Section 2.2, Definition 1).
Definition 1. A monomial ordering≻ on R[z] is a relation on the set M(z) satisfying that

1. ≻ is a total ordering on M(z), that is, ≻ satisfies that
(a) s ⪰ s for any s ∈ M(z),
(b) s ⪰ t and t ⪰ s implies s = t for any s,t ∈ M(z),
(c) s ⪰ t and t ⪰ u implies s ⪰ u for any s,t,u ∈ M(z), and
(d) s ≻ t or s = t or s ≺ t for any s,t ∈ M(z),

2. za ≻ zb 2⇒ zazc ≻ zbzc for any c ∈ Zm
≥0, and

3. any nonempty subset of M(z) has a smallest element under ≻.

Definition 2. Fixing a monomial ordering on R[z] and given a polynomial f = ∑a∈Zm
≥0

caza for ca ∈R,
we call the monomial LM(f ) = max(za ∶ ca ≠ 0) the leading monomial of f.

We give two examples of monomial orderings. The first one is called a lexicographic order (or the lex
order for short) (Cox et al., 2015, Section 2.2, Definition 3). The second one is called a graded reverse
lexicographic order (or the grevlex order for short) (Cox et al., 2015, Section 2.2, Definition 6). These two
monomial orderings satisfy the conditions of Definition 1 (Cox et al., 2015, Proposition 4 and Exercise
5, Section 2.2).
Definition 3 (Lexicographic Order; Lex). Let a,b ∈Zm

≥0. We say za ≻lex zb if the leftmost nonzero entry
of the vector difference a−b is positive. This ordering is called a lexicographic order (or the lex order for
short).

Although a Gröbner basis with respect to the lex order defined above transforms a given system of
algebraic equations into an equivalent system of algebraic equations that is easier to solve, it is widely
known in computational algebra that such computations tend to be heavy in general. Therefore, we
next define the graded lexicographic order, a monomial order under which Gröbner basis computation
is generally known to be more efficient. Of course, a Gröbner basis with respect to the graded reverse
lexicographic order also provides an equivalent transformation.
Definition 4 (Graded Reverse Lexicographic Order; Grevlex). Let a = (a1, . . . ,am) ∈ Zm

≥0 and b =
(b1, . . . ,bm) ∈ Zm

≥0. We say za ≻grevlex zb if ∣a∣ = ∑m
i=1 ai > ∣b∣ = ∑m

i=1 bi or the rightmost nonzero entry
of the vector difference a−b is negative. This ordering is called a graded reverse lexicographic order (or
the grevlex order for short).

As shown in the following example, the leading monomial of a given polynomial is determined
depending on a fixed monomial ordering.
Example 3 (Lexicographic Order; Lex). When we fix the lex order, LM(3z2

1 +2z1z3
2) = z2

1. In addition,
LM(f4) = ψ1, LM(f5) = ψ2, and LM(f6) = ψ3, where f4,f5,f6 ∈R[ψ,λ] are presented in Example 1.
Example 4 (Graded Reverse Lexicographic Order; Grevlex). When we fix the grevlex order, LM(3z2

1+
2z1z3

2) = z1z3
2. In addition, LM(f4) = λ3

11, LM(f5) = λ2
11λ21, and LM(f6) = λ2

11λ31, where f4,f5,f6 ∈R[ψ,λ]
are presented in Example 1.

Now, we define Gröbner bases (Cox et al., 2015, Section 2.5, Definition 5).
Definition 5. Fix a monomial ordering on R[z]. A finite subset G = {g1, . . . ,gt} of an ideal J ⊆R[z] is
said to be a Gröbner basis of J if we have

⟨LM(g1), . . . ,LM(gt)⟩ = ⟨{LM(f ) ∶ f ∈ J }⟩.
Note that every polynomial ideal has a Gröbner basis (Cox et al., 2015, Corollary 6, Section 2.5), and

that any Gröbner basis of J generates the ideal J .
For the case K = ⟨h⟩ ⊆R[z], a generator set of the saturation J ∶ K∞ is obtained by using a Gröbner

basis as follows (Cox et al., 2015, Theorem 14(ii), Section 4.4):
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1. let J̃ = ⟨f1, . . . ,fr,1−yh⟩ ⊆R[y,z],
2. compute a Gröbner basis of J̃ , say G̃, with respect to the lex order,
3. G = G̃∩R[z] is a Gröbner basis of the saturation J ∶ K∞.

Example 5. Let us reconsider Example 1, which is related to the system of algebraic equations (6) and
(9). Gröbner bases of the sums and saturations described above give us simplified sub-problems. For
b ∈ {0,1}3, a Gröbner basis Gb of Ib with respect to the lex order is given by

G000 = {1}, G001 = {1}, G010 = {1}, G100 = {1},

G011 = {ψ1,ψ2 −
3
4
,ψ3 −

8
9
,λ11 −3λ31,λ21 −

3
2

λ31,λ2
31 −

1
9
},

G101 = {ψ1 −
3
4
,ψ2,ψ3 −

5
9
,λ11 −

3
4

λ31,λ21 −
3
2

λ31,λ2
31 −

4
9
},

G110 = {ψ1 −
8
9
,ψ2 −

5
9
,ψ3,λ11 −

1
3

λ31,λ21 −
2
3

λ31,λ2
31 −1},

G111 = {ψ1 +
81
25

λ2
31 −1,ψ2 −1,ψ3 +λ2

31 −1,λ11 +
9
5

λ31,λ21,λ3
31 +

5
27

λ31} .

So the Gröbner bases G011,G101,G110,G111 divide (12) into the following simple sub-problems:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = 0,
ψ2 = 3

4,
ψ3 = 8

9,
λ11 = 3λ31,
λ21 = 3

2 λ31,
0 = λ2

31 − 1
9,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = 3
4,

ψ2 = 0,
ψ3 = 5

9,
λ11 = 3

4 λ31,
λ21 = 3

2 λ31,
0 = λ2

31 − 4
9,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = 8
9,

ψ2 = 5
9,

ψ3 = 0,
λ11 = 1

3 λ31,
λ21 = 2

3 λ31,
0 = λ2

31 −1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = 1− 81
25 λ2

31,
ψ2 = 1,
ψ3 = 1−λ2

31,
λ11 = − 9

5 λ31,
λ21 = 0,
0 = λ3

31 + 5
27 λ31.

Gröbner bases have a good property that plays an important role in solving a system of algebraic
equations of the form (11). The following proposition shows that Gröbner bases transform (11) into
easily solvable problems, without being subject to chance. The following proposition is called the
finiteness theorem (Cox et al., 2015, Theorem 6, Section 5.3).
Proposition 3.2. Fix a monomial ordering on R[z] and let G be a Gröbner basis of an ideal J ⊆ R[z].
Consider the following four statements:

1. for each i = 1, . . . ,m, there exists ti ≥ 0 such that zti
i ∈ ⟨LM(f ) ∶ f ∈ J ⟩,

2. for each i = 1, . . . ,m, there exists ti ≥ 0 and g ∈ G such that LM(g) = zti
i ,

3. for each i = 1, . . . ,m, there exists ti ≥ 0 and g ∈ G such that LM(g) = zti
i and g ∈R[zi, . . . ,zm], if we

fix the lex order,
4. the affine variety VW(J ) is a finite set.

Then, statements 1–3 are equivalent and they all imply statement 4. An ideal J satisfying statement 1, 2,
or 3 is called a zero-dimensional ideal. Otherwise, it is called a non-zero-dimensional ideal. Furthermore,
if W =C, then statements 1–4 are all equivalent.

The above proposition shows that if we can obtain a Gröbner basis, we can determine whether
the affine variety is a finite or infinite set, and if the affine variety is a finite set, the Gröbner basis
with respect to the lex order gives a triangulated representation (statement 3 of Proposition 3.2).
This representation produces a much simpler system of algebraic equations than the original one;
for example, when we need to solve linear equations, its Gröbner basis provides a triangular matrix,
corresponding to the triangularization of linear equations. In general, the computation of a Gröbner
basis with respect to the grevlex order is more efficient than that with respect to the lex order. Also, if J
is zero-dimensional, we have an efficient algorithm which converts a Gröbner basis from one monomial
ordering to another, which is called the FGLM algorithm (Faugère et al., 1993). Hence, in our algebraic
approach to maximum likelihood factor analysis, we first compute Gröbner bases with respect to the
grevlex order, and then convert them to Gröbner bases with respect to the lex order.
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Remark 2. Primary ideal decompositions can more completely give us simplified sub-problems of
a system of algebraic equations. However, unfortunately, the primary ideal decompositions require
heavy computational loads in general. Thus, we employ Proposition 3.1 instead of primary ideal
decompositions.

3.2. An algorithm to find all solutions
We provide an algorithm to find all solutions to Eq. (4). To get the solutions, we solve the following
equation:

{S−ΛΛ⊺−diag(S−ΛΛ⊺)}S−1Λ = 0, (13)

which is derived by substituting (6) into (9). Note that, according to Theorem 2.1, the system of algebraic
equations (13) is a necessary condition for the likelihood equation (4). Since the solution space of (13)
contains that of (4), we can find all solutions to (4) by solving (13). Eq. (13) is much easier to solve than
Eq. (4); this is because Eq. (4) includes the inverse matrix Σ−1 that consists of rational functions, while
Eq. (13) does not include any inverse matrix.

As described in Example 2 in Section 3.1, (13) can have a large number of, and sometimes infinite,
solutions when Ψ is singular. Therefore, as in Example 2, we use Proposition 3.1 to get some sub-
problems of Eq. (13).

Considering a rotational indeterminacy, we suppose that the upper triangular elements of Λ are fixed
by zero. Let us consider the following ideal in R[λ] =R[λij ∶ 1 ≤ i ≤ p,1 ≤ j ≤ min(i,k)]:

J = ⟨({S−ΛΛ⊺−diag(S−ΛΛ⊺)}S−1Λ)ij ∶ 1 ≤ i ≤ p,1 ≤ j ≤ k⟩ .

We have to choose the ideals of the form K = ⟨h⟩ ⊆R[λ] well to get sub-problems of (13).
Recall that (6) is equivalent to the lower part of (4) when Ψ is not singular, and is a necessary

condition of (4) when Ψ is singular, as shown in Theorem 2.1. Focusing on (6), we consider ψ1, . . . ,ψp
as polynomials defined by

ψi = sii −
min(i,k)

∑
j=1

λ2
ij ∈R[λ] (i = 1, . . . ,p).

For each Ki = ⟨ψi⟩ ⊆R[λ], we construct sums and saturations as in our algorithm.
Now, we propose our algorithm in Algorithm 1. In Step 3 of Algorithm 1, the sum I0 = J +K1 and

the saturation I1 = J ∶ K∞1 are constructed, where J ,K1, . . . ,Kp are given in Steps 1–3 of Algorithm 1.
Proposition 3.1 implies that

VW(J ) =VW(I0)∪VW(I1).

Second, we construct the following sums and saturations as in i = 1 of Steps 4–8 of Algorithm 1:

I00 = I0 +K2, I01 = I0 ∶ K∞2 , I10 = I1 +K2, I11 = I1 ∶ K∞2 .

Since Proposition 3.1 implies

VW(I0) =VW(I00)∪VW(I01), VW(I1) =VW(I10)∪VW(I11),

we have

VW(J ) =VW(I00)∪VW(I01)∪VW(I10)∪VW(I11).

In the same way, for each b ∈ {0,1}i, 2 ≤ i ≤ p−1, we sequentially construct

Ib0 = Ib +Ki+1, Ib1 = Ib ∶ K∞i+1
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as in each 2 ≤ i ≤ p−1 of Steps 4–8 of Algorithm 1. By Proposition 3.1, we have

VW(J ) = ⋃
b∈{0,1}p

VW(Ib).

Finally, we compute all solutions to (13) by using the following steps for each b ∈ {0,1}p as in Steps 9–17
of Algorithm 1:

1. compute a Gröbner basis G̃b = {g̃1, . . . ,g̃s} of Ib with respect to the grevlex order as in Step 10 of
Algorithm 1,

2. if Ib is zero-dimensional, compute a Gröbner basis Gb = {g1, . . . ,gr} of Ib with respect to the lex
order by converting G̃b to a Gröbner basis with respect to the lex order as in Step 12 of Algorithm
1, and then solve the equation g1 =⋯ = gr = 0 as in Step 13 of Algorithm 1,

3. else, compute a sample point from each connected component defined by g̃1 = ⋯ = g̃s = 0 as in
Step 15 of Algorithm 1.

Remark 3. In practice, the system of algebraic equations (13) is divided into subproblems by also using
polynomials other than ψ1, . . . ,ψp ∈ R[λ] because the system of algebraic equations (13) has a large
number of solutions in general. In addition, whether Ib is zero-dimensional or not, it can be determined
by statement 2 of Proposition 3.2. Since we divide (13) into a large number of sub-problems, even if Ib
is non-zero-dimensional, G̃b has a simple representation. If Ib is zero-dimensional, the Gröbner basis
Gb gives us an easily solvable sub-problem, as described in Example 5 in Section 3.1.3 and statement
3 of Proposition 3.2. For details of the decomposition other than ψ1, . . . ,ψp ∈ R[λ], please refer to
Appendix B.

Algorithm 1 An algorithm to find all solutions.
Require: Sample variance-covariance matrix S = (sij)
Ensure: All solutions to the system of algebraic equations (6) and (9) (Sol.)

1: J ← the ideal ⟨({S−ΛΛ⊺−diag(S−ΛΛ⊺)}S−1Λ)ij ∶ 1 ≤ i ≤ p,1 ≤ j ≤ k⟩
2: hi ← the polynomial sii −∑k

j=1 λ2
ij for 1 ≤ i ≤ p, Ki ← the ideal ⟨hi⟩ for 1 ≤ i ≤ p

3: I0 ← the sum J +K1, I1 ← the saturation J ∶ K∞1
4: for 1 ≤ i ≤ p−1 do
5: for b ∈ {0,1}i−1 do
6: Ib0 ← the sum Ib +Ki+1, Ib1 ← the saturation Ib ∶ K∞i+1
7: end for
8: end for
9: for b ∈ {0,1}p do

10: G̃b = {g̃1, . . . ,g̃s} ← a Gröbner basis of Ib with respect to the grevlex order
11: if Ib is zero-dimensional then
12: {g1, . . . ,gr} ← a Gröbner basis of Ib with respect to the lex order by converting G̃b
13: Sol.← Sol. ∪ {(Λ,diag(S−ΛΛ⊺)) ∈Rp×k ×Rp×p ∶ g1 =⋯ = gr = 0}
14: else

15: Sol.← Sol. ∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Λ,diag(S−ΛΛ⊺)) ∈Rp×k ×Rp×p ∶
λ is a sample point from each connected component

defined by g̃1 =⋯ = g̃s = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
16: end if
17: end for

Remark 4. The ideals Ib may have multiple roots. Therefore, in practice, Step 10 computes a Gröbner
basis of the radical ideals for Ib. The radical ideal

√
Ib is defined by

√
Ib = {p ∶ there exists t ∈ Z≥0 such that pt ∈ Ib}.
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In general, radical ideals have only solutions with multiplicity 1 (i.e., simple roots). So our algebraic
approach can treat very simple sub-problems, and does not generate multiple solutions.

3.3. An algorithm to identify a solution pattern
We provide an algorithm to categorize the MLEs into three patterns: “Proper solution,” “Improper
solution,” and “No solutions.” The algorithm is detailed in Algorithm 2. First, we find all solutions to
Eq. (4) with Algorithm 1. Then, we get a solution (Λ̂t*,Ψ̂t* ) that minimizes the discrepancy function in
(2) as in Step 1 of Algorithm 2. When the Hessian matrix Hq at the solution (Λ̂t*,Ψ̂t* ) is positive definite,
there exists an MLE that minimizes (2), where the Hessian matrix Hq is defined by the following:

Hq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂2q
∂λ11∂λ11

⋯ ∂2q
∂λ11∂λ1m

⋯ ∂2q
∂λ11∂λp1

⋯ ∂2q
∂λ11∂λpm

∂2q
∂λ11∂ψ1

⋯ ∂2q
∂λ11∂ψp

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
∂2q

∂λ1m∂λ11
⋯ ∂2q

∂λ1m∂λ1m
⋯ ∂2q

∂λ1m∂λp1
⋯ ∂2q

∂λ1m∂λpm

∂2q
∂λ1m∂ψ1

⋯ ∂2q
∂λ1m∂ψp

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
∂2q

∂λp1∂λ11
⋯ ∂2q

∂λp1∂λ1m
⋯ ∂2q

∂λp1∂λp1
⋯ ∂2q

∂λp1∂λpm

∂2q
∂λp1∂ψ1

⋯ ∂2q
∂λp1∂ψp

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
∂2q

∂λpm∂λ11
⋯ ∂2q

∂λpm∂λpm
⋯ ∂2q

∂λpm∂λp1
⋯ ∂2q

∂λpm∂λpm

∂2q
∂λpm∂ψ1

⋯ ∂2q
∂λpm∂ψp

∂2q
∂ψ1∂λ11

⋯ ∂2q
∂ψ1∂λ1m

⋯ ∂2q
∂ψ1∂λp1

⋯ ∂2q
∂ψ1∂λpm

∂2q
∂ψ1∂ψ1

⋯ ∂2q
∂ψ1∂ψp

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
∂2q

∂ψp∂λ11
⋯ ∂2q

∂ψp∂λ1m
⋯ ∂2q

∂ψp∂λp1
⋯ ∂2q

∂ψp∂λpm

∂2q
∂ψp∂ψ1

⋯ ∂2q
∂ψp∂ψp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We are able to test whether Hq at the solution (Λ̂t*,Ψ̂t* ) is positive definite or not by using its observed
Fisher information matrix that is defined as Hq/2. So Step 2 of Algorithm 2 uses its observed Fisher
information matrix for testing whether Hq at the solution (Λ̂t*,Ψ̂t* ) is positive definite or not. If it is
positive definite, the estimate is categorized as either proper or improper according to the sign of the
unique variances, as in Step 4 or 6 of Algorithm 2. When all unique variances are positive, the estimate
is referred to as a “proper solution,” as in Step 4 of Algorithm 2. Meanwhile, when at least one of the
unique variances is not positive, the estimate is referred to as an “improper solution,” as in Step 6 of
Algorithm 2. When the Hessian matrix at the solution is not positive definite, there are no optimal
MLEs. In this case, the estimate is referred to as a “no solutions,” as in Step 9 of Algorithm 2. With
Algorithm 2, we can investigate the tendency of the solution pattern through Monte Carlo simulations,
which will be described in the following section.

Algorithm 2 An algorithm to identify the solution pattern.

Require: All solutions to (13), say (Λ̂t,Ψ̂t)t=1,...,T .
Ensure: Solution pattern (Sol.Pat.)

1: Select a solution that minimizes the discrepancy function in Eq. (2); that is, obtain (Λ̂t*,Ψ̂t* ), where
t* = arg min

t∈{1,...,T}
λ(Λ̂t,Ψ̂t).

2: if the solution (Λ̂t*,Ψ̂t* ) satisfies the condition (4) and Hq is positive-definite then
3: if the minimum value of diagonal element of Ψ̂t* is positive then
4: Sol.Pat.← “Proper solution.”
5: else
6: Sol.Pat.← “Improper solution.”
7: end if
8: else
9: Sol.Pat.← “No solutions.”

10: end if
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4. Monte Carlo simulation

We conduct Monte Carlo simulations to investigate the characteristics of solution patterns of MLEs in
various situations. First, we consider the following three simulation models:

S1 ∶ Λ =

⎛
⎜⎜⎜⎜⎜
⎝

0.9 0
0.8 0
0.7 0
0 0.8
0 0.7

⎞
⎟⎟⎟⎟⎟
⎠

, S2 ∶ Λ =

⎛
⎜⎜⎜⎜⎜
⎝

0.5 0
0.5 0
0.5 0.5
0 0.5
0 0.5

⎞
⎟⎟⎟⎟⎟
⎠

, S3 ∶ Λ =

⎛
⎜⎜⎜⎜⎜
⎝

0.9 0
0.8 0
0.6 0.7
0 0.8
0 0.9

⎞
⎟⎟⎟⎟⎟
⎠

,

and Ψ = diag(I −ΛΛ⊺). On S1, the second column of Λ has only two nonzero elements, suggesting
that a necessary condition for identification is not satisfied (Anderson & Rubin, 1956, Theorem 5.6). In
this case, the estimate can be unstable due to the identifiability problem (van Driel, 1978), and improper
solutions are often obtained. S2 has small communalities and large unique variances, and then improper
solutions sometimes occur due to the sampling fluctuation (van Driel, 1978). In S3, communalities are
large and a necessary condition on identification is satisfied; thus, it is expected that the numerical
estimate is stable and improper solutions are unlikely to be obtained.

For all simulation models, we generate N = 100 observations from N(0,ΛΛ⊺+Ψ), and compute the
sample covariance matrix. The elements of the sample covariance matrix are rounded to one decimal
place. The most fundamental reason for this is that numbers with many decimal places are generally
expressed as complicated rational numbers. Many implementations for computations of Gröbner bases
deal with polynomials with rational coefficients, rather than with coefficients with decimal places. Such
computations with complicated rational coefficients in computational algebra can require large amounts
of computer memory as the coefficients become big due to the “four arithmetic operations of coefficient”
performed internally. For that reason, the elements of the sample covariance matrix are rounded to one
decimal place. As described in Appendix C, we have also confirmed that rounding the values of the
sample elements from two digits to one digit does not significantly affect the accuracy in most cases.
Furthermore, we have confirmed that the results with two-digit values and those with more than two-
digit values are almost identical.

For each simulation model, we run ten times and investigate the characteristics of estimates obtained
by computational algebra. We note that such a small number of replications of the Monte Carlo
simulation is due to the heavy computational loads of computational algebra. For implementation,
we used the highest-performance computer that we had (Intel Xeon Gold 6134 processors, 3.20 GHz,
32 CPUs, 256 GB memory, and Ubuntu 18.04.2 LTS), and made efforts to optimize the algorithm of
computational algebra as much as possible, as detailed in Appendix B. However, the computational
timing varied from 2 weeks to 4 weeks to get the result for a single dataset.

For comparison, we also perform factanal function in R. We note that one may use the algorithm
of Jennrich and Robinson (1969), which allows for negative values. However, in our experience, the
algorithm often diverges and is highly unstable when improper solutions are observed. In contrast, the
factanal function provides stable estimates and is also easy to implement. Therefore, we decided to
use the factanal function.

4.1. Investigation of MLEs
We investigate the MLEs obtained by computational algebra and factanal. Table 1 shows the
solution pattern of the MLE computed using Algorithm 2. For S3, we obtain proper solutions in all ten
simulations, implying that the results for S3 are stabler than S1 and S2. Meanwhile, several improper
solutions are obtained, or no solutions are found for S1 and S2. In particular, S1 tends to produce “no
solutions” more frequently than S2.

With factanal function, however, it would be difficult to identify the solution pattern as in
Table 1 because the factanal provides estimates under a restriction that all unique variances are
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Table 1. Solution pattern obtained by Algorithm 2: proper solution (P),

improper solution (I), and no solution (NA)

Sim no. 1 2 3 4 5 6 7 8 9 10

S1 P NA NA NA NA I I P P P

S2 P P I NA P I I P P P

S3 P P P P P P P P P P

larger than some threshold, such as 0.005. Moreover, the observed Fisher information matrices of the
MLEs computed with factanal function are positive definite for all simulated datasets; therefore,
it is remarkably challenging to distinguish “improper solution” and “no solutions” using factanal
function.

To study the solution pattern in more detail, we investigate the number of solutions obtained by
computational algebra, as shown in Table 2. When counting the number of solutions, the identifiability
with respect to the sign of column vectors in a loading matrix is addressed. We categorize the algebraic
solutions based on the signs of the unique variances:

• For (a)–(b), all unique variances are positive.
• For (c)–(d), all unique variances are non-zero but some are negative.
• For (e)–(h), some unique variances are zero.

When some unique variances are zero, the solution does not always satisfy the original normal equation
in (4). Therefore, we check whether the solution satisfies (4) in such cases numerically. Meanwhile, when
all unique variances are non-zero, the solutions to (6) and (9) are equivalent to those of (4). For this
reason, we do not verify (4) for cases where all unique variances are non-zero.

Moreover, interestingly, in our simulation, a very complicated solution space is computed when all
unique variances are zero. In such cases, it is not possible to evaluate the value of the log-likelihood
function. Therefore, we do not analyze these cases in this simulation.

For all cases, the number of solutions that satisfy the conditions (6) and (9) is relatively large, but most
of them do not have a positive-definite observed Fisher information matrix. Thus, it would be essential
to check if the observed Fisher information matrix is positive definite or not. Another noteworthy point
is that although we get a number of solutions with zero unique variances using (6) and (9), about 98.5 %
of them are not the solution of (4) (see (e) and (f)), implying that most of the solutions to (6) and (9)
with zero unique variances are inappropriate. Furthermore, in some simulations, such solution spaces
consist of a finite number of points and subspaces containing an infinite number of points. We note
that, for subspaces consisting of an infinite number of points, (e) and (f) in Table 2 show the number of
sample points from the connected components computed by our algorithm.

Here, we denote that the jth dataset on simulation model Si is Si-j (i = 1,2,3; j = 1, . . . 10). Further
empirical comparison for each case in Table 2 is presented below.

4.1.1. Optimal solution does not exist: S1-2, S1-3, S1-4, S1-5, and S2-4
We first investigate the detailed results in which there are no local maxima. The result (e) in Table 2
suggests that there exist a number of improper solutions with zero unique variances obtained by (6) and
(9), and some of them provide a positive-definite observed Fisher information matrix (see the result (f)).
However, all of these solutions do not satisfy (4) from the result (g). Interestingly, the estimate computed
using factanal function is close to one of the solutions of (6) and (9) (i.e., the result (f)), suggesting
that the factanal can converge to an improper solution when the optimal solution does not exist.
With the factanal function, the convergence value of the loading matrix constructed by (5) does
not always satisfy (4) when Ψ is singular; thus, the mixture of update equation (5) and Quasi-Newton
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Table 2. The number of solutions obtained by computational algebra

Sim no. 1 2 3 4 5 6 7 8 9 10

(a) All solutions to (6) and (9) whose unique variances are all positive.

S1 3 1 2 3 3 3 0 3 1 1

S2 8 2 3 5 3 0 2 2 3 4

S3 1 1 3 2 1 1 2 1 2 1

(b) Solutions of (a) whose observed Fisher information matrix is positive definite.

S1 1 0 0 0 0 0 0 1 1 1

S2 1 1 0 0 1 0 0 1 1 1

S3 1 1 1 1 1 1 1 1 1 1

(c) All solutions to (6) and (9) where all unique variances are non-zero and some of them are negative.

S1 2 7 4 2 3 0 10 0 3 0

S2 4 3 2 5 3 4 2 2 3 2

S3 0 6 1 1 2 4 3 7 8 5

(d) Solutions of (c) whose observed Fisher information matrix is positive definite.

S1 0 0 0 0 0 0 1 0 0 0

S2 0 0 2 0 0 1 1 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

(e) All solutions to (6) and (9) where some of the unique variances are zero.

S1 31 28 32 30 30 22 32 28 24 26

S2 31 22 26 28 27 23 24 27 26 25

S3 22 22 23 24 23 24 27 23 28 25

(f) Solutions of (e) whose observed Fisher information matrix is positive definite.

S1 1 5 4 1 3 5 1 2 2 0

S2 2 3 6 2 0 3 1 1 1 3

S3 1 4 3 1 1 1 2 2 2 3

(g) Solutions of (e) that satisfy (4).

S1 0 0 0 0 0 1 1 0 0 4

S2 0 0 0 0 0 0 1 0 0 0

S3 4 0 0 0 0 0 1 0 0 0

(h) Solutions of (f) that satisfy (4).

S1 0 0 0 0 0 1 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

Note: When counting the number of solutions, the identifiability with respect to the sign of column vectors in a loading
matrix is addressed.

method with respect to unique variances can lead to the improper solution when the optimal solution
does not exist.

The results also give insight into the conventional algorithm of Jennrich & Robinson (1969). For all
simulated datasets, Jennrich and Robinson’s (1969) algorithm tends to highly depend on initial values,
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as demonstrated in Figure 1. Furthermore, one of the unique variances results in an exceptionally large
negative value, even if the initial value is close to the estimate computed with the factanal function.
We numerically observe that the estimate obtained by Jennrich and Robinson’s algorithm (1969) satisfies
(4) but does not satisfy (5). Recall that factanal function uses (5); therefore, factanal function
and Jennrich and Robinson’s (1969) algorithm result in different estimates. Furthermore, the observed
Fisher information matrix computed with Jennrich and Robinson’s algorithm (1969) is not positive
definite; one of the eigenvalues of the observed Fisher information matrix is nearly zero, suggesting that
the confidence interval is unavailable. These results are often observed due to the identification problem
(van Driel, 1978; Kano, 1998). Indeed, the true loading matrix of S1-2, S1-3, S1-4, and S1-5 is not unique
even if rotational indeterminacy is taken out, because theorem 5.6 in Anderson & Rubin (1956) is not
satisfied.

4.1.2. Improper solutions: S1-6, S1-7, S2-3, S2-6, and S2-7
We get five improper solutions whose unique variances are negative or zero. These negative estimates
are obtained when the proper solutions do not exist. The number of negative estimates is relatively
large for each model from the result (c) of Table 2, but most of them do not have a positive-definite
observed Fisher information matrix (see result (d)). As a result, the negative estimates are almost
uniquely determined. An exception is S2-3; there are two solutions that are completely different but
have similar likelihood values.

We also find that when the optimal values of unique variances are strictly negative, there often exists
a solution to (6) and (9) whose corresponding unique variances are exactly zero and other parameters
have similar values to the optimal value. Furthermore, that solution is quite similar to that obtained by
the factanal function. The corresponding Fisher information matrix is positive-definite.

4.1.3. Proper solutions: S1-1, S1-8, S1-9, S1-10, S2-1, S2-2, S2-8, S2-9, S2-10, and S3
We briefly investigate the results where all unique variances are positive. For all models, we obtain several
proper solutions (result (a) in Table 2) and only one proper solution has a positive-definite observed
Fisher information matrix (result (b)). Furthermore, we obtain no improper solutions whose observed
Fisher information matrix is positive (results (d) and (h)), suggesting that the likelihood function has
only one local maximum that is proper.

Remark 5. As shown in Section 3.2, our approach computes all candidates for the MLE. If a candidate
is a root of a non-zero-dimensional ideal, the candidate may not provide an identifiable model. On the
other hand, if the candidate is the root of a zero-dimensional ideal, that candidate does not suffer from
identification problems. In our experiments, we often obtain candidates that are roots of a non-zero-
dimensional ideal (see Appendix B for details). Fortunately, however, those candidates do not reach the
maximum value of the likelihood.

4.2. Investigation of the best estimate obtained by computational algebra and factanal
We further compare the characteristics of the loading matrix obtained by computational algebra and
factanal. Figure 3 shows the heatmaps of the estimated factor loadings along with the true ones.
The loading matrices of computational algebra are unavailable when the optimal solution does not exist
(i.e., S1-2, S1-3, S1-4, S1-5, and S2-4).

We first investigate whether the estimates can approximate the true loading matrix. For S1, the
results for the heatmap of the loading matrix in Figure 3 suggest that both computational algebra and
factanal function can well approximate the true loading matrix. In particular, even if no solution
is found with the computational algebra, the factanal function can approximate the true loadings.
This result is surprising to us because the true loading matrix has an identifiability issue that has been
considered as a severe problem (Kano, 1998). In contrast to our expectation, the estimates of S2 are
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Figure 3. Heatmap of the factor loadings obtained by computational algebra and factanal function.

much more unstable than those of S1. Thus, the small communalities rather than the identification
problem would make the estimation difficult in our simulation settings. For S3, we obtain proper and
stable estimates for all settings.

We compare the computational algebra’s estimates and factanal’s ones. In many cases, these
estimates are essentially identical. In some cases where the computational algebra provides negative
unique variances (i.e., S1-7, S2-3, S2-6, and S2-7), we find more or less difference between the
two methods. This is because the computational algebra provides negative unique variances while
the factanal provides 0.005 due to the restriction of the parameter space. However, the overall
interpretation of these two estimates is essentially identical for S1-7, S2-6, and S2-7. An exception is
S2-3; in this case, the results are entirely different from each other. Such a difference may be caused
by the fact that the factanal function uses only one initial value. We prepare 100 initial values from

Downloaded from https://www.cambridge.org/core. 09 Oct 2025 at 04:25:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 21

Table 3. Solution pattern obtained by Algorithm 3 over 100 simula-

tion runs

Proper solution Improper solution No solutions

S1 30 36 34

S2 66 16 18

S3 100 0 0

U(0,1), perform thefactanal function, and select a solution that maximizes the likelihood function;
as a result, the factanal’s estimate is essentially identical to computational algebra’s one. The result
suggests that performing factanal function with multiple initial values would be essential when we
obtain the improper solutions.

4.3. A numerical algorithm to identify the solution pattern
Because the computational algebra remains a challenge in heavy computation, it would be difficult to
apply it to a large model. Still, our empirical result is helpful for constructing a method to determine
whether the estimate exists or not with a numerical approach. Specifically, we obtain the estimate by
Jennrich and Robinson’s (1969) algorithm with multiple initial values. Subsequently, we employ the
same procedure as Algorithm 2 based on the numerical approach. The algorithm for identifying the
solution pattern with the numerical algorithm is detailed in Algorithm 3.

Algorithm 3 A numerical algorithm to identify the cause of improper solutions.
Require: Dataset {x1, . . . ,xn} or its sample covariance matrix S, and the number of iterations T to get

the maximum likelihood estimate.
Ensure: Solution pattern.

1: for t = 1 to T do
2: Obtain a maximum likelihood estimate with Jennrich and Robinson’s (1969) algorithm in (10)

using t-th initial value.
3: end for
4: Same as lines 1–10 in Algorithm 2.

With Algorithm 3, it is possible to further investigate the tendency of solution pattern with a number
of simulation iterations. Table 3 shows the distribution of solution pattern with Algorithm 3 over 100
simulation runs. The results indicate that only 30% of S1 provides proper solutions, while S2 has more
than double the percentage of proper solutions compared to S1. Thus, S1 tends to provide more improper
solutions than S2. Interestingly, we get several “improper solutions” and “no solutions” for both S1 and
S2, suggesting that various solution patterns are obtained, whether they arise from identifiability issue
(S1) or sampling fluctuation (S2). In other words, it would be difficult to identify the cause of improper
solutions by using the solution pattern. However, the distribution of the solution pattern appears to
differ among S1–S3. Therefore, it would be essential to find the distribution of solution pattern with a
number of simulations (e.g., bootstrap method) for identifying the cause of improper solutions.

5. Actual data analysis

This section consists of two sections. In Section 5.1, we apply our algebraic approach to one of the
famous datasets (Davis, 1944) that produces improper solutions. However, as the dataset contains many
observed variables, it is almost impossible to conduct algebraic computations due to computational
limitations. Therefore, we first select a subset of variables and fit a two-factor model. In Section 5.2,
we apply a numerical approach based on Algorithm 3, which can be used for medium- to large-scale
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Table 4. Solution pattern obtained by Algorithm 2: proper solution (P), improper

solution (I), and no solution (NA)

Sim S{1,2,6,7,9}{1,2,6,7,9} S{1,2,3,7,9}{1,2,3,7,9} S{1,2,3,4,5}{1,2,3,4,5}

P I NA

data, to five well-known datasets that yield improper solutions. We remark that the aim of the real data
analysis in this research is not to find the best-fitting model for each dataset, but rather to gain a deeper
understanding of the characteristics of solution patterns in maximum likelihood estimation.

5.1. Algebraic approach
In this section, we analyze the actual data studied in Davis (1944). The data have the following sample
correlation matrix:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0.72 0.41 0.28 0.52 0.71 0.68 0.51 0.68
1 0.34 0.36 0.53 0.71 0.68 0.52 0.68

1 0.16 0.34 0.43 0.42 0.28 0.41
1 0.30 0.36 0.35 0.29 0.36

1 0.64 0.55 0.45 0.55
1 0.76 0.57 0.76

1 0.59 0.68
1 0.58

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As reported in Jöreskog (1967), by applying the maximum likelihood factor analysis model with two
common factors to this data, we obtain an improper solution. It is not easy for Algorithm 1 to handle
data with nine observed variables and two common factors from a realistic computation time/memory
point of view. Therefore, we select five observed variables out of nine, and perform analysis based on
these selected variables. In other words, we select five rows and five columns from the sample correlation
matrix above. Note that such a variable selection procedure would not typically be performed by an
analyst in practice. We reduce the number of variables only to enable the algebraic approach within a
realistic computation time and to investigate whether the resulting solution patterns are consistent with
those observed in the simulation study in Section 4.

By applying a variable selection algorithm with group lasso (Hirose & Konishi, 2012) to the sample
correlation matrix above, rows/columns 1, 2, 6, 7, 9 are selected. For this input, that is, for the
sample correlation sub-matrix, say S{1,2,6,7,9}{1,2,6,7,9}, the factanal function in R outputs a proper
solution. Changing the third row and column from 6 to 3, we obtain the sample correlation sub-matrix
S{1,2,3,7,9}{1,2,3,7,9}. For S{1,2,3,7,9}{1,2,3,7,9}, the factanal function produces an improper solution.
Moreover, we select rows/columns 1, 2, 3, 4, 5. For S{1,2,3,4,5}{1,2,3,4,5}, the factanal function
provides an improper solution as well. In this section, we analyze the sample correlation submatrixes
S{1,2,6,7,9}{1,2,6,7,9}, S{1,2,3,7,9}{1,2,3,7,9} and S{1,2,3,4,5}{1,2,3,4,5} by using Algorithm 2.

The MLEs are computed based on Algorithm 1 from the sub-matrices expressed as real numbers
to the second decimal place. The computation time for the case of the second decimal place was about
several months. Table 4 shows the solution patterns obtained by Algorithm 2 for S{1,2,6,7,9}{1,2,6,7,9},
S{1,2,3,7,9}{1,2,3,7,9}, and S{1,2,3,4,5}{1,2,3,4,5}.

For the selected subsets of rows and columns, a proper solution (P) is obtained for {1,2,6,7,9}, an
improper solution (I) for {1,2,3,7,9}, and no solution (NA) for {1,2,3,4,5}. As in the investigation
in Section 4.1, proper solutions, improper solutions, and no solutions are obtained from algebraic
computations for the actual data.
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Table 5. The number of solutions obtained by computational algebra

Sim S{1,2,6,7,9}{1,2,6,7,9} S{1,2,3,7,9}{1,2,3,7,9} S{1,2,3,4,5}{1,2,3,4,5}

(a) All solutions to (6) and (9) whose unique

variances are all positive.

4 2 3

(b) Solutions of (a) whose observed Fisher

information matrix is positive definite.

1 0 0

(c) All solutions to (6) and (9) where all

unique variances are non-zero and some

of them are negative.

0 1 0

(d) Solutions of (c) whose observed Fisher

information matrix is positive definite.

0 1 0

(e) All solutions to (6) and (9) where some of

the unique variances are zero.

15 15 16

(f) Solutions of (e) whose observed Fisher

information matrix is positive definite.

2 2 2

(g) Solutions of (e) satisfying (4). 0 0 1

(h) Solutions of (f) satisfying (4). 0 0 0

Note: When counting the number of solutions, the identifiability with respect to the sign of column vectors in a loading matrix is addressed.

We also investigate the performance of the numerical algorithms. Specifically, we apply factanal
and the method of Jennrich & Robinson (1969) to S{1,2,6,7,9}{1,2,6,7,9}, S{1,2,3,7,9}{1,2,3,7,9}, and
S{1,2,3,4,5}{1,2,3,4,5}. Several important findings are summarized as follows:

• For S{1,2,6,7,9}{1,2,6,7,9}, factanal and computational algebra provide almost identical results
with proper solutions.

• For S{1,2,3,7,9}{1,2,3,7,9}, factanal and computational algebra yield similar estimates for
most elements of the loading matrix. An exception is the estimate of λ22 due to the negative
unique variance (ψ̂2 = −0.212) with computational algebra, compared to ψ̂2 = 0.005 with
factanal.

• For S{1,2,3,4,5}{1,2,3,4,5}, the algorithm based on Jennrich & Robinson (1969) produces a very large
negative value of unique variance (ψ̂1 = −11642.5).

These results indicate that the numerical findings are largely consistent with those obtained with Monte
Carlo simulation.

We perform Algorithm 3 to numerically investigate the solution pattern for such findings. The
results are identical to those obtained by algebraic computation shown in Table 4. As Algorithm 3
completes the analysis in just seconds with a standard laptop, the algorithm would be useful when
sufficient computational resources are unavailable. Furthermore, Algorithm 3 can be applied to larger
models. We apply Algorithm 3 to the original covariance matrix, S; in this case, no optimal solution is
obtained.

Table 5 shows the number of solutions to (6) and (9), which closely resembles the results in Table 2
from the Monte Carlo simulation in Section 4.1. When a proper solution is obtained, we get a unique
stationary point of the log-likelihood function, with a positive definite observed Fisher information
matrix and positive unique variances. When an improper solution is obtained, a stationary point of the
log-likelihood function is obtained, with a positive definite observed Fisher information matrix and
some negative unique variances. In addition, it can be seen that “NA” does not have these stationary
points. Interestingly, most of the solutions to (6) and (9) with zero unique variances do not satisfy (4),
as is the case with Monte Carlo simulations in Section 4. Thus, it is confirmed that the results of the
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Table 6. Distribution of solution patterns for five datasets

(i) (ii) (iii)

Dataset Solution pattern P I NA P I NA

Davis NA 55 15 30 24 50 26

Harman NA 42 20 38 19 17 64

Maxwell NA 38 46 16 36 21 43

Thurstone NA 39 49 12 28 43 29

Kendall I 33 51 16 11 28 61

Note: (i) Original data; (ii) bootstrap (estimated parameters); (iii) bootstrap (modified
loading matrices). P: proper solution, I: improper solution, and NA: no solution.

actual data analysis in Table 5 show patterns similar to those of the Monte Carlo simulation presented
in Table 2.

The overall analysis of the actual data provides results similar to those from the Monte Carlo
simulations. Further investigation would involve resampling methods, such as bootstrap, but this is
beyond the scope of our research. We would like to take this as a future research topic.

5.2. Numerical computation
The previous section uses a low-dimensional data to apply algebraic computation. In this section, we
apply Algorithm 3, a numerical algorithm to investigate the behavior of improper solutions, to five
commonly-used benchmark datasets. It is known that each dataset exhibits improper solutions under
certain conditions: the Davis data in the previous example (n = 421 and p = 9, improper at m = 2) (Davis,
1944); Harman’s 24 mental tests (n = 145 and p = 24, improper at m = 6) (Harman, 1976); Maxwell’s
normal children dataset (n = 810 and p = 10, improper at m = 4) (Maxwell, 1961); the Bechtoldt dataset
based on the first half-sample of Thurstone and Thurstone’s (1941) 17-variable test battery (n = 212 and
p = 17, improper at m = 6) (Bechtoldt, 1961); and Kendall’s job applicant ratings dataset (n = 48 and
p = 15, improper at m = 4) (Kendall, 1975). For each dataset, we conduct the following three analyses:

(i) We apply Algorithm 3 to the original data or its correlation matrix to investigate the solution
patterns of improper solutions.

(ii) We investigate the distribution of solution patterns by simply applying the parametric bootstrap
with B = 100 resamples. The MLEs with varimax rotation of the loading matrix and unique
variances are treated as the true values, and datasets with the same sample sizes are generated
from a multivariate normal distribution using these parameters.

(iii) Same as (ii), but with a different loading matrix. We select the column vector with the smallest
sum of squares and modify it so that the two elements with the largest absolute values are
retained and all others are set to zero. As a result, the column vector with the smallest sum of
squares has only two nonzero entries. Therefore, the loading matrix is not identifiable because
the condition of theorem 5.6 in Anderson & Rubin (1956) is not satisfied. With this modified
loading matrix, the unique variances are computed such that the diagonal elements of the
covariance matrix of the observed variables are equal to one; that is, Ψ = diag(I −LL⊺). The
bootstrap is then performed using this loading matrix and the corresponding unique variances.

Table 6 shows the results for the above-mentioned three analyses. When we apply Algorithm 3 to the
original data, the first four datasets yield “no solutions,” while Kendall’s dataset exhibits an improper
solution with a negative unique variance.
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Next, in (ii), we employ the parametric bootstrap. Based on the results from the original datasets,
we expect a large number of cases with no solutions for the first four datasets, while improper solutions
are expected for Kendall’s dataset. However, we actually observe that the first two datasets (Davis and
Harman) yield mostly proper solutions, and the next two (Maxwell and Thurstone) produce mostly
improper solutions. For Kendall’s dataset, we observe many improper solutions, but the proportion is
still only 51%. Therefore, the distribution is quite dispersed rather than concentrated, and does not
always coincide with the solution pattern of the original dataset.

In (iii), the bootstrap is conducted using loading matrices that are not identifiable. Therefore, we
expect most of the results for the solution patterns to be no solutions. However, even when the true
loading matrix is not identifiable, we often observe negative unique variances (especially with the Davis
data), and sometimes observe positive unique variances as well.

These bootstrap results are consistent with Table 1 from the simulation study. The results suggest that
it would be difficult to infer the true loading matrix based solely on the observed solution patterns. One
possible reason is that the loss (discrepancy) function is highly complex. Because of this complexity,
even when the true loading matrix suffers from identifiability issues, it is still possible to obtain either a
proper or improper solution. As a result, the boundaries between proper solutions, improper solutions,
and no solutions are ambiguous, and the outcome can easily change depending on sampling variability.
While this kind of consideration may have been discussed at an intuitive level, our algebraic approach
(Algorithm 2) and its numerical mimic (Algorithm 3) provide further formal support.

6. Conclusion and future perspectives

We have proposed an algorithm to get the exact MLEs via computational algebra. The method is
based on the system of algebraic equations in Jennrich and Robinson’s (1969) algorithm. We obtain
all candidates based on Eq. (13), and select a solution that minimizes the discrepancy function (i.e.,
exact estimate). If the estimate’s observed Fisher information matrix is positive-definite, that estimate is
optimal; otherwise, no estimate is obtained. As a result, we can identify the solution pattern of the MLE
with computational algebra. The conventional analysis may not identify the solution pattern; thus, our
proposed approach represents a significant advancement in studying improper solutions in maximum
likelihood factor analysis.

This study compared the performance of the computational algebra andfactanal function. Unlike
the factanal function, the computational algebraic method itself offers practical advantages. First,
it rigorously detects divergence or improper solutions, ensuring reliability in challenging scenarios
where factanal may produce improper solutions. Second, it does not rely on random initial
values, providing a unique result without requiring multiple runs. While the empirical effectiveness of
factanal is notable, the computational algebraic method can offer greater precision and reliability,
particularly in applications requiring rigorous validation.

This study also highlights the strengths and limitations of the factanal function. While the
factanal function performs well in practice, it imposes a constraint that unique variances are greater
than a threshold, such as 0.005. This constraint ensures stability but may limit the investigation of
improper solutions. By comparing the factanal results with solutions obtained via computational
algebra, we rigorously confirm its empirical effectiveness. These findings provide strong evidence that
factanal can be used with confidence in many practical scenarios.

As shown in Table 2, there are multiple local minima, making the factanal function highly
dependent on initial values. Asfactanal uses a single initial value by default, it can fail to converge to
the global solution. Therefore, we suggest preparing a sufficiently large set of initial values and selecting
one that minimizes the discrepancy function. This suggestion is supported by the findings from our
extensive analysis using computational algebra.

The current approach is computationally demanding due to the complexity of solving systems of
multivariate algebraic equations. To enhance the computational speed, we proposed an algorithm that
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Figure 4. Discrepancy function in (2) as a function of ψ̂5.

incorporated advanced computational algebra techniques, such as sum and saturation, as detailed in
Appendix B. We also used a fast computer algebra system “Magma.” After these extensive efforts, we
successfully conducted the Monte Carlo simulations and actual data analysis presented in Sections 4
and 5.

While these efforts allowed us to achieve our current results, further improvements in computational
speed are essential for making this approach practically applicable. We believe that advancements in
computer technologies, such as parallel processing, GPU acceleration, and quantum computing, will
play a crucial role in the next 10–20 years. Furthermore, we expect computer algebra systems will
continue to evolve, significantly reducing computation time from a perspective of system advancements.

With advancements in computational power, more extensive Monte Carlo simulations under various
scenarios will enable a deeper investigation for identifying the causes of unusual parameter estimation
results. Understanding these causes when encountering improper solutions will make further inves-
tigation in parameter estimation procedure. Such an extensive simulation is definitely important and
remains a future research topic.

For further investigation, we may study transition points among various solution patterns. For
example, we use two sample covariance matrices, S1-1 and S1-2, described in Section 4; S1-1 and S1-
2 correspond to a positive solution and no solutions, respectively. We linearly interpolate these two
sample covariance matrices; that is, we construct S(t) ∶= (1− t)S1−1 + tS1−2 with t ∈ [0,1]. We note that
the maximum likelihood estimation can be performed for any t ∈ [0,1] because S(t) is positive-definite.
The transition point of positive and negative estimates can be observed by investigating the change in
the solution pattern with varying t.

Figure 4 shows the minimum value of the discrepancy function as a function of ψ̂5 with varying t
(note that ψ̂5 → −∞ with Jennrich and Robinson’s (1969) algorithm when t = 1). The results indicate
that as t increases, the local minimizer decreases and becomes negative around t = 0.41. As t increases
further, the discrepancy function becomes flat, and the local minimum disappears at the transition point
around t = 0.45. Beyond this point, there are no global minima. The discrepancy function varies with
a small change in t around 0.4–0.5, and the change is smooth but drastic. Such a drastic change would
make investigating the improper solutions difficult.

For further study, an analysis of geometrical structure based on singularity theory and bifurcation
theory would be helpful. Moreover, in addition to investigating the change in solution pattern between
S1-1 and S1-2, it would be interesting to study various change patterns near the transition points with
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numerous simulations. These considerations will definitely be significant for further investigating the
improper solutions, but they are beyond the scope of this research. We will take them as future research
topics.

Applying algebraic approaches to the least squares method, which is more commonly used in factor
analysis than the maximum likelihood method, would also be a promising direction. Preliminary
experiments under similar settings suggest that the algebraic approach for the least squares method
requires significantly less computational effort compared to that for the maximum likelihood method.
This difference appears to stem from the fact that the solution space of the normal equation for the
maximum likelihood method includes non-stationary points of the likelihood function, whereas the
solution space for the least squares method consists solely of stationary points of the mean squared
error. A detailed comparison between these two methods, along with further theoretical exploration,
will also be an important subject for future work.
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Appendix

A. Basic concepts

In this section, we review basic concepts related to computational algebra. In particular, we deal with basic contents related
to fields, rings, and affine varieties along with some concrete examples. First, we give the definition of fields (Cox et al., 2015,
section A.1, definition 1).

Definition A.1. A field consists of a set F and two binary operations “+” and “⋅” defined on F satisfying the following
conditions:

1. for any a,b,c ∈ F, (a+b)+ c = a+(b+ c) and (a ⋅b) ⋅ c = a ⋅ (b ⋅ c) (associativity),
2. for any a,b,c ∈ F, a ⋅ (b+ c) = a ⋅b+a ⋅ c (distributivity),
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3. for any a,b ∈ F, a+b = b+a and a ⋅b = b ⋅a (commutativity),
4. for any a ∈ F, there exists 0,1 ∈ F such that a+0 = a ⋅1 = a (identities),
5. given a ∈ F, there exists b ∈ F such that a+b = 0 (additive inverses),
6. given a ∈ F, a ≠ 0, there exists b ∈ F such that a ⋅b = 1 (multiplicative inverses).

For example, Q, R, and C are fields, since they satisfy the above conditions with the sum “+” and product “⋅”. On the other
hand, Z is not a field, since it does not satisfy the last condition (multiplicative inverses). Indeed, the element 2 ∈ Z does not
have b ∈ Z such that 2 ⋅b = 1.

Next, we define a commutative ring (Cox et al., 2015, section A.1, definition 2).

Definition A.2. A commutative ring consists of a set R and two binary operations “+” and “⋅” defined on R satisfying
conditions 1–5 of Definition A.1.

As mentioned above, Z is not a field; however, it is a commutative ring. Moreover R[z] =R[z1, . . . ,zm] is a commutative
ring. In particular, R[z] is known as a polynomial ring.

Then, we introduce ideals. In general, ideals can be defined for any ring. For simplicity, we give the definition of ideals for
commutative rings (Cox et al., 2015, section 1.4, definition 1).

Definition A.3. Let R be a commutative ring. A subset I ⊂ R is an ideal if it satisfies that

0 ∈ I, a,b ∈ I ⇒ a+b ∈ I, a ∈ I,b ∈ R⇒ b ⋅a ∈ I.

The definition of ideals is similar to that of linear sub-spaces; both have to be closed under addition and multiplication.
However, a difference lies in multiplication; for a linear sub-space, we multiply an element in the linear sub-space by an element
in the field, whereas for an ideal, we multiply an element in the ideal by an element in the ring.

In Section 3.1, we defined the subset in R[z] as follows:

⟨f1, . . . ,fr⟩ = {
r
∑
i=1

qifi ∶ qi ∈R[z]} ⊂R[z],

where f1, . . . ,fr ∈ R[z]. ⟨f1, . . . ,fr⟩ is referred to as the ideal generated by f1, . . . ,fr . The subset ⟨f1, . . . ,fr⟩ is similar to a span
of a finite number of vectors. In each case, one takes linear combinations, using field coefficients for a span and polynomial
coefficients for an ideal. We show that ⟨f1, . . . ,fr⟩ is an ideal in R[z].

Lemma A.4. ⟨f1, . . . ,fr⟩ ⊆R[z] is an ideal.

Proof. Let J = ⟨f1, . . . ,fr⟩. If we put h1 = ⋯ = hr = 0, then 0 = ∑r
i=1 hifi. So we have 0 ∈ J . Let h,g ∈ J . The definition of J

implies that h = ∑r
i=1 hifi,g = ∑r

i=1 gifi for some h1, . . . ,hr,g1, . . . ,gr ∈ R[z]. Since h+ g = ∑r
i=1 hifi +∑r

i=1 gifi = ∑r
i=1(hi + gi)fi

holds, we have h+g ∈ J by h1+g1, . . . ,hr +gr ∈R[z] and the definition ofJ . Let h ∈ J and c ∈R[z]. Then, h =∑r
i=1 hifi holds

for some h1, . . . ,hr ∈ R[z]. Since ch = c∑r
i=1 hifi = ∑r

i=1(chi)fi holds, we have ch ∈ J by ch1, . . . ,chr ∈ R[z] and the definition
of J . Thus, J ⊆R[z] is an ideal. ◻

Let U ⊆Wm, where W =R or C. Recall that any affine variety is the solution space in Wm of a system of algebraic equations
which has the form (11). Zariski closures are defined by the following (Cox et al., 2015, section 4.4, definition 2).

Definition A.5. The Zariski closure of U, denoted by U, is the smallest affine variety containing U (in the sense that if V ⊆Wm

is any affine variety containing U, then U ⊆ V).

Note that the Zariski closure U is the smallest solution space in W containing U among solution spaces of systems of
algebraic equations which have the form (11). If the subset U is an affine variety, then U is the Zariski closure of U, that is, the
smallest solution space containing U. We conclude this section with some examples for Zariski closures.

Example A.6. Let P = VW(z1(z2
3 +1),z2(z2

3 +1)), Q = VW(z2
3 +1), and U = P/Q. Since the subset U is an affine variety, we

have U =U. If W =R, we have VR(z1,z2) =U =U = P. If W =C, then we have VC(z1,z2) =U =U ⊊ P.

Example A.7. If P =VW(z1z2), Q =VW(z1,z2), and U = P/Q, then P =U ⊋U.

B. Implementation details

As a matter of fact, the simulations conducted in Section 4 have a very large number of candidates for MLEs. However, since
these candidates tend to fall into several types, it is possible to construct more simplified subproblems that further subdivide
the subproblems constructed in Algorithm 1. In this section, we will show details of these candidates, and present details of
the implementation for obtaining the candidates.
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Table B.1. The number of all real solutions to (3) satisfying that Ψ is not singular

Sim no. 1 2 3 4 5 6 7 8 9 10

S1 29 47 37 33 37 17 53 21 25 13

S2 61 25 27 53 33 23 21 27 33 ∞

S3 17 41 29 25 ∞ 33 39 45 49 39

Table B.2. The number of all complex solutions to (3) satisfying that Ψ is not singular

Sim no. 1 2 3 4 5 6 7 8 9 10

S1 1301 1301 1301 1301 1301 ∞ 1299 1301 1301 ∞

S2 1301 1301 1301 1301 1301 1301 1301 1301 1301 ∞

S3 ∞ 1301 ∞ ∞ ∞ 1301 ∞ 1301 1301 1301

Considering a rotational indeterminacy, we suppose that the upper triangular elements of Λ are fixed by zero in Section
3.2. In addition, we consider three models with p = 5,k = 2 in Section 4. Therefore, we suppose the following form of factor
loading matrices in our simulation:

Λ =
⎛
⎜⎜⎜
⎝

λ11 0
λ21 λ22
⋮ ⋮

λ51 λ52

⎞
⎟⎟⎟
⎠
.

Before discussing details for our implementation, we show details of solutions to Eqs. (6) and (9). Table B.1 shows the
number of all real solutions to (6) and (9) satisfying that Ψ is not singular, or equivalently

s11 −λ2
11 ≠ 0, s22 −(λ2

21 +λ2
22) ≠ 0, s33 −(λ2

31 +λ2
32) ≠ 0,

s44 −(λ2
41 +λ2

42) ≠ 0, s55 −(λ2
51 +λ2

52) ≠ 0.

Note that if Ψ is not singular, the likelihood equation (4) is equivalent to Eqs. (6) and (9). Therefore, Table B.1 shows the
number of all real solutions to (3) satisfying that Ψ is not singular. In addition, Table B.2 shows the number of all complex
solutions to (3) satisfying that Ψ is not singular. Note that the simulations with infinite complex solutions, namely, S1-6, S1-
10, S2-10, S3-1, S3-3, S3-4, S3-5, and S3-7, form non-zero dimensional ideals. Since we would like to discuss the difficulty
of computing all solutions from an algebraic computational aspect, Tables B.1 and B.2 do not address the identifiability with
respect to the sign of column vectors in a loading matrix, unlike Table 2. Furthermore, Table 2 excludes candidates that form
a one-factor model or the zero loading matrix, while Tables B.1 and B.2 do not exclude these candidates. As shown in Tables
B.1 and B.2, Eq. (3) has a surprisingly large number of solutions satisfying that Ψ is not singular. In particular, the number
of complex solutions is significantly large. Real radical ideals can remove unwanted complex solutions, but they are heavier
than primary ideal decompositions. Therefore, due to such a practical problem, we must skillfully compute real solutions while
unfortunately also having unnecessary complex solutions at hand.

Now, let us show the number of all complex solutions to (3) satisfying that Ψ is not singular, for each of four spaces satisfying
the following conditions: (a) λ11 = 0, (b) λ11 ≠ 0 and λi2 = 0 for some i = 2, . . . ,5, (c) λ11 ≠ 0, λi2 ≠ 0 for any i = 2, . . . ,5 and
detΛJ{1,2} = 0 for some J ⊂ {1, . . . ,5} satisfying #J = 2, and (d) λ11 ≠ 0, λi2 ≠ 0 for any i = 2, . . . ,5 and detΛJ{1,2} ≠ 0 for any
J ⊂ {1, . . . ,5} satisfying #J = 2. Table B.3 provides details for Table B.2 based on these classifications.

As can be seen from Table B.3, the spaces with an infinite number of solutions are limited to the spaces satisfying condition
(a), and we have only a finite number of solutions when condition (a) is not satisfied. If we use sum ideals and saturation ideals
related to the polynomial λ11, we can divide the solution spaces into the spaces which satisfy λ11 = 0 or not.

Since the number of solutions satisfying condition (d) is greater than that satisfying conditions (b) and (c), the computation
of real solutions satisfying condition (d) seems to require heavy computational loads. In reality, however, there are several cases
where computing real solutions satisfying condition (b) requires more heavy computational loads than (c) and (d). The solution
space for (c) is more simple than that for (d). For ease of comprehension, we will compare outlines of the systems of algebraic
equations satisfying (b) and (d) for a specific dataset, S2-10, which has a large number of solutions satisfying condition (b).
After making the comparison, we present the strategy in our implementation.
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Table B.3. Detailed results for Table B.2: the number of all complex solutions to (3) satisfying that Ψ is

not singular for four different parameter spaces

Sim no. 1 2 3 4 5 6 7 8 9 10

(a) All complex solutions to (3) satisfying that det Ψ ≠ 0 and λ11 = 0.

S1 1 1 1 1 1 ∞ 1 1 1 ∞

S2 1 1 1 1 1 1 1 1 1 ∞

S3 ∞ 1 ∞ ∞ ∞ 1 ∞ 1 1 1

(b) All complex solutions to (3) satisfying that det Ψ ≠ 0, λ11 ≠ 0, and λi2 = 0 for some i = 2, . . . ,5.

S1 212 212 212 212 212 316 210 212 212 346

S2 220 212 212 212 212 212 212 212 212 398

S3 370 212 288 346 398 212 346 212 212 212

(c) All complex solutions to (3) satisfying that det Ψ ≠ 0, λ11 ≠ 0, and λi2 ≠ 0 for any i = 2, . . . ,5, and

det ΛJ{1,2} = 0 for some J ⊂ {1, . . . ,5} satisfying #J = 2.

S1 0 0 0 0 0 48 0 0 0 128

S2 0 0 0 0 0 0 0 0 0 128

S3 104 0 112 52 128 0 52 0 0 0

(d) All complex solutions to (3) satisfying that det Ψ ≠ 0, λ11 ≠ 0, and λi2 ≠ 0 for any i = 2, . . . ,5, and

det ΛJ{1,2} ≠ 0 for any J ⊂ {1, . . . ,5} satisfying #J = 2.

S1 1088 1088 1088 1088 1088 816 1088 1088 1088 800

S2 1080 1088 1088 1088 1088 1088 1088 1088 1088 768

S3 784 1088 896 896 768 1088 896 1088 1088 1088

Now, let us consider the case of S2-10. A Gröbner basis transforms the system of algebraic equations satisfying λ22 = 0 into
a form consisting of the 15 polynomials g(b)

1 , . . . ,g(b)
15 , which have the following leading monomials:

LM(g(b)
1 ) = λ11, g(b)

1 ∈R[λ11,λ21,λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
2 ) = λ21, g(b)

2 ∈R[λ21,λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
3 ) = λ22, g(b)

3 ∈R[λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
4 ) = λ2

31, g(b)
4 ∈R[λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
5 ) = λ31λ42, g(b)

5 ∈R[λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
6 ) = λ31λ74

51, g(b)
6 ∈R[λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
7 ) = λ31λ52, g(b)

7 ∈R[λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(b)
8 ) = λ32, g(b)

8 ∈R[λ32,λ41,λ42,λ51,λ52],

LM(g(b)
9 ) = λ41, g(b)

9 ∈R[λ41,λ42,λ51,λ52],

LM(g(b)
10 ) = λ2

42, g(b)
10 ∈R[λ42,λ51,λ52],

LM(g(b)
11 ) = λ42λ12

51, g(b)
11 ∈R[λ42,λ51,λ52],

LM(g(b)
12 ) = λ42λ52, g(b)

12 ∈R[λ42,λ51,λ52],

LM(g(b)
13 ) = λ148

51 , g(b)
13 ∈R[λ51,λ52],
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LM(g(b)
14 ) = λ2

51λ52, g(b)
14 ∈R[λ51,λ52],

LM(g(b)
15 ) = λ15

52, g(b)
15 ∈R[λ52].

On the other hand, the system of algebraic equations of S2-10 satisfying (d), transformed into a form that is easy to solve in
the Gröbner basis, consists of the nine polynomials g(d)

1 , . . . ,g(d)
9 which have the following leading monomials:

LM(g(d)
1 ) = λ11, g(d)

1 ∈R[λ11,λ21,λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(d)
2 ) = λ21, g(d)

2 ∈R[λ21,λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(d)
3 ) = λ22, g(d)

3 ∈R[λ22,λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(d)
4 ) = λ31, g(d)

4 ∈R[λ31,λ32,λ41,λ42,λ51,λ52],

LM(g(d)
5 ) = λ2

32, g(d)
5 ∈R[λ32,λ41,λ42,λ51,λ52],

LM(g(d)
6 ) = λ41, g(d)

6 ∈R[λ41,λ42,λ51,λ52],

LM(g(d)
7 ) = λ42, g(d)

7 ∈R[λ42,λ51,λ52],

LM(g(d)
8 ) = λ2

51, g(d)
8 ∈R[λ51,λ52],

LM(g(d)
9 ) = λ192

52 , g(d)
9 ∈R[λ52].

It is noteworthy that the leading monomials for (b), namely, LM(g(b)
i ), are relatively more complicated than those for (d),

namely, LM(g(d)
i ), except for the last polynomial g(b)

15 ,g(d)
9 in each case. All real solutions satisfying condition (d) can

be obtained by simple substitutions and simple real number tests once g(d)
9 is factorized, since it has only simple leading

monomials except for g(d)
9 . On the other hand, it requires heavy computational loads for obtaining real solutions satisfying

condition (b), since there are some leading monomials of high degree, even if g(b)
15 is factorized.

Therefore, the following strategy, which decomposes the solution space satisfying condition (b) as delicately as possible, is
actually employed. Let

J = ⟨({S−ΛΛ⊺−diag(S−ΛΛ⊺)}S−1Λ)ij ∶ 1 ≤ i ≤ 5,1 ≤ j ≤ 2⟩.

Put

h1 = s11 −λ2
11, h2 = s22 −(λ2

21 +λ2
22), . . . , h5 = s55 −(λ2

51 +λ2
52).

The above polynomials are used in Algorithm 1. Moreover, we give the polynomials

h6 = λ11, h7 = λ22, h8 = λ32, h9 = λ42, h10 = λ52,

h11 = detΛ{2,3}{1,2}, h12 = detΛ{2,4}{1,2},

h13 = detΛ{2,5}{1,2}, h14 = detΛ{3,4}{1,2},

h15 = detΛ{3,5}{1,2}, h16 = detΛ{4,5}{1,2}.

First, we construct the sum I0 = J +K1 and the saturation I1 = J ∶ K∞1 . Second, we construct the sums I00 = I0+K2,I10 =
I1+K2 and saturations I01 = I0 ∶ K∞2 ,I11 = I1 ∶ K∞2 . In the same way, for each b ∈ {0,1}i, 2 ≤ i ≤ 13, we sequentially construct
Ib0 = Ib +Ki+1,Ib1 = Ib ∶ K∞i+1. Note that, by Proposition 3.1, we have VW(J ) = ⋃b∈{0,1}16 VW(Ib). Finally, we compute all
real solutions in VR(Ib) for each b ∈ {0,1}16. Although there are cases where such a decomposition yields an empty set of
the affine variety for a sum or saturation, the above strategy has proven to be highly effective, enabling us to obtain all real
solutions.

C. Analysis with different decimal precision in sample covariance matrices

In Section 4, the sample covariance matrices were rounded to one decimal place. However, the precision of the results can be
improved by rounding to more decimal places. Since computer algebra can be time-consuming when using more than one
decimal place (e.g., several months), we further investigate the results of factanal between one and two decimal places.

Table C.4 and Figure C.1 show differences between loading matrices obtained from sample covariance matrices, with the
elements rounded to one and two decimal places. The column “Euclidean distance” in Table C.4 shows the average of the
Euclidean distances, the column “Ratio” indicates the ratio of “Euclidean distance” (the average distance) to the maximum
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Table C.4. Difference in estimates between sample covariance matrices with ele-

ments rounded to one and two decimal places

Average Euclidean distance Ratio Mean absolute loading difference

S1 0.32 0.05 0.07

S2 0.74 0.12 0.17

S3 0.23 0.04 0.06

Figure C.1. Difference in estimates between sample covariance matrices with elements rounded to one and two decimal places.

distance
√

10×22 ≓ 6.32, and the column “Mean absolute loading difference” shows the average of factor loading differences.
Note that, for two loading matrices A,B ∈R5×2, they are given by

“Euclidean distance” =

 
!!!"

5
∑
i=1

2
∑
j=1
(Aij −Bij)2,

“Ratio” = 1
√

10×22
× “Euclidean distance,”

“Mean absolute loading difference” = 1
5×2

5
∑
i=1

2
∑
j=1
∣Aij −Bij∣.

Moreover, each graph in Figure C.1 shows “Euclidean distance,” “Ratio,” and “Mean absolute loading difference” for each
simulation in types S1 (blue), S2 (red), and S3 (green). The horizontal axis denotes the simulation number for each type,
and the vertical axes correspond to “Euclidean distance” (left graph), “Ratio” (middle graph), and “Mean absolute loading
difference” (right graph).

From Table C.4, S1 and S3 seem to have small differences, while S2 appears to have a large difference. However, if we look
at Figure C.1, the large difference in S2 appears only in some specific cases (S2-2, S2-4, and S2-7), and the other differences
are as small as those in S1 and S3. This indicates that the apparent large difference in S2 in Table C.4 is caused by these specific
cases (S2-2, S2-4, and S2-7). Therefore, the differences between results with one-decimal and two-decimal precision are not
critical in most cases.

Cite this article: Fukasaku, R., Hirose, K., Kabata, Y. and Teramoto, K., (2025). Algebraic Approach to Maximum Likelihood
Factor Analysis. Psychometrika, 1–33. https://doi.org/10.1017/psy.2025.10047

Downloaded from https://www.cambridge.org/core. 09 Oct 2025 at 04:25:31, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/psy.2025.10047
https://www.cambridge.org/core

	1 Introduction
	2 Maximum likelihood factor analysis
	2.1 Maximum likelihood estimation
	2.2 Numerical algorithms
	2.3 A system of algebraic equations for the MLEs

	3 MLEs via Gröbner bases
	3.1 Gröbner bases and systems of algebraic equations
	3.1.1 Affine varieties and systems of algebraic equations
	3.1.2 Sums and saturations
	3.1.3 Gröbner bases

	3.2 An algorithm to find all solutions
	3.3 An algorithm to identify a solution pattern

	4 Monte Carlo simulation
	4.1 Investigation of MLEs
	4.1.1 Optimal solution does not exist: S1-2, S1-3, S1-4, S1-5, and S2-4
	4.1.2 Improper solutions: S1-6, S1-7, S2-3, S2-6, and S2-7
	4.1.3 Proper solutions: S1-1, S1-8, S1-9, S1-10, S2-1, S2-2, S2-8, S2-9, S2-10, and S3

	4.2 Investigation of the best estimate obtained by computational algebra and factanal
	4.3 A numerical algorithm to identify the solution pattern

	5 Actual data analysis
	5.1 Algebraic approach
	5.2 Numerical computation

	6 Conclusion and future perspectives
	A Basic concepts
	B Implementation details
	C Analysis with different decimal precision in sample covariance matrices

