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Abstract

Let o denote the set of all functions analytic in U = {z : {z] < 1} equipped with the topology of uniform
convergence on compact subsets of U. For F € of define

s(F)={Fo¢:¢ e« and|p(2)] <|z]}.

Let €0 s(F) and £¢0 s(F) denote the closed convex hull of s(F) and the set of extreme points of o s(F),
respectively.
Let Z denote the class of all F € of such that £€o s(F) = {F, : |x| = 1} where F,(z) = F(xz).
We prove that |[Ay| < |Ayw| for all positive integers M and N, and (2VZ/3)|Az] < |As]| for
F(z) =Y w_o Avz" € %. We also prove that if F(z) = Y y_, Avz" € Z and |A,| = |Ay|, then F is a
univalent halfplane mapping.

1991 Mathematics subject classification (Amer. Math. Soc.): 30C80.

1. Introduction

Let & denote the set of all functions analytic in U = {z : |z] < 1}. & is a linear
topological space with respect to the topology of uniform convergence on compact
subsets of U. Let F € & and let s(F) denote the set of all f € & such that f is
subordinate to F. A function f in & is subordinate to F (written f < F) if there
exists ¢ € By = {¢p € & : |¢(2)| < |z|forallz € U} such that f = F o ¢. Let
¢o s(F) and &co s(F) denote the closed convex hull of s(F) and the set of extreme
points of co s(F), respectively.

Let % be a compact subset of &/. A function f € & is called a support point of F
if there is a continuous linear functional J on & such that f maximizes Re J over %
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and Re J is nonconstant on ., that is Re J(f) = max{Re J(g) : g € &F} and Re J
is nonconstant on .#. We use .# to denote the set of support points of %.

Let Z denote the class of all F € & suchthatCos(F) = {fr F(xz)du(x) : u € A}
where A denotes the set of all probability measures on I' = {z : |z| = 1}. It is worthy
of note that F € Z if and only if £¢0 s(F) = {F, : |x| = 1} where F,(z) = F(xz).
We will show this in Lemma 1.

The problem of finding the general conditions for F to be in & was posed by
T. Sheil-Small. Many examples were shown to be in & by various authors ([2, 3, 4,
6,9, 10]).

The aim of this paper is to find coefficient conditions for F(z) = 3 5_, Avz"
to be in Z. In [8], D. J. Hallenbeck, S. Perera and D. R. Wilken proved that
if F(z) = fozoANzN € Z and if Ay # 0, where N > 1, then Ay # O for
every M > N. Here we prove that |[Ay| < |Ayw/| for all positive integers M and
N, and 2+/2/3|4,| < |As| for F(z) = Y w._, Anz" € %. We also prove that if
F(z) = va"zo AnzN € Z and |A,| = |A,|, then F is a univalent halfplane mapping.

From the definition of % we have the following.

FACT 1. F € Z if and only if aF + b € Z for all numbers a, b € C.

FAcT2. Fe Zifandonlyif F, € Z, |x| = 1.
So, F € Z if and only if /" F (e°z) € & for all real n, 6.
LEMMA 1. A nonconstant F € &7 isin Z ifand only if £co s(F) = {F, : |[x| = 1}.

PROOF. The sufficiency is obtained by Theorem 1 of [5] and Theorem 5.5 of [7].
Next, we have (with .F = s(F) in [7, p.92])

Co (Ts(F) N &co s(F)) =co s(F).
To show F € £, it is enough to show
Ts(F)N&cos(F) C {/I:F(xz)du(x) IS A].
If f € Zs(F), f = F o B with B a finite Blaschke product (in [7, p.166]) and

f=FoBe&Ccs(F)={F,:|x| =1}implies f = F, and f € {f. F(xz)du(x) :
o€ Al

LEMMA 2. Let F € /. If there is a continuous linear functional J and ¢ € %,
such that Re J(F(g)) > Re J(F,) forall |x|=1,then f ¢ Z.
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PROOE. If F € Z, then
cos(F)= {/FF(xz)d,u(x) U E A}.
So, for any ¢ € %, we have
Fogpe {/FF(xz)du(x):pLeA}.

Thus, for any continuous linear functional J on &, we have

Re J(Fogp) < meag(Re J (/ F(xz)d,u(x))

r

= max/Re J(F(xz))du(x) = maxRe J(F,).
HEA r 1x]=1

2. Coefficients of elements of the class %

In this section, we show that, if F(z) = Z?:o AnzVN € Z,|Ay| < |Aun| forevery
M,N =1,2,3,... and we have thatif {c + 1| < 1 thenexpc((1 +2)/(1 —2)) ¢ #
as a corollary. We also show that (2«/5/3)|A2| < |As).

LEMMA 3. If F(z) = 3 _, Anz" € &, then
|An] < |Amnl, M,N=123,....

PROOF. Since F € Z, for every ¢ € %B,, there is u € A such that

Flo(z) = f Fandp (),

r
Take ¢(z) = z™. Then

F(zM)=/F(xz)du(x) forsome w € A, thatis
r

iANZMN = / (i ANXNZN) du(x) = ZAN (/ de/L(x)) -z,
N=1 [ AN=1 N=1 r

By considering the coefficient of z*", we have
AN = AMN / XMNdpL(X).
r

Hence Axl < |Awn] f M dp(x) = Al
r
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COROLLARY 1. If F = Y% Ayz¥ € @&, then |A\| < |Ay| for all M =
1,2,3,....

PROOF. Let N = 1 in Lemma 3.

Although the following lemma was proved in [6], we give a shorter proof by using
the closedness of Z.

LEMMA 4. IfRe ¢ > 0, thenexp(c(1 +2)/(1 —2)) € Z .

PROOF. Note (1 4+ w/N)" converges uniformly on compact subsets of U to exp w
as N goes to 0o. Let Re ¢ > 0. By a simple calculation we see exp(c(1 4+ z)/(1 — z))
is the limit of

(1 +((c=N)/(c+ N))z)N (c +N
v = 3 :
-z N

N
) , N=123,...

each of which is in Z ([4]), since [(¢c — N)/(c + N)| < 1. Since Z is closed ({8]),
the limit function exp(c(1 + z)/(1 — z)) is in Z.

If ¢ < 0, thenexp(c(1+2)/(1—z)) € H' sothatexp(c(1+2)/(1—12)) ¢ Z ((1]).
So we conjecture:

1
exp(c1+2) ¢ R if Rec <O,

—Z

Corollary 2 is a partial solution for this.

COROLLARY 2. If |c + 1] < 1, then exp(c(1 + 2)/(1 — 2)) ¢ Z.

PROOF. Suppose F(z) = exp(c(l +2)/(1 —2)) = Zj’vozo AyzV € #. Then we
have

1
A, =2cexpc and A2=§-(4cz+4c)expc

by simple calculation. By Corollary 1,
1
|A,| < |A;|, thatis 2|c}lexpc| < 3 |4c2 —+—4c| lexpc] or 1 <|c+1].
This proves the corollary.

To show (2«/—2'/3)fA2| < |Asl, we need a technical lemma;
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LEMMAS. Ifrcos ® > %, 0 < r < 1, then there exists 8 such that

2cos@ — rcos(P + 260) > V2.
PROOF. First, we assume 0 < ® < /3. Let

f(6) =2cosh — rcos(P + 20)

=2cos — 2r cos @ - cos’ 0 + r cos & + 2r sin  sin 6 cos 6.
Let 8 = cos™! (1/2rcos ®) with 0 < 8 < m/2. Then cos§ = 1/2rcos ® and
sinf > 0. Hence

1 1
rcosd®  2rcos®

:(—%im-m)l%z%:ﬁ

Similarly, we can choose 6 with —m/2 < 6 < 0 for the case —m/3 < & < 0.

+rcos®d

[ =

REMARK. If F(z) = Ajz4 Ay + A3+ - and @(z) = bz + bz + bz’ + -+,
then
F(p(2)) = A\(byz + b2 + 032> + -+ ) 4+ Ay(b1z + byz? + byz® + - -+ )?
+A3(b12+b222+b323+--.)3+...
= Abyz + (Aby + AbD)Z 4 (Arbs + 2A:b,by + AsbD)Z + - -

THEOREM 1. If F(z) = Y 5_, AnzY = A1z + Az’ + A3z + -+ € &, then

272
3
PROOF. We may assume A, # 0s0 A; # 0 ([8]).
By the Facts 1 and 2 in §1, F € & if and only if aF(xz) € & for all a € C,

|A2| < [As].

|x] = 1. Take
-3 —
A, A? A A
a=—2—2 and x=-2."2
|A2l* | As| |A2] | As]
then
—3 —2
A, A? A2 A
2 : 2 2 3 2 3
z*-coefficient of a F (xz)| = aA,x* = <Ay - =1
[ I =t = R TaE ™ AR A
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and

3 J—

A Al A A
Z-coefficient of a F (xz)] = aAsx® = —% . 3 . 4, 2. 3
[ ] T AR AR T (AP AP

1

=——|4;] > 0.
1Al

Let A, = 1, A; > 0 and it suffices to show that A; > 24/2/3. Let A, = re'®
and suppose A; < 2+4/2/3. Then by Corollary 1 we have r < A; < 24/2/3 < 1.
We define a continuous linear functional J on & by J(f) = a3/A; where f(z) =
Y v oanz" € . Then

1
maxRe J(F,) = maxRe — - A;x> =1.
x|=1 1x1=1 A3

We will see that there is a ¢ € %, such that

24/2
ReJ(Fop)>1 if A;< —3‘5
which will prove F ¢ % by Lemma 2.
We have two cases
(i) Re A, <1/2.
(ii)) Re A, > 1/2,thatis1/2 <rcosdand 1/2 <r < A; < 2ﬁ/3.

Case (i) Consider

‘P(Z) = Zl:bnzn = le::aaz =az+ (1 _ |(X|2) 22_+_a(|a12 _ 1)23 4.

Leta=1—¢, 0 <& < 1,then
by=1-—e¢, b, =2¢ — €2, by = —2¢ + 3¢% — &3

From the remark before the Theorem 1, we have

J(F() = A. (A1bs +2b1b, + A3b}) = b} + A—b1b2 + 1—4—1—b3
3 R X

=(1-¢’+ i(1 —e)(2e—€) + A (=28 + 367 — &%)
A3 A3

So,

Re J(F(p)) — 1 = =3¢ + EAS— [2—Re A|] + O(&?)
3

https://doi.org/10.1017/51446788700037630 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037630

[7] Coefficients of an analytic function 251

where €'(¢?) is such that

. 0D
lim
e->0+ g2

is finite.
If Re A, < 1/2,since A; < 1, there is ¢ > 0 such that

ReJ(F(p)) > 1= 1|n'a=u1(.l (F.(2)).

Case (ii)) Consider ¢;(z) = e p(e'®). Leta =1 —¢, 0 < ¢ < 1, then
by=1-—¢, by = (2 — e%)e'?, by = —(2e — 3% + £*)e' .
Again from the remark we have

2 A,
J(F =b+ bbb —b
(F(p1)) 1+A3 1 2+A3 3

2 ) A .
=(1—¢)+ —(2e — 362+ £%e® — Z1(2e — 36 + &%),
As As
So,

4e 2 |
Re J(F(9)) — 1 = =38 + —Re ¢ — Z2Re A, + O(s?)
4, A,
2
=¢ {—3 + - (2cos@ — rcos(P + 20))] + O0(&?).
3

By Lemma 5, there exist € > 0 and 8 such that
Re J(F(¢1)) —1>0,

which proves F ¢ Z in case (ii).

3. Univalent halfplane mapping

In this section we prove that if F(z) = Zj’vo=0 AnzV € X satisfies |A;| = |A,],
then F is a univalent halfplane mapping. By the facts in §1 we may assume Ay =
Oand A, = A, = 1 without loss of generality. We will show Ay = 1 for all
N=3,45,....

By the definition of Z, for every ¢ € %,, there corresponds a 4 € A such that
F(p(2)) = [ F(xz)dpu(x). For F(z) =z + 22 + Y_5_; Ayz" € Z, the probability
measure u which corresponds to ¢(z) = z(z +€)/(1 +€z), —1 <& < 1, is given as
in the following lemma.
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LEMMA 6. If F(z) =z + 22+ Y n_; Anz" € &, the probability measure j which
corresponds to ¢(z) = z(z +¢€)/(1 +¢€2), -1 <e < 1,is

I+¢ l1—¢
= ) 5_.
u (2 )1+< 2) i

where 8, is point mass at x.

PROOF. Let F(z) = z + 22 + Y 5 3 Anz" € Z. If p is the probability measure
corresponding to ¢(z) = z(z + €) /(1 + ¢z) € %,, then

o
F (z zte ) = /(xz +x22 + ZANXNZN)dpL(X) that is
r N=3

1+ez
2
z+¢ z+4+¢€
e = d . 2d N RN
Zl+sz+(zl+£z> + frx w(x) Z+/FA nx)-z2 +

By comparing the coefficients of the z—ve and z*>—ve terms, we have

/xdu,(x) =¢ and /xzdu(x) =1.
T r

Let A = {1, -1}, B = I'\ A. Suppose 0 < u(B) < 1. Then there are a positive
number 7 and a subset By of B suchthat 0 < p(By) and By = {x € I" : |Imx| > sinn}.
(Note : 0 < n < /2 ). Then

1 =Re /xzdu(x)=Re f xzdp,(x)+Re/ x2du(x)
r By T

\Bo
< [max,eaRe x| 1(Bo) + w(T\Bo) < 1 = sin® I w(Bo) + u(I\Bo)
< u(Bo) + p(T\By) = 1.

This contradiction gives w(B) = 0 and u(A) = 1. Thus ¢t = Ay + (1 — A)pu_, with
0<ic<l.
Now, fr xdp(x) = ¢ gives A = (1 + ¢)/2, which implies the lemma.

THEOREM 2. If F(z) = z + 22 + ) _y_; Anz" € X, then Ay = 1 forall N =
3,4,5,..., so that F is a univalent halfplane mapping.

PROOF. By Lemma 6, every F(z) =z + 22+ ) »_, Ayz" in Z satisfies

*) F (z f:;) = F@+ 15 (F — FO).
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From (*) we have, by differentiating twice with respect to ¢,

z 1—2z2
(+%) 2 DYl i s B
14+¢ez/)1+ez 1+ sz

Continuing differentiation, we have

FV+D (z—~—2+8> = — (N + 1)F™ <Z——-Z+‘8 ) =0

14+¢6z)1+¢z 1+ ez

Let z = 0. Then we have
FN*(0) — (N + 1)F™(0) =0,

which implies Ay = 1 forall N = 3,4,5,....

COROLLARY 3. If F(z) = Y 5% o Anz" € Z and |A\| = |Aww| = 1 for some
positive integer N, F is a univalent halfplane mapping.

PROOF. By Lemma 3, we have |A|| = |4, = 1.

I wish to thank Professor D. R. Wilken, who was my advisor at SUNY at Albany,
for providing invaluable assistance at every stage in studing the subject.
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