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Matrices of rational functions

W.A. Coppel

The properties of the degree of a matrix of rational functions
are obtained in a simplified way, which enables them to be
generalised to matrices whose elements are not necessarily
rational functions. On the basis of these results a theory of
realisations is developed, which similarly generalises the theory

of state space realisations of a matrix of rational functions.

1. Introduction

In the application to control problems of spectral factorisation
techniques two slightly different approaches have been used. The first,
introduced by Popov [13] and further developed by Jakubovic¢ [6], uses a
controllability hypothesis to impose three conditions on the state space
matrix A . The second, employed by Anderson [1] and Molinari [11], [12]
for rather less general problems, uses the controllability hypothesis to
impose only two of these conditions on A . The third condition, that 4
have distinct eigenvalues, is avoided by using properties of the degree of
a matrix of rational functions. The concept of degree was introduced by
McMillan [9, 10], and has also been discussed by Duffin and Hazony [3] and
Kalman [7]. In attempting to understand its role in these applications to
control theory we have been led to an approach which enables the main
properties of the degree to be developed very directly. (By means of
Theorem 3 below the third condition on A can be avoided also in the

general problem of Popov-Jakubovic.)

However, the main merit of this approach is that it is no longer
necessary to restrict attention to matrices of rational functions. With
trivial changes the definition of determinantal denominators and Theorems
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1-5 in Section 2 hold equally well for matrices with elements from the
quotient field of any unique factorisation domain (for example, the field
of rational functions of several variables). Theorem 6 holds, more
restrictively, for matrices with elements from the quotient field of any

principal ideal domain (for example, the field of rational numbers).

The degree of a matrix of proper rational functions is equal to the
minimum dimension of any state space realisation of the matrix. This
raises the question whether the theory of state space realisations can also
be embedded in a more general algebraic setting. Some results which
suggest this possibility are stated in the original and stimulating book of
Rosenbrock [14], but the proofs of these results make essential use of
state space theory. In the remainder of the paper we develop a theory of
realisations valid for matrices with elements in the quotient field of any
principal ideal domain. This is not just a trivial exercise in general-
isation and the logical order of development is quite different from that
of Rosenbrock. Moreover, even in the rational function case our results

extend his in some respects.

Nevertheless, to fix ideas and to make the contents of the paper more
generally accessible, we will continue to talk “throughout about polynomials
and rational functions of one variable, with coefficients from an arbitrary

ground field.

2. Determinantal denominators

Let R be a p xm rational matrix. For any positive integer &

let wk(R) denote the monic least common denominator of all minors of R
of order at most k .l We also set wO(R) =1 (since an ‘'empty'
determinant has the value 1 ). The polynomials wk(R) will be called the
determinantal denominators of R .

Evigently ¢k(R) divides ¢k+l(R) for all k = 0 . Also
¢k(R) = ¢k+l(R) for k = min(p, m) , in fact for k = r = rankR . For
later use we define the width of R to be the least non-negative integer

g such that wk(R) = ¢k+l(R) for all k = g . The rational matrix R

1 Note that the zero rational function has monic least denominator 1 .
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has width zero if and only if it is a polynomial matrix.

From the expression for a determinant as a polynomial in its elements
we see that ¢k(R) divides [wl(R)]k for all k 2 0 . More generally, by
a Laplace expansion it may be seen that <ph+k(R) divides q>h(R)<pk(R) for
all h, k=0 .

THEOREM 1. Let Rl and R2 be p xm rational matrices, and let
R =R +R, be their sun. Then ¢, (R) divides ¢, (R )o,(R)) for all
k.

If o, (R)) and o,(R,) are relatively prime then

0, (R) = wk(Rl)cpk(R2) for all k .

Proof. We need only consider the case 1 < k < min(p, m) . By
k

linearity any k X k minor p of R is a sum of 2 determinants, each

row of which is taken either from Rl or from R2 . Consider one such

determinant, with % rows taken from Rl and k - h rows taken from

}?2 . By a Laplace expansion this determinant can be written as a sum of

+
terms _0102 , where pl

(k-h) x (k-h) minor of R2 . Hence p can be written with denominator

is an k2 X A minor of Rl and 05 is a

® (Rl)q;k (Rz] . It follows that ¢, (R) divides ¢ (Rl)tpk (R,e]

Suppose @y (Rl) and 2% (R2) are relatively prime. Then @y (Rl)
and cpk (R2) are also relatively prime. Since, by what we have already
proved, o (Rg) divides q>k(-Rl)cpk(R) it follows that ¢ (RZ) divides
(pk(R) . Similarly cpk(Rl) divides (pk(R) . Since they are relatively
prime their product (pk(Rl)cpk(Re) also divides (pk(R) . Hence
% (B) = o (B))o (Ry) -

THEOREM 2. Let R, and R, be pxn and n xm rational
matrices, and let R = RlR

o (B o, (R)) for all k .

s be their product. Then (pk(R) divides
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Proof. Suppose first that 1 =< k =g = min(p, n, m) . By the product

formula for minors any k X k minor p of R is a sum of terms plp

~ 9

=
where pl and 02 are k x k minors of Rl and R2 . Hence p can be
written with denominator cpk(Rl)wk(Rz) . It follows that cpk(R) divides
‘pk(Rl)‘pk(RQ) .

Suppose next that k > g . Then (pk(R) = (pq(R) , since R has rank
at most ¢ . Since the result holds for ¢ , it holds also for k .

THEOREM 3. Let R, and R, be non-singular m x m rational

2

matrices, and let R = RR be their product. If ®; (Rl) 18 relatively

2

- ] , and if (pl(Re) is relatively prime to

prime to ¢, (R,) and to wl[}?

cpl[l?;l] s then o (R) = 0, (R)ay (R,) for all & .

Proof. By Theorem 2, (pk(R) divides ® (Rl)(pk [Rz) . Since

_ -1 . . . -1 R
Rl = RR2 and q)k(Rl) is relatively prime to <pk[R2 ) it follows from

Theorem 2 also that ¢, (R) divides ¢,(R) . Since R, = RJ'R and

(pk [Rz) is relatively prime to (pk (R;l] it follows in the same way that

s . - B : :
@y (RQ) divides (pk(R) Since (pk( l) and @y (R2) are relatively prime
their product ¢, (Rl)wk (R2) also divides tpk(R) . Hence

THEOREM 4. Let R be a non-singular m X m rational matrix, and
write detR = o/B , where o and B are polynomials. Then

-1y .
Bo, (A7) =ae (R) ,
where = denotes equality apart from a unit (non-zero constant) factor.

Proof. Any minor P of R ! can be written in the form
p = tp/detR = *Bp/a ,

where p 1is the complementary minor of R'. The least common denominator
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of all p/B is me(R_l) . The least common denominator of all p/a is

awm(R) . The result follows.
In particular, if P is a non-singular m X m polynomial matrix then

o (P™Y) = aetP .

THEOREM 5. Let Rl, R2 be p, * m s P, x m, rational matrices,
and let R = R, + R, be their direct sum. Then wk(R) is the least
common multiple of all products @, (Rj)e, , (R)) , where 0 =h <=k .

In particular, if wl(Rl) and wlCRz) are relatively prime then
% (R) = o (R))o, () for all k.

Proof. Ilet xk(R) denote the least common multiple referred to in
the statement of the theorem. Evidently xk(R) divides Xk+1(R) . It is

sufficient to prove the theorem for 1 = k = min(pl+p2, m1+m2] .

Every non-zero Kk X k minor p of R is either a minor of Rl , or
a minor of R2 , or a product PPy where N is an A X 2 minor of

R

1 P is a (k-h)} x (k-h) minor of R2 and 0 < A <k . In any case

it can be written with denominator Xk(R) , and hence ¢k(R) divides
Xk(R) .

Consider a fixed value of A (0 = h =<k) . Let T be any prime

polynomial and let e e. be the highest powers of 7 dividing wh(Rl) s

1’ "2
wk-h(Rz) - Then there exists a minor p, of Rl of order at most &
é1
whose reduced denominator is divisible by 7w . Similarly there exists a

minor Py of R2 of order at most k - h whose reduced denominator is

e
divisible by 7 2 . We are going to show that there exists a minor p of
é1*
R of order at most k whose reduced denominator is divisible by = .
If e, >0, e, =0 we can take p=p. . If e. =0, e, >0 we can

1 2 1 1 2
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= > > = i i
take p p2 . If el o, 62 0 we can take ©p plp2 . Since this

holds for every prime m it follows that wh(Rl]wk_h(Rz) divides ¢k(R) .
Since this holds for every %A it follows that Xk(R) divides .wk(R)
Hence ¢, (R) = ¥, (R)

The determinantal denominators of a rational matrix will now be
connected with its Smith McMillan normal form. Let P bea p xm

polynomial matrix of rank » . Then it is well-known (see Jacobson [51)

that there exist invertible? p Xp, m Xxm polynomial matrices A, B and

monic polynomials Yio cees Yy such that Yj divides Yi if jg =k, for
which
P = ACB ,
= < < = i
where ek = Y (1 =k =r), cij 0 otherwise.

The matrix ¢ , known as the Smith normal form of P , is uniquely

determined by P . In fact the product Gk = Yl . Yk is the greatest

common divisor of all k X k minors of P . The Smith normal form of P

will be denoted for short by {yl, A Yr}

In the next section we will have occasion to use the following known

result.

LEMMA 1. . Let Pl’ P, be p xn,nxm polynomial matrices with the

2
Smith normal forms {Yil), caey y(l)}, {Y(2)’ cees YIE»Z)} respectively. If

r 1 >
(1) (2)

1
P = P_P_ has the Smith normal form {yl, cees Yr} then v and P

12
each divide Y% (L=k=r).

Proof (see Frobenius [4], pp. 577-590). The ranks satisfy the well-

known inequality r =< min(rl, r2) . It will be sufficient to prove that

Yil) divides Yk . For this purpose we may assume without loss of

generality that P

1 is already in its Smith normal form. Put

2 2 square polynomial matrix is invertible if and only if its determinant

is a unit.

https://doi.org/10.1017/50004972700043677 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043677

Matrices of rational functions 95

8 =Yy oor Vg s 51(<1)=Y§1) ...y,(cl) 1sksr)

If p is any non-zero k X k minor of P , corresponding to the rows
il < ... < ik , then since ij > 4 the Jj-th row of p is divisible by
(1) )

Yj for 1 =4 =<k . Hence p is divisible by 6{1 , and so the

greatest common divisor Sk of all p is divisible by Gil) . This

proves the assertion for k = 1 . Now suppose Kk > 1 . By expanding p
according to the elements of its last row we see that it is divisible by
Yil)dk-l , and so Gk is divisible by Yil)6k—l . This proves that Yil)
divid .
ivides Yk
Now let R be a p X m rational matrix of rank r , and let

¢ = ¢1(R) be the monic least common denominator of all elements of R .

Then P = @R 1is a polynomial matrix and hence has a Smith normal form

{Yl’ e Yr} . If we divide throughout by ¢ and express each rational

unction Y ¢® in requce orm we o ain € representation
functi k/ i duced f btain th tati

R = ASB ,

where A and B are invertible polynomial matrices,

S = {el/wl, cees er/wr} > & and wk are relatively prime polynomials
such that Ej divides € and wk divides wj if J <k . It is easily

shown (see McMillan [9, 101) that the matrix S is uniquely determined by

these properties. It is known as the Smith McMillan normal form of R .

THEOREM 6. Let R be a p X m rational matrix with the Smith
MceMillan normal form {El/wl, cees Er/wr} . Then

= .. r = =r.,
¢k(R) ¥y Y for 1=k
Proof. Let R = ASB as above. It follows from Theorem 2 that ¢k(R)

divides ¢k(S) , since wk(A) = wk(B) =1 . Since §=AT'RB! it follows

in the same way that ¢k(s) divides wk(R) . Hence ¢k(R) = wk(s) )

Thus it only remains to evaluate ¢k(S) . We can regard S as the
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direct sum of r 1 x 1 matrices (ek/wk] and a matrix of zeros. It
follows from Theorem 5 that ¢k(S) is the least common multiple of all

products wil cee wik , where 1 < il < vu. < ik < r . But since wj

divides ¢i if 4 = j this least common multiple is Jjust wl N wk .

3. Realisations
Let R be a p x m rational matrix. A realisation of R is a
representation of the form
_ -1
(1) R=WH+VT U,

wvhere W, V, T, U are polynomial matrices of size p xm, p X n, n X n,
n xm and T is non-singular. The positive integer » will be called
the dimension of the realisation. If R 1is actually a polynomial matrix

it has the trivial and unique realisation R = R of dimension zero.

Any p xm rational matrix R has a realisation of dimension

min{p, m) . For let ¢ = ¢1(R) be the monic least common denominator of

all elements of R , so that ¢R is a polynomial matrix. If p =m then

-1
R=0+¢r(er ) I

m "

If mzZ p then

-1
T (oI R .
R=0+ p(cvp) @

If R has the realisation (1) of dimension #»n then for any positive

integer ¢ it has the realisation

of dimension n + q .

Also, if R has the realisation (1) of dimension »n then for any

non-singular »n x n polynomial matrices D, D it has the realisation

R =W+ vbord) tou
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of the same dimension.

We now need some standard concepts concerning the divisibility of
matrices. Let T, U be =n X I, n Xm polynomial matrices. An n X n
polynomial matrix D is said to be a common left divisor of T and U if

there exist polynomial matrices Tl’ U1 such that

The matrices T, U are said to be left relatively prime if every common
left divisor is invertible. It is easily seen that if there exist

polynomial matrices M, N such that

™+ UN =1 ,
n

then T, U are left relatiﬁely prime and the block matrix (7 U) has rank

n .

A similar definition and result hold for right relatively prime

matrices. One need only take transposes.

The realisation (1) of R will be said to be irreducible if T, U

are left relatively prime and T, V are right relatively prime.
THEOREM 7. If the rational matriz R has the realisation (1) of
dimension n then it has an irreducible realisation

-1
=W
R + VI,

of the same dimenston, where

T=DTOB, v=0U,, v=VOZ),

for some non-singular n x n polynomial matrices D, D .
Proof. Suppose T and U are not left relatively prime. Then

= o) )

U

2

where D(l), T(l), U(l)

(1) (D

(1)

are polynomial matrices and detD is not a

unit, If T are not left relatively prime this process can be

repeated. After k steps we obtain

(1) KR (1) R, k)

T=D U=1D
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(1)

where detD s sens detD(k)

are not units. Since detT has only

finitely many prime factors the process must terminate. That is, f = T(k)

and U0 = U(k) are left relatively prime for some k . Then
T =0T , U=DU,
where D = D(l) . D(k) . In the same way we can write

" ~

T = TOD , V= VOD ,
where Zb and Vb are right relatively prime. Since 7 and UO are

left relatively prime it is clear that T0 and UO must be also. The

result follows.

THEOREM 8. Let 1,U be n x 1, n xm polynomial matrices which
are left relatively prime and such that the block matrix (T U) has rank
n . Then there exists an (Il+m) x (l+m) invertible polynomial matrix A
such that

(ruva=(r, 0} .
Proof. Since the matrix (T U) has rank n there exist invertible
n x n, (l+4m) x (l+m) polynomial matrices X, Y such that

x(Tv)y = (E0) ,

where E {el, oo en} is in Smith normal form. Hence

(rov) = (po)rt,

wvhere D =X "E . In terms of the partition
-1 Zl Z2

o=z, 2|
3 “h

corresponding to the partition (D 0) , this means that

Since T, U are left relatively prime it follows that D 1is invertible.

Taking
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we obtain the theorem.

A more constructive approach to Theorems 7 and 8 is provided by the
Hermite normal form (see MacDuffee [8, Chapter 3]). Since the matrix
(T U) has rank 7 an invertible (Z+m) x (1+m) polynomial matrix Y can
be found such that

(r v)y = (Do),

where the =n X n polynomial matrix D is lower triangular and non-

singular. Depending on Y , the diagonal elements dbj are uniquely

determined apart from arbitrary unit tactors and the subdiagonal elements

djk with J > k are uniquely determined apart from arbitrary multiples of

djj . As in the proof of Theorem 8 we can write

>

Moreover the polynomial matrices T, U0

TYl + UY3 =D . If T, U are given left relatively prime then detD is a

are left relatively prime, since

unit. Hence the diagonal elements djj are all units, which we can take

to be 1 . Consequently the elements qjk with J > k can be taken to be

zero, so that D = In

THEOREM 9. Let R be a p xm rational matrix with the realisation
(1) of dimension n . Suppose T, U are left relatively prime and let

be an invertible (n+m) x (n+m) polynomial matrix with the property

deseribed in Theorem 8; that is,

TA, + VAy = I,

I
g

+ .
TAZ UAh n,m

1]
l»}

If
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V=W -VA,, T=a,,

Then T is non-singular and R has the realisation

(2) R =vrt

of dimension m .

If in addition T, V are right relatively prime, that is, if the
realisation (1) is irreducible, then the realisation (2) is also
irreducible. Moreover, 1f RY is a polynomial matrix for some polynomial

matriz Y , then Y = TX for some polynomial matriz X .

Proof. We first note that since T 1is non-singular the block matrix
(T U) certainly has rank n . Let x be a polynomial m-vector such that
Ahx =0 . Then TA2:L‘ = 0 and hence A2:L' =0 . BSince A 1is non-singular
(in fact invertible), it follows that zx = 0 . Thus 7= Ah is non-

singular. Moreover

<
{}

-1
UAI; - VT TA2

_ -1
= WAh + VT UAh

= RA, .
N
Suppose now that the realisation (1) is irreducible. Then, by Theorem

8, there exists an invertible (n+p) x (n+p) polynomial matrix

el
3 7y
such that
B;LT + B2V = In ,
B3T + BhV = Op,n .

Let C = A-l be partitioned in the same way as A , so that

C3A2 + chAh = Im .

M=-CB, , N=Ch—-C3BlU+C332W.
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Then, by the definitions of V and T,

MV + NT = C_BVA, + (6'1&-5'33111),4h
= 03(In-BlT)A2 + C\A), + CBTA,
=T .
m

Thus T, V are right relatively prime, and the realisation (2) is
irreducible. If Y is a polynomial matrix such that RY is also a

polynomial matrix then

iy = (M7 tem)y
(MR+N)Y

is also a polynomial matrix. This completes the proof.

Considering still the irreducible case, let f be any m X m
polynomial matrix which shares the last property of i , that is, RT is a
polynomial matrix and if RY is a polynomial matrix for some polynomial
matrix Y then Y = %X for some polynomial matrix X . Then there exist

polynomial matrices Xl’ Xé such that
T = TXl , T = TX2 .
Hence T = §X1X2 and XIXé = Iﬁ . Thus T and % differ at most by an

invertible right factor.

Again, suppose the p X m rational matrix R has another realisation

A2 §
R = VlTl
of the same form. Then ;l = Rfl is-a polynomial matrix and hence
%l = i%l for some polynomial matrix 21 . It follows that ﬁi = 9}1 .

Hence the new realisation is irreducible if and only if }l is invertible.
The properties of determinantal denominators will now be applied to
the theory of realisations.
THEOREM 10. Let R be a p xm rational matrix with the
realisation (1) of dimension n . Then ¢,(R) divides ¢k[T_l) for all

k.
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If the realisation (1) is reducible then tpn(R) 18 a proper divisor
of @, (T_l) . If the realisation (1) is irreducible then

@ (R) = q)k(T_l) for all k .

Proof. By Theorem 1, ¢;(R) = ¢, (VT_lU] and by Theorem 2, @, (VT-lU)
- 1 - -1
divides @, (™) . Thus ¢k(R) divides @ (™)
Suppose T, U are not left relatively prime. Then we can write

T=Dr , U=DU ,

where detD is not a unit. Since

_ -1
R=W+VIU ,

(pn(R) divides (pn[Til] . But, by the corollary to Theorem b,
~11 . -1y -
@, [Tl ] = detTl . (pn(T ) = detT .

Hence cpn(R) is a proper divisor of cpn(T_l) . The same conclusion is
reached if T, V are not right relatively prime.

Suppose next that the realisation (1) is irreducible. Then, as shown

in Theorem 8, there exist polynomial matrices A., 4_, B B2 such that

l’ 3’ 1’
TAl + UA3 = In ,
=1 |,
BJ.T + BQV n
Thus
-1 _ -1
T -Al + T UA3 R
-1

3
<
1

-1
BlU + BQVT v .

-1 -
3] and hence q)k(T ) divides

From the first equation ¢ (T_l) = tpk(T—]'UA

@z (T-lU) - From the second equation ¢ (T—lll) = (pk[BzVT-lU] and hence
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0, (T7N)  adivides o, (vI'0) . Thus o (777) aivides o, (177N0) = 0, (R) .
Therefore ¢k(R) = wk(T_l) .

THEOREM 11. Let R be a p x m rational matriz. Then the width g
of R 1is the minimal dimension of any realisation of R .

Proof. Let R have the realisation (1) of dimension #»n . By Theorem
T we can suppose that this realisation is irreducible. Then, by the last

part of Theorem 10, wk(R) = ¢k+l(R) for all k=n . Hence n2zg .

It remains to show that there exists a realisation of dimension g .
We can assume for this purpose that g > 0 and that R is in Smith

McMillan form {el/wl, cees er/wr} . Then, by Theorem 6, a realisation of

R of dimension g is defined in the following way:

W (pxm) : Wi = if g<k=r, w,.=0 othervise,

2

1
[}
e
o}
-

A

<=k=<g, v,,=0 othervise,

v (pxg) : Vr = 13

T (gxg) : ta =W if 1sk=g, tij = 0 otherwise,
U (gxm) : U = € if 1= k=g, up; = 0 otherwise.

This realisation is in fact irreducible (ef. the proof of Theorem 13).

THEOREM 12. Let R be a p xm rational matrix of width g , with
the irreducible realisation (1) of dimension n . If R has the Smith
McMillan form {ellwl, cens er/wr} then T has the Smith form
Ly g ¥go oo 0} -

/

Proof. Let T have the Smith form {En, cees @l} . Then T ! nas

the Smith McMillan form {1/, ..., 1/¥,} . By Theorem 10,

¢k(T-l) = wk(R) for all k . By Theorem 6,

wk for 1 <k =

A
B

k]

o ()

[[]
<
=

A
]

|
<
=

e ¥ for 1 sk =

The result now follows from Theorem 1l.
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If the realisation (1), of dimension 7 , is not necessarily

irreducible we can write T = DTOB , Where TO belongs to an irreducible

realisation of the same dimension. If T has the Smith form

{&n, . @l} it follows from Lemma 1 that wk divides &k for

1l =k =g . Apart from this restriction and the ordinary divisibility
conditions the Smith form of T is arbitrary, even if we require either
T, U to be left relatively prime or T, V to be right relatively prime.
This may be seen by assuming To in Smith form and multiplying by a

suitable diagonal matrix.

Let R be a p X m rational matrix with the realisation (1) of

dimension #n . Then, following Rosenbrock [14], the (n+p) x (n+m)

-5

is called the system matrix of the realisation.

polynomial matrix

By direct multiplication it may be verified that
7 o)(rt olfr v
(3) P=[—V I][O R](O I]
p m
Hence P has rank n + r .

That the system matrix is more than an array of coefficients is shown

by the following result.

THEOREM 13. Let R be a p xm rational matriz with the
irreducible realisation (1) of dimension n , and let P be the
corresponding system matrix. If R has the Smith McMillan form
{el/wl, e, er/wr} , then P has the Smith form {In, s ens EP} .

Proof. 1If Z, B are invertible p Xp, mxm polynomial matrices

then ;? = /~lR§ has the realisation
~ ~ o~ L
R = AWB + AVT “UB

with system matrix
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Therefore P has the same Smith form as P . Moreover, since 4 and é
are invertible, this realisation of B is irreducible. Hence we can

suppose that R is already in its Smith McMillan form.

By Theorem 8 there exists an invertible (n+m) X (n+m) polynomial

matrix
1 A2
A= 4
3 7L
such that
(r v)a = (1, 0)
Hence
In 0
PA = ,
.Vl Wl
where
Vl = VA.l - WA3 .
Wl = WAh - VA2
Thus P has the same Smith form as
I 0
n
W
0 1

Moreover, by Theorem 9, R has the irreducible realisation

_ -1
R = WlAh
It also has the realisation R = Erl defined by
E (pxm) : e = Sk (L=k=r), eij = 0 otherwise,

IA

F(me):fkk=wk (L=k=<r), fkk=1(r<k5m), f:ro=0 (2 #4d) .

1J
Since € and wk are relatively prime there exist 'diagonal' matrices
M, N such that

ME + NF = T
m
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Hence this resalisation is also irreducible. Therefore, by the second

remark following the proof of Theorem 9, E = Wl}l for some invertible

m x m polynomial matrix Xi . Thus Wi has the Smith form

{es -++» €} » and P has the Smith form {In, € ces er} . This

1’
completes the proof.

If the realisation (1), of dimension n , is not necessarily

irreducible, the corresponding system matrix P can be written in the form

_ [0 o), [D o
P'{o I]Po[o I] i

where Fb is the system matrix of an irreducible realisation of the same

~

dimension. If P has the Smith form {&, ..., & it follows from

n+r}’

Lemma 1 that € divides En+k for 1 <k=<r.

In Rosenbrock's treatment considerable use is made of the concept of
strict system equivalence and attention is restricted to realisations of
dimension not less than the degree of the polynomial detT (which has no
meaning outside the rational function case). The necessity for a restrict-

ion on the dimension is shown by the following simple example. The scalar

rational function R(s) = (s+1)/s2 has the 1-dimensional irreducible

realisations defined by the system matrices

82 1 32 8+1
-s-1 0} °* -1 0
However these realisations are not strictly system equivalent, since there
do not exist polynomials =(s), n(s) such that
_ 2
1 = [s+1-sx(s)]n(s)
We consider next -some simple formal properties of realisations.
LEMMA 2. Let Rl’ R, be p xm rational matrices with the

realisations

-1
= R
R W, + VlTl U1 s

-1
=W_+ VT U
1 1 2

2 22 2

of dimension n. 1, respectively. Then R = R1 + R2 has the realisation
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R=W+vriy

of dimension nyg +mn, defined by
. Tl 0 - Ul
) = 1)
0 T2 U2
v=(vy V) . HEH HH, .

The verification is immediate. BSuppose rpl(Rl] and (pl(Rg) are
relatively prime. Then, by Theorems 1 and 11,

P +n (R) = wnl+n2 (Rl) (Pnl+n2 (R2)

o, B e, (&) .

nl 1 n2 2

The realisation of Rl is reducible if and only if @, (Rl) is a proper
1

divisor of detTl . The realisation of R2 is reducible if and only if

¢n2 (RQ) is a proper divisor of det’l’2 . The realisation of R = Rl + R2

is reducible if and only if (R) is a proper divisor of
¢n n P

172

det? = detTldetT It follows that the composite realisation of

5 -
R = Rl + R2 is irreducible if and only if the realisations of Rl and R2

are both irreducible.

LEMMA 3. et Rl, R_ be p xn, n xm rational matrices with the

2
realigations

1y

-1 -
=W R=W VT
R + V.T U 2+222

171 17711 T2

of dimension n,m, respectively. Then R = R1R2 has the realisation

R=wWa+vrly

of dimension n, o +n, defined by
. T, 0 ) U,
3 E
_U1V2 Tl U1W2
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The verification is immediate. Suppose p n = m and the hypotheses
of Theorém 3 are satisfied. Then it follows as above that the composite

realisation of R = R1R2 is irreducible if and only if the realisations of

Rl and R2 are both irreducible.

LEMMA 4. Suppose the m X m rational matrixz R has a realisation
(1), of dimension n , in which W <s invertible. Then R 1is non-

singular 1f and only if the polynomial matrix T + w v is non-singular.
In this case R - has the realisation
-+l

of the same dimension n , defined by

Fer+wly, D=wt,
V=l Wewt.

It is irreducible if and only if the realisation (1) is irreducible.

Proof. Using a simple property of determinants (see Kalman {7], Lemma

5), we obtain

deti’

detT + det [In+T'lUW'lV]

= detT + det (Im+VT'1UW' 1]

detT - det (W+VT1U) + aet (W)
detT « detR/detW .

This proves the first assertion. Define

Feire il

Then

(w+vrLv) (i 7710)

1+ vt g

=

1+ v @-rw ) T
m

I
m

https://doi.org/10.1017/50004972700043677 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043677

Matrices of rational functions 109

5 -1

Thus R = R~ . Moreover wn(R) = wm(R) is a proper divisor of detl if

and only if the polynomial

¢n(R_1) = QW(R-I) = detRo (R)

is a proper divisor of detf = detRdetT . The lemma follows.

By increasing the dimension of the realisation we can remove the
restriction that W be invertible. Let R Dbe a non-singular m x m

rational matrix with the realisation (1) of dimension # and corresponding

system matrix P . Then, using (3), it is easily verified that R has

the realisation

S

of dimension #»n + m , defined by

f=p,. ?1:(19],
m
P=0z1), W=0.

Moreover, since detf = detRdet? by (3), this realisation is irreducible

if and only if the realisation (1) is irreducible.

It remains to establish the connection between the preceding theory
and the concepts of degree and state space realisation. From now on ve

really do require the elements of our matrices to be rational functions.

Any p xm matrix R(s) of rational functions can be uniquely

expressed in the form

R(S) = D(S) + Ro(s) ’

where D(s) is a matrix of polynomials and Ro(s) is a matrix of proper

rational functions. Let V(R) denote the maximum degree of any of the

polynomials (R) . Then the degree 6(R) may be defined by
Px

8(R) = v[p(s™)] + v[R,(s)]

If D(s) is a constant matrix then O(R) = V(R) . The properties of the
degree can be deduced without difficulty from the theorems of Section 2.
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In some applications, however, V(R) is more appropriate than &6(R) . The

polynomials wk(R) convey more information than the integer Vv(R) , and
may be manipulated Jjust as conveniently.

If the elements of R(s). are not all polynomials then a state space
realisation of R(s) 1is a realisation of the form
-1
)

(%) R(s) = D(s) + C(sI-A)™"B ,

where D(s) 1is the uniquely determined polynomial part of R(s) and 4,
B, C ére constant matrices of size n X n, n xm, p xn . The theory of
such realisations, due primarily to Kalman, is now widely known (see
Brockett [21]).

The ordered pair (A, B) is controllable if for some positive integer
kK the n x km block matrix

r= (848 ... &5

has renk »n . The ordered pair (4, C) is observable if (4*, C*) is
controllsble. It is not difficult to show that a state space realisation
(4) always exists, and furthermore that there exists one for which (4, B)

is controllable and (4, C) is observable.

The following theorem is due to Rosenbrock, but the present proof is

somewhat different.

THEOREM 14. Let A, B be n xn, n xm constant matrices. Then
(A, B) s controllable if and only if the polynomial matrices s8I - A and
B are left relatively prime.

Proof. Suppose first that (4, B) 1is controllable and choose any

positive integer k such that T has rank =n . Then there exist constant
matrices YO’ ey Yk—l such that
BY +ABY. + ...+ 4By, =1 .
(0] 1 : k-1
Put
X, . =BY,+ABY. + ...+ 4K gy (L=4<k).
J-1 J J+1 k-1

Then it is easily verified that
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k-1 _
(5) B[Yo + sY1 + ... +8 Yk—l] - (sI—A)(XO teX + ...+ Xk-z} =1TI.

Thus s8I - A and B are left relatively prime.

Conversely, suppose that sI - A and B are left relatively prime.
Since s8I - A is non-singular it follows from Theorem 8 that (5) holds for

some positive integer Kk and constant matrices Xj’ Yj . Equating

coefficients we get

+ =
BYO AXb I,
Y. + AX. - X. _ = =g = k-2
B!7 X 'XJ_l 0 (L=g ) s
BYk_l - Xk—2 =0
It follows that
k-1 _
BYO + ABYl + ... + A Byk—l =TI,

Hence T has rank n , and (4, B) 1s controllable.

It follows that the state space realisation (L4) is irreducible in the
sense of the present paper if and only if (4, B) is controllable and
(4, C) 1is observable. In this case, by Theorem 12, the polynomial matrix

sI - 4 has Smith form {In—g’ ¢g/¢g—1’

and g 1is the width of R . By standard results from linear algebra (see

ey ¢l/¢0} » where ¢, = ¢, (R)

Jacobson [5], Chapter 3) it follows that the constant matrix 4 is similar
to a direct sum of g companion matrices corresponding to the polynomials

@)/ Bys ees OglOg g

Thus if the state space realisation is irreducible the determinantal
denominators of KR uniquely determine A4 , apart from a similarity
transformation which is inherent. 1In particular, the minimum polynomial of
A is the least common denominator of all elements of R , and the
characteristic polynomial of A is the least common denominator of all

minors of R . Hence the realisation has dimension V(R) .
ADDENDUM (24 May 1974). In Theorem 3 we have ¢, (R) = ¢ (R )o (R,)
even without the hypothesis that ¢1(Rl) and ¢1(R2) are relatively

prime.
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Proof. TFrom Theorem 4 and the relation detR = detRldetR2 we obtain

-1 -1 -1
* =
(*) o (B0, (B0, (77 = 0 (R7 o (5o, ()
Let 7 be any prime polynomial and let €15 & be its multiplicities as a.

e.+te
aivisor of ¢ (R}, ¢ (R,) . We wish to show that ' ° divides

¢, (R) . 1If e, >0, e, =0 this follows from the fact that ¢m(Rl)
divides tpm(R) . If e, =0, e, >0, it follows from the fact that

. > > 3 *
¢m(R2) divides wm(R) . If e 0, e, 0 it follows from (¥*) and the

. -1 -1 . .
fact that 7 does not divide @m(Rz ] or wm[Rl ] . Since T is
arbitrary this proves that wm[Rl)wm(R2) divides wm(R) , and hence
0, (B) = ¢ (R)o (R) .
Consequently the hypothesis that ¢1(Rl] and ¢1(R2) are relatively

prime may be omitted in the remark following Lemma 3. It is easily shown
by examples that the full assertion of Theorem 3 does not hold when this
hypothesis is omitted.
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