
J. Austral. Math. Soc. (Series A) 60 (1996), 245-254

COEFFICIENTS OF AN ANALYTIC FUNCTION SUBORDINATION
CLASS DETERMINED BY ROTATIONS

SEOK CHAN KIM

(Received 8 December 1993; revised 24 June 1994)

Communicated by P. C. Fenton

Abstract

Let si denote the set of all functions analytic in U = {z : \z \ < 1} equipped with the topology of uniform
convergence on compact subsets of U. For F e si define

s(F) = {F o 4> : <t> e si and \<f>(z)\ < |z|).

L e t c o i ( f ) and Sco s(F) denote the closed convex hull of s(F) and the set of extreme points of cos(F),
respectively.

Let 3$ denote the class of all F & si such that <?co s(F) = {Fx:\x\ = \) where Fx(z) = F(xz).

We prove that \AN\ < \AMN\ for all positive integers M and N, and (2*/2/3)\A2\ < \A3\ for
F(z) = Y^=o ANZN e ^ - We also prove that if F(z) = J^^o A"zN e 5? and |A, | = \A2\, then F is a
univalent halfplane mapping.

1991 Mathematics subject classification (Amer. Math. Soc): 30C80.

1. Introduction

Let si denote the set of all functions analytic in U = {z : \z\ < 1}. s# is a linear
topological space with respect to the topology of uniform convergence on compact
subsets of U. Let Fes/ and let s(F) denote the set of all / e s/ such that / is
subordinate to F. A function / in si is subordinate to F (written / -< F) if there
exists 4> e &0 = {<p e s/ : \<t>(z)\ < \z\ for all z € U) such that / = F o (p. Let
co s(F) and <?co s(F) denote the closed convex hull of s(F) and the set of extreme
points of co s (F), respectively.

Let c^bea compact subset of s/. A function / e & is called a support point of &
if there is a continuous linear functional J ons/ such that / maximizes Re J over &
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and Re / is nonconstant on &', that is Re / ( / ) = max {Re J(g) : g e j^} and Re J
is nonconstant on &. We use E Ĵ " to denote the set of support points of &.

Let ̂ denote the class of all F e &/ such that cos(F) — {fr F(xz)d[i(x) : / i s A )
where A denotes the set of all probability measures on F = {z : \z\ = 1}. It is worthy
of note that F e S? if and only if <£co s(F) = {Fx : \x\ = 1} where Fx(z) = F{xz).
We will show this in Lemma 1.

The problem of finding the general conditions for F to be in St was posed by
T. Sheil-Small. Many examples were shown to be in S$ by various authors ([2, 3, 4,
6, 9, 10]).

The aim of this paper is to find coefficient conditions for F(i) = I ^ O ^ N 2 "

to be in St. In [8], D. J. Hallenbeck, S. Perera and D. R. Wilken proved that
if F(z) = J2'N=OANZN 6 ® and if AN # 0, where N > 1, then AM ^ 0 for
every M > N. Here we prove that \AN\ < \AMN\ for all positive integers M and
N, and 2V2/3\A2\ < \A3\ for F(z) = ^ A ^ z " e ^ . We also prove that if
F(z) = X!A/U AN?N £ St and | A] | = | A2\, then F is a univalent halfplane mapping.

From the definition of Si we have the following.

FACT 1. F e St if and only if aF + b € St for all numbers a, b eC.

FACT 2. F e ^ if and only if F, e ^ , |x| = 1.

So, F € ^ if and only if eil>F(ei9z) e St for all real r\, 6.

LEMMA 1. A nonconstant F e si is in & if and only ifSW s(F) = {Fx : \x\ = 1}.

PROOF. The sufficiency is obtained by Theorem 1 of [5] and Theorem 5.5 of [7].
Next, we have (with & = s{F) in [7, p.92])

co (Es(F) n <?co s(F)) = co s(F).

To show F € St, it is enough to show

n <fco 5(F) c I [ F(xz)dn(x) : fi e A | .

If / e £s(F), f = F o B with B a finite Blaschke product (in [7, p. 166]) and
f = FoB e <§W s{F) = {Fx : |x| = 1} implies / = Fx and / e {/r F(xz)dfi(x) :

LEMMA 2. Le? F e / If there is a continuous linear functional J and <p e
such that Re J(F(<p)) > Re J(FX) for all \x\ = 1, then ft®.
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PROOF. If F e 2%, then

c o s ( F ) = I I F(xz)dfi(x) : [ i e A } .

So, for any ^ e Jo> we have

F o <p e I j F(xz)dpu{x) : \x € A1 .

Thus, for any continuous linear functional 7 on s/, we have

Re J(F oq>) < maxRe / ( / F(xz)d/x(x) )
ueA V / r /

f
= max / Re J(F(xz))dfi(x) = maxRe J(FX).

2. Coefficients of elements of the class .

In this section, we show that, if F(z) = YI'N^O AN?N £ &> IAN | < |AMW | for every
M,N = 1,2,3,. . . and we have that if |c + l| < 1 thenexpc((l+z)/(l - z)) $@
as a corollary. We also show that (2\/2/3)|A2| < |A3|.

LEMMA 3. IfF{z) = Y%

I ^ | < | A M W | , M,N = 1 , 2 , 3 , . . . .

PROOF. Since F e &, for every <p e ^0» there i s / x e A such that

Fft>(z)) = J F(xz)dn(x).

Takeip(z) = zM. Then

F(zM)= F(xz)d/j.(x) for some /x e A, that is

A/=I /

By considering the coefficient of zMN, we have

A W = A M W f X

Hence |AW| < \AMN\ f \xMN\dn(x) = \AMN\.
Jr

zN.
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COROLLARY 1. / / F = J2N=OANZ e @> then \A\\ < \AM\ for all M =
1,2,3, . . . .

PROOF. Let N = 1 in Lemma 3.

Although the following lemma was proved in [6], we give a shorter proof by using
the closedness of ^?.

LEMMA 4. If Re c > 0, then exp(c(l + z)/(l - z)) e Sf, .

PROOF. Note (1 + w/N)N converges uniformly on compact subsets of U to exp it'
as N goes to oo. Let Re c > 0. By a simple calculation we see exp(c(l + z)/(l — z))
is the limit of

each of which is in Si ([4]), since \(c - N)/(c + N)\ < 1 . Since 31 is closed ([8]),
the limit function exp(c(l +z ) / ( l — z)) isin^1.

lie <O,thenexp(c(l+z)/( l-z)) e Hl sothatexp(c(l +z) / ( l - z ) ) ^^( [1] ) .
So we conjecture:

expfc Z-\i@ if R e c < 0 .

Corollary 2 is a partial solution for this.

COROLLARY 2. / / |c + 1| < 1, then exp(c(l + z)/(l - z)) ^ ^ .

PROOF. Suppose F(z) = exp(c(l + z)/(l - z)) = Y^=o AN*N e ^ . Then we
have

Ai = 2cexpc and A2 = - • (4c2 + 4c) expc

by simple calculation. By Corollary 1,

l^ i l< |A2 | , thatis 2|c|| expc| < - | 4 c 2 + 4c| | expc| or l < | c + l|.

This proves the corollary.

To show (2-v/2/3)| A2| < |A3|, we need a technical lemma;
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LEMMA 5. Ifr cos <J> > | , 0 < r < 1, then there exists 6 such that

2 cos 9 - r cos(O + 29) > V2.

PROOF. First, we assume 0 < <I> < jr/3. Let

f(9) = 2 cos 9 - r cos(O + 26)

= 2 cos 6 — 2r cos <I> • cos2 6 + r cos <J> + 2r sin <J> sin 0 cos 0.

Let 9 = cos"1 (l/2rcoscD) with 0 < 9 < n/2. Then cos0 = l /2 rcosO and
sin# > 0. Hence

f(9)> -+ rcos<I>
r cos q> 2r cos <P

/ xV 2 2 /̂
- Vr cos 0 + —= > —= = V2.

/ V2 V2

. Vr cos 0 + = > =
/2r cos <D / V2 V2

Similarly, we can choose 0 with — n/2 < 6> < 0 for the case — 7r/3 < <& < 0.

REMARK. If F{z) = A,z + A2z
2 + A3z

3-\ and<p(z) = byz + b2z
2 + b3z

3 -\ ,
then

F(<p(z)) = A l ( b l z + b2z
2 + b3z

3 + ...) + A2(b1z + b2z
2 + b3z

3 + • • • ) 2

+ A 3 ( b , z + b 2 z 2 + b 3 z 3 + • • • ) ' + •••

= Axbxz + (Aifc + /I2^2)z2 + (A163 + 2A2bxb2 + A3^)z3 + • • • .

THEOREM 1. IfF(z) = ^ ~ = 1 ANzN = Axz + A2z
2 + A3z

3 -\ e @, then

2V2
I

PROOF. We may assume A2 ^ 0 so A3 ^ 0 ([8]).
By the Facts 1 and 2 in §1, F e St if and only if aF(xz) e & for all a e C,

|JC| = 1. Take

—fr and x =

then

^-coefficient of aF{Xz)] = aAlX
2 = A ^ • A2 • ̂  A
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and

[z3-coefficient of a F(xz)] = aA3x
3 = £ - • -%- • A3 • ^ ^

\A2\

\A3\
2 |A2

| A 3 | > 0 .

3

Let A2 = 1, A3 > 0 and it suffices to show that A3 > 2^2/3 . Let Ax = re'*
and suppose A3 < 2-s/2/3. Then by Corollary 1 we have r < A3 < 2-y/2/3 < 1.
We define a continuous linear functional / on s/ by / ( / ) = a3/A3 where /(z) =

max Re J(FX) = max Re — • A3x
i = 1 .

1*1=1 l*l=i A3

We will see that there is a <p € ^ 0 such that

Re / ( F o ^P) > 1 if A3

which will prove F ^ ^ by Lemma 2.
We have two cases

(i) Re Ax < 1/2.
(ii) Re Ax > 1/2, that is 1/2 < r cos $ and 1/2 < r < A3 < 2^2/3 .

Case (i) Consider

^ ( z ) = £ 6 n z " = z i ^ = a z + ( l - | a | 2 ) z 2 + « ( | a | 2 - l ) z 3 + ...
n = \

Let a = \ — e, 0 < e < 1 , then

6, = 1 - e, b2 = 2s- s2, b3 = -2s + 3e2 - e3.

From the remark before the Theorem 1, we have

J(F(<p)) = — (A\b3 + 2b\b2 + A3bl) = b\ -\ bxb2 -\ b3

So,

= (1 - e)3 + —(1 - e) (2s - s2) + — (-2e + 3s2 - e3)
A3

 v A3
 v '

Re J(F{fp)) - 1 = -3e + — [2 - Re A,] +
A3
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where 6(e2) is such that

hm
£-•0+ e2

is finite.
If Re Ai < 1/2, since A3 < 1, there is e > 0 such that

Re J (F(<p)) > 1 = max J (Fx(z)).

Case (ii) Consider <p, (z) = e~w(p(eiez). Let a = 1 - £, 0 < e < 1, then

bi = l-e, b2 = (2s - e2)eie, b3 =-(2s - 3s2 + s3)eiW.

Again from the remark we have

= (1 _ e)3 + —(2s- 3s2 + e V -—(2s- 3e2 + s3)el2e.
A3 A3

So,

R wRe J(F(cpi)) - 1 = -3e + —Re ew - —Re AYei7S +
A3 A3

r 2 i
= £ - 3 + — (2 cos 9 - r cos(4> + 29)) +L ^ J

By Lemma 5, there exist e > 0 and 9 such that

Re J(F(<p1)) - 1 > 0,

which proves F £ Si in case (ii).

3. Univalent halfplane mapping

In this section we prove that if F(z) — ^2^=0ANzN e ffl satisfies |A]| = \A2\,
then F is a univalent halfplane mapping. By the facts in §1 we may assume Ao =
0 and Ax = A2 = 1 without loss of generality. We will show AN = 1 for all
tf = 3 , 4 , 5 , . . . .

By the definition of SSt, for every cp e &0, there corresponds a /x e A such that
F(<p(z)) = fr F(xz)dfi(x). For F(z) = z + z2 + J^=3 ANzN e Si, the probability
measure /̂  which corresponds to (p(z) = z(z + e)/(l + sz), - 1 < s < 1, is given as
in the following lemma.
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LEMMA 6. IfF(z) = z + z2 + D/vU AN?N e ^ , ^ probability measure /x
corresponds to <p(z) = z(z + e)/(l + sz), — 1 < £ < 1, is

where Sx is point mass at x.

PROOF. Let F(z) = z + z2 + £~ = 3 ^ z " e S$. If M is the probability measure
corresponding to cp(z) = z(z + e)/(l + sz) e 380, then

1+ezJ Jr
F z — — = (xz + x2z2 + > ANxNzN)dfi(x) that is

z + e
z- + I z-

1 + ez
= f xdfi(x)-z+

By comparing the coefficients of the z—ve and z2—ve terms, we have

/ xd/x(x) = e and / x2dfi(x) = 1.

Let A = {I, —1], B = T\A. Suppose 0 < fi(B) < 1. Then there are a positive
number r\ and a subset Bo of B such that 0 < ii(B0) and Bo = {x e F : |Imx | >
(Note : 0 < r\ < n/2 ). Then

1 = Re J x2dfj,(x) = Re j x2d^{x) + Re J x2d^{x)
JT J Bo Jr\B0

< [max,eBoRe x2] ^(Bo) + M(r\fl0) < J 1 - sin21 M(«O) + fi(T\B0)

< H(Bo) + n(T\Bo) = I.

This contradiction gives fi(B) = 0 and /x(/4) = 1. Thus t̂ = k^ix + (1 - A ) ^ . ] with
0 < A < 1.

Now, / r xdft(x) = s gives A. = (1 + e)/2, which implies the lemma.

THEOREM 2. / / F(z) = z + z2 + ^ ~ = 3 ANzN e Si, then AN = 1 for all N =
3, 4, 5 , . . . , so that F is a univalent halfplane mapping.

PROOF. By Lemma 6, every F(z) = z + z2 + ^ ~ = 3 ANzN in 3$ satisfies

ez
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From (*) we have, by differentiating twice with respect to s,

(**) F ) 2 F ( z

1+BzJ 1+ez \ l+ez

Continuing differentiation, we have

i ! _ iN + 1)F«n
l + sz) l+ez

Let z = 0. Then we have

F{N+l}(0) - (N + l)Fw(0) = 0,

which implies AN — 1 for all N — 3, 4, 5,

COROLLARY 3. / / F(z) = £ ~ = 0 ANzN e 01 and \AX\ = \A1N\ = I for some

positive integer N, F is a univalent halfplane mapping.

PROOF. By Lemma 3, we have \A{ \ = |A 2 \ = 1.

I wish to thank Professor D. R. Wilken, who was my advisor at SUNY at Albany,

for providing invaluable assistance at every stage in studing the subject.
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