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On the Inner Radius of a Nodal Domain

Dan Mangoubi

Abstract. Let M be a closed Riemannian manifold. We consider the inner radius of a nodal domain for

a large eigenvalue λ. We give upper and lower bounds on the inner radius of the type C/λα(log λ)β .

Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and

a Poincaré type inequality proved by Maz’ya. Sharp lower bounds are known only in dimension two.

We give an account of this case too.

1 Introduction and Main Results

Let (M, g) be a closed Riemannian manifold of dimension n. Let ∆ be the Laplace–

Beltrami operator on M. Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of ∆. Let ϕλ be

an eigenfunction of ∆ with eigenvalue λ. A nodal domain is a connected component

of {ϕλ 6= 0}.

We are interested in the asymptotic geometry of the nodal domains. In particular,

in this paper we consider the inner radius of nodal domains.

Let rλ be the inner radius of the λ-nodal domain Uλ. Let C1,C2, . . . denote con-

stants which depend only on (M, g). We prove

Theorem 1.1 Let M be a closed Riemannian manifold of dimension n ≥ 3. Then

C1√
λ
≥ rλ ≥ C2

λk(n)(log λ)2n−4
,

where k(n) = n2 − 15n/8 + 1/4.

In dimension two we have the following sharp bound.

Theorem 1.2 Let Σ be a closed Riemannian surface. Then

C3√
λ
≥ rλ ≥ C4√

λ
.

1.1 Upper Bound

We remark that the upper bound is more or less standard and has been used in the

literature [8]. However, we explain it here also.

We observe that λ = λ1(Uλ). This is true since the λ-eigenfunction does not van-

ish in Uλ [7, Ch. I.5]. Therefore, the existence of the upper bound in Theorems 1.1

and 1.2 follows from the following general upper bound on λ1 of domains Ω ⊆ M.
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Theorem 1.3

λ1(Ω) ≤ C5

inrad(Ω)2
.

The proof of this theorem is given in §5.

1.2 Lower Bound

For the lower bound on the inner radius in dimensions ≥ 3, we give a proof in §2.1

which is based on a local behavior of eigenfunctions discovered by H. Donnelly and

C. Fefferman (Theorem 2.1). The same proof gives in dimension two the bound

C/
√

λ log λ.

In order to get rid of the factor
√

log λ in dimension two, we treat this case sepa-

rately in §2.2. The proof for this case can basically be found in [10], and we bring it

here for the sake of clarity and completeness.

For the dimension two case we also bring a new proof in §3. Moreover, this proof

shows that a big inscribed ball can be taken to be with center at a maximal point of

the eigenfunction in the nodal domain. This proof is due to F. Nazarov, L. Polterovich

and M. Sodin and is based on complex analytic methods.

1.3 A Short Background

Related to the problem discussed in this paper is the problem of estimating the

(n − 1)-Hausdorff measure Hn−1(λ) of the nodal set, i.e., the set where an eigen-

function vanishes. J. Brüning and D. Gromes [3, 4] proved sharp lower estimates

in dimension two. Namely, they showed H1(λ) ≥ C
√

λ. An estimate of the con-

stant C is given in [21]. Later, S. T. Yau conjectured that in any dimension C1

√
λ ≥

Hn−1(λ) ≥ C2

√
λ. This was proved in the case of analytic metrics by H. Donnelly

and C. Fefferman [8].

Regarding the inner radius of nodal domains, we would like to mention the recent

work of B. Xu [23], in which he obtains a sharp lower bound on the inner radius for

at least two nodal domains, and the work of V. Maz’ya and M. Shubin [17], in which

they give sharp bounds on the inner capacity radius of a nodal domain.

2 The Lower Bound on the Inner Radius

In this section we prove the existence of the lower bounds on the inner radius given

in Theorems 1.1 and 1.2.

2.1 Lower Bound in Dimension ≥ Three

In this section we prove the existence of the lower bound in Theorem 1.1. The proof

also gives a bound in the case where dim M = 2, namely rλ ≥ C/
√

λ log λ, but in

the next section we treat this case separately to get rid of the
√

log λ factor.

Let {σi} be a finite cellulation of M by cubes, such that for each i we can put a

Euclidean metric ei on σi , which satisfies ei/4 ≤ g ≤ 4ei . Let rλ,i be the inner radius

https://doi.org/10.4153/CMB-2008-026-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-026-2


On the Inner Radius of a Nodal Domain 251

4h

2h

Q

Q’

p

hole(p)

iσ Q Q

Q Q

Q

Figure 1: Proof of lower bound on inner radius.

of Uλ,i = Uλ ∩ σi , and rλ,i,e the Euclidean inner radius of Uλ,i . Notice that

rλ,i,e ≤ 2rλ,i ≤ 2rλ.

Step 1. (See Figure 1). We consider σi as a compact cube in R
n, with edges parallel

to the axes’ directions. We cover σi by non-overlapping small cubes with edges of size

4h, where rλ,i,e < h < 2rλ,i,e. Let Q be a copy of one of these small cubes. Let Q ′ be a

concentric cube with parallel edges of size 2h.

Step 2. We note that each copy of Q ′ contains a point p ∈ σi \ Uλ. Otherwise, we

would have rλ,i,e ≥ h, which would contradict the definition of h.

Step 3. Denote by hole(p) the connected component of Q \ (σi ∩ Uλ) which con-

tains p. We claim

(2.1)
Vole(hole(p))

Vole(Q)
≥ C1

λα(n)(log λ)4n
,

where α(n) = 2n2 + n/4, and Vole denotes the Euclidean volume. We will denote the

right-hand side term of (2.1) by γ(λ).

Indeed, hole(p) is a connected component of U ′
λ ∩ Q for some λ-nodal domain

U ′
λ. Hence, we can apply the following Local Courant’s Nodal Domain Theorem.

Theorem 2.1 ([5, 9, 13]) Let B ⊆ M be a metric ball. Let B ′ be a concentric ball of

half the radius of B. Let Uλ be a λ-nodal domain. Let Bλ be a connected component of

B ∩Uλ which intersects B ′. Then

(2.2) Vol(Bλ)/ Vol(B) ≥ C2

λα(n)(log λ)4n
,

where α(n) = 2n2 + n/4.
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We remark that in our case, (2.2) is true also for the quotient of Euclidean vol-

umes, since the Euclidean metric on σi is comparable with the metric coming from

M.

Step 4. We let ϕ̃λ = χ(Uλ)ϕλ, where χ(Uλ) is the characteristic function of Uλ,

and similarly, ϕ̃λ,i = χ(Uλ ∩ σi)ϕλ. Then we have the inequality

(2.3)

∫

Q

|ϕ̃λ,i|2 d(vol) ≤ β(λ)h2

∫

Q

|∇ϕ̃λ,i |2 d(vol),

where

β(λ) =

{

C3 log(1/γ(λ)), n = 2,

C4/(γ(λ))(n−2)/n n ≥ 3.

To see this, observe that ϕ̃λ,i vanishes on hole(p). We will use the following Poincaré

type inequality due to Maz’ya. We discuss it in §4.1. A general version of this in-

equality, with weights instead of Lebesgue measure, is proved in [6].

Theorem 2.2 Let Q ⊂ R
n be a cube whose edge is of length a. Let 0 < γ < 1. Then

∫

Q

|u|2 d(vol) ≤ βa2

∫

Q

|∇u|2 d(vol)

for all Lipschitz functions u on Q, which vanish on a set of measure ≥ γan, and where

β =

{

C5 log(1/γ) n = 2,

C6/γ(n−2)/n n ≥ 3.

From (2.1) and Theorem 2.2 applied to ϕ̃λ,i , it follows that

∫

Q

|ϕ̃λ,i|2 d(vole) ≤ β(λ)h2

∫

Q

|∇eϕ̃λ,i|2e d(vole).

Since the metric on σi is comparable to the Euclidean metric, we also have inequal-

ity (2.3).

Step 5.

(2.4)

∫

σi

|ϕ̃λ|2 d(vol) ≤ 16β(λ)r2
λ

∫

σi

|∇ϕ̃λ|2 d(vol).

This is obtained by summing up inequalities (2.3) over all cubes Q which cover σi ,

and recalling that h < 2rλ,i,e ≤ 4rλ.
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Step 6. We sum up (2.4) over all cubical cells σi to obtain a global inequality.

∫

Uλ

|ϕλ|2 d(vol) =

∫

M

|ϕ̃λ|2 d(vol) =

∑

i

∫

σi

|ϕ̃λ|2 d(vol)

≤ 16β(λ)r2
λ

∑

i

∫

σi

|∇ϕ̃λ|2 d(vol)

= 16β(λ)r2
λ

∫

M

|∇ϕ̃λ|2 d(vol)

= 16β(λ)r2
λ

∫

Uλ

|∇ϕλ|2 d(vol).

(2.5)

Step 7.

rλ ≥
{

C7/
√

λ log λ n = 2,

C8/λn2−15n/8+1/4(log λ)2n−4 n ≥ 3.

Indeed, by (2.5)

λ =

∫

Uλ
|∇ϕλ|2 d(vol)

∫

Uλ
|ϕλ|2 d(vol)

≥ 1

16β(λ)r2
λ

.

Thus,

rλ ≥ 1

4
√

λβ(λ)
=

{

C9/
√

λ log(1/γ(λ)) n = 2,

C10γ(λ)(n−2)/2n/
√

λ n ≥ 3.

≥
{

C11/
√

λ log λ n = 2,

C12/
(

λn2−15n/8+1/4(log λ)2n−4
)

n ≥ 3.

This completes the proof of the lower bound in Theorem 1.1.

2.2 Lower Bound in Dimension = Two

We prove the existence of the lower bound on the inner radius in Theorem 1.2. The

arguments below can basically be found in [10, Ch. 7].

We begin the proof of Theorem 1.2 with Step 1 and Step 2 of §2.1. We proceed as

follows.

Step 3 ′. If hole(p) does not touch ∂Q,

Areae(hole(p))

Areae(Q)
≥ C1 ,

where Areae denotes the Euclidean area.
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Proof We recall the Faber–Krahn inequality in R
n.

Theorem 2.3 Let Ω ⊆ R
n be a bounded domain. Then λ1(Ω) ≥ C2/ Vol(Ω)2/n.

We apply Theorem 2.3 with Ω = hole(p). We emphasize that λ1(hole(p), g) ≥
C3λ1(hole(p), e), since the two metrics are comparable.

Thus, we obtain

λ = λ1(hole(p), g) ≥ C4

Areae(hole(p))
,

or, written differently, Areae(hole(p)) ≥ C4/λ. On the other hand, Areae(Q) =

(4h)2 ≤ 64r2
λ ≤ 64C5/λ, where the last inequality is the upper bound on the inner

radius in Theorem 1.2. So take C1 = C4/(64C5).

Step 4 ′(a). There exists an edge of Q on which the orthogonal projection of hole(p)

is of Euclidean size ≥ γ · 4h, where 0 < γ < 1 is independent of λ.

Let us denote by | pr(hole(p))| the maximal size of the projections of hole(p) on

one of the edges of Q. If hole(p) touches ∂Q, then | pr(hole(p))| ≥ 4h/4 = h, and

we can take γ = 1/4. Otherwise, by Step 3 ′

| pr(hole(p))| ≥
√

Areae(hole(p)) ≥
√

C1(4h)2 = 4
√

C1h .

So, we can take γ =
√

C1.

Step 4 ′(b).

∫

Q

|ϕ̃λ,i|2 d vole ≤ C6h2

∫

Q

|∇ϕ̃λ,i |2 d vole .

Notice that ϕ̃λ,i vanishes on hole(p). Hence, Step 4 ′(a) permits us to apply the

following Poincaré type inequality to ϕ̃λ,i . Its proof is given in §4.2. An inequality in

the same spirit can be found in [22].

Theorem 2.4 ([10, Ch. 7]) Let Q ⊆ R
2 be a cube whose edge is of length a. Let u be a

Lipschitz function on Q which vanishes on a curve whose projection on one of the edges

is of size ≥ γa. Then
∫

Q

|u|2 dx ≤ C(γ)a2

∫

Q

|∇u|2 dx.

Steps 5 ′–7 ′. We continue in the same way as in Steps 5–7 of §2.1. This completes

the proof of Theorem 1.2.
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3 A New Proof in Dimension Two

This section is due to L. Polterovich, M. Sodin and F. Nazarov. In dimension two

we give a proof based on the harmonic measure and the fact due to Nadirashvili that

an eigenfunction on the scale comparable to the wavelength is almost harmonic in

a sense to be defined below. This proof also gives information about the location

of a big ball inscribed in the nodal domain Uλ. Namely, we show that if φλ(x0) =

maxUλ
|φλ|, then one can find a ball of radius C/

√
λ centered at x0 and inscribed in

Uλ.

Let Dp ⊆ Σ be a metric disk centered at p. Let f be a function defined on Dp. Let

D denote the unit disk in C.

Definition 3.1 We say that f is (K, δ)-quasiharmonic if there exists a K-quasicon-

formal homeomorphism h : Dp → D, a harmonic function u on D, and a function v

on D with 1 − δ ≤ v ≤ 1, such that f = (v · u) ◦ h.

Remark We will assume without loss of generality that h(p) = 0.

Theorem 3.2 ([18, 19]) There exist K, ε, δ > 0 such that for every eigenvalue λ and

disk D ⊆ Σ of radius ≤ ε/
√

λ, ϕλ|D is (K, δ)-quasiharmonic.

We now choose a preferred system of conformal coordinates on (Σ, g).

Lemma 3.3 There exist positive constants q+, q−, ρ such that for each point p ∈ M,

there exists a disk Dp,ρ centered at p of radius ρ, a conformal map Ψp : D → Dp,ρ

with Ψp(0) = p, and a positive function q(z) on D such that Ψ
∗
p(g) = q(z)|dz|2, with

q− < q < q+.

Let us take a point p, where |ϕλ| admits its maximum on Uλ. Let R = ε/
√

λq+.

Let Dp,R
√

q+
⊆ Dp,ρ be a disk of radius R

√
q+ centered at p.

We now take the functions u, v defined on D which correspond to ϕλ|Dp,R
√

q+
in

Theorem 3.2. We observe that ϕλ(p) = u(0)v(0) ≥ u(z)v(z) ≥ u(z)(1 − δ), for all

z ∈ D. Hence

(3.1) u(0) ≥ (1 − δ) max
D

u.

Now we apply the harmonic measure technique. Let U 0
λ ⊆ D be the connected

component of {u > 0}, which contains 0. Let E = D \ U 0
λ. Let ω be the harmonic

measure of E in D. Then ω is a bounded harmonic function on U 0
λ, which tends to 1

on ∂U 0
λ∩Int(D) and to 0 on the interior points of ∂U 0

λ∩∂D. Let r0 = inf{|z| : z ∈ E}.

By the Beurling–Nevanlinna theorem [2, §3-3],

(3.2) ω(0) ≥ 1 −C1

√
r0.

By the majorization principle

(3.3) u(0)/ max u ≤ 1 − ω(0).
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Combining inequalities (3.1), (3.2), and (3.3) gives us

(3.4) r0 ≥ C2.

In the final step we apply a distortion theorem proved by Mori for quasiconformal

maps. Denote by Dr ⊆ C the disk {|z| < r}. Observe that Ψp(DR) ⊆ Dp,R
√

q+
.

Hence, we can compose h̃ = h ◦ Ψp : DR → D. Then h̃ is a K-quasiconformal map.

By Mori’s theorem [1, Ch. III.C], it is 1
K

-Hölder. Moreover, it satisfies an inequality

(3.5) |h̃(z1) − h̃(z2)| ≤ M
( |z1 − z2|

R

) 1/K

,

with M depending only on K. Inequalities (3.4) and (3.5) imply that

dist(p, ∂(Uλ ∩ Dp,R))

R
≥

( C2

M

)K√
q−.

Hence, inrad(Uλ) ≥ (C2

M
)K√q−R = C3/

√
λ, as desired.

4 A Review of Poincaré Type Inequalities

We give an overview of several Poincaré type inequalities. In particular, we prove

Theorem 2.2 and Theorem 2.4.

4.1 Poincaré Inequality and Capacity

Theorem 2.2 is a direct corollary of the following two inequalities proved by Maz’ya.

Theorem 4.1 ([14]; [15, §10.1.2]) Let Q ⊆ R
n be a cube whose edge is of length a.

Let F ⊆ Q. Then

∫

Q

|u|2 d(vol) ≤ C1an

cap(F, 2Q)

∫

Q

|∇u|2 d(vol)

for all Lipschitz functions u on Q which vanish on F.

A few remarks:

• 2Q denotes a cube concentric with Q, with parallel edges of size twice as large.
• If Ω ⊆ R

n is an open set, and F̄ ⊆ Ω, then cap(F, Ω) denotes the L2-capacity of F

in Ω, namely

cap(F, Ω) = inf
u∈F

{

∫

Ω

|∇u|2 dx
}

,

where F = {u ∈ C∞(Ω), u ≡ 1 on F, supp(u) ⊆ Ω}.
• By Rademacher’s theorem [24], a Lipschitz function is differentiable almost ev-

erywhere, and thus the right-hand side has a meaning.
• A generalization of the inequality to a body which is starlike with respect to a ball

is proved in [16].
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The next theorem is a capacity-volume inequality.

Theorem 4.2 ([15, §2.2.3])

cap(F, Ω) ≥
{

C2/ log(Area(Ω)/ Area(F)) n = 2,

C3/(Vol(F)−(n−2)/n − Vol(Ω)−(n−2)/n) n ≥ 3.

In particular, for n ≥ 3 we have cap(F, Ω) ≥ C3 Vol(F)(n−2)/n.

4.2 A Poincaré Inequality in Dimension Two

In this section we prove Theorem 2.4. The proof can be found in [10, Ch. 7]. We

bring it here for the sake of clarity.

Proof of Theorem 2.4 Let the coordinates be such that Q = {0 ≤ x1, x2 ≤ a}. Let

the given edge be Q ∩ {x1 = 0}, and let pr denote the projection from Q onto this

edge. Set E = pr−1(pr(hole(p))). We claim

(4.1)

∫

E

|u|2 dx ≤ a2

∫

Q

|∇u|2 dx.

Indeed, let Et := E ∩ {x2 = t}. We recall the following Poincaré type inequality

in dimension one whose proof is given below.

Lemma 4.3

(4.2)

∫ b

a

|u|2 dx ≤ |b − a|2
∫ b

a

|u ′|2 dx

for all Lipschitz functions u on [a, b] which vanish at a point of [a, b].

By this lemma,
∫

Et

|u|2 dx1 ≤ a2

∫

Et

|∂1u(x1, t)|2 dx1.

Integrating over t ∈ pr(hole(p)) gives us (4.1).

Next we show

(4.3)

∫

Q

|u|2 dx ≤ C1a2

∫

Q

|∇u|2 dx.

By the mean value theorem ∃t0 such that

(4.4)

∫

Et0

|u|2 dx1 ≤
1

γ · a

∫

E

|u|2 dx.
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In addition, we have

|u(x)|2 ≤ 2|u(x1, t0)|2 + 2|u(x) − u(x1, t0)|2

≤ 2|u(x1, t0)|2 + 2
(

∫ x2

t0

|∂2u(x1, s)| ds
) 2

≤ 2|u(x1, t0)|2 + 2 · a

∫ a

0

|∂2u(x1, s)|2 ds.

Integrating the last inequality over Q gives us

(4.5)

∫

Q

|u|2 dx ≤ 2 · a

∫

Et0

|u(x1, t0)|2 dx1 + 2a2

∫

Q

|∂2u|2 dx .

Finally, we combine (4.1), (4.4), and (4.5) to get (4.3).
∫

Q

|u|2 dx ≤ 2 · a
1

γa

∫

E

|u|2 dx + 2 · a2

∫

Q

|∇u|2 dx ≤ C1a2

∫

Q

|∇u|2 dx.

4.3 A Poincaré Inequality in Dimension One

Proof of Lemma 4.3 By scaling, it is enough to prove (4.2) for the segment [0, 1].

Suppose u(x0) = 0. Since a Lipschitz function is absolutely continuous, we have

|u(x)|2 =

∣

∣

∣

∫ x

x0

u ′(t) dt
∣

∣

∣

2

≤
∫ 1

0

|u ′(t)|2 dt.

We integrate over [0, 1] to get the desired inequality.

5 λ1 and Inner Radius

We prove Theorem 1.3, which relates the inner radius to λ1.

Proof Let {Vi} be a finite open cover of M, such that for each i one can put a Eu-

clidean metric ei on Vi , which satisfies ei/4 ≤ g ≤ 4ei . Let α be the Lebesgue number

of the covering.

Let r = min(inrad(Ω), α). Let B ⊆ Ω be a ball of radius r. We can assume that

B ⊆ V1. Let Be ⊆ B be a Euclidean ball of radius r/2. By monotonicity of λ1, we

know that λ1(Ω, g) ≤ λ1(B, g) ≤ λ1(Be, g), but since the Riemannian metric on Be

is comparable to the Euclidean metric on it, it follows from the variational principle

that

λ1(Be, g) ≤ C1λ1(Be, e1) = C2/r2 ≤ C3/ inrad(Ω)2,

where in the last inequality we used the fact that inrad(Ω) ≤ C4α.

Remark We would like to emphasize that in general there is no lower bound on λ1 in

terms of the inner radius. However, in dimension two, as pointed out to us by Daniel

Grieser and Mikhail Shubin, there exists a lower bound on λ1 in terms of the inner

radius and the connectivity of Ω. This was proved in [11, 20]. For a more detailed

account of the subject one can consult [12].
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