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1. Introduction. It has been shown elsewhere (1, 4) that the number 
of rooted non-separable planar maps with n edges is 

2(3n - 3)! 
n\(2n - 1)1 

In the present paper we improve upon this result by finding the number/.,-,_,• 
of rooted non-separable planar maps with i + 1 vertices and j + 1 faces. 
We use the definitions of (1). 

Among the non-separable planar maps only the loop-map and the link-map 
have i = 0 or j = 0. We therefore confine our attention to the case in which 
i and j are both positive. 

2. An empirical formula. A catalogue of rooted non-separable planar 
maps was constructed, listing all such maps with i + j < 8. It was observed 
that the formula 

OU f =(2i+L- 2)!(2j + i^z 2V. 
V-l) JiJ i ! j ! ( 2 * - l ) ! ( 2 / - l ) ! 

was valid in this range. 
This empirical formula was presented by one of us at the International 

Congress of Mathematicians in Stockholm (1962). 
It is natural to suppose that (2.1) is valid for all positive integers i and j . 

On this assumption it is possible to interpret the series 
CO OO 

(2.2) f(x,y) = D £ / * . , * y 
i=l j=l 

as a Lagrangian expansion involving two variables. This approach leads to 
the conclusion that f(x, y) is the Taylor expansion, in powers of x and yy of 
the analytic function 

uv(l — u — v), 

where u and v are the functions of x and y, analytic in a sufficiently small 
neighbourhood of (0, 0), determined parametrically by the following equations 

Î
X = U{\ — V)2y 

y = v(l - u)\ 
Xu,v) = (0,0) if (x,y) = (0,0); 

see (3, I, §188 and II, Part I, §104). 
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We prove this parametr ic formula f o r / ( x , y), which so far is based only on 
observation and conjecture, in §3. We do this by establishing a functional 
equat ion for a power series h(x, y, z) in three variables with the proper ty t h a t 
h(x, y, 1) = f(x, y). A situation is then encountered which, in our experience, 
is typical of the enumerat ive theory of planar maps. There is no evident direct 
method of solving the functional equation, bu t if the function fix, y) can be 
guessed correctly, then the equation can be used to verify the guess and to 
determine h(x,y,z). In §3 we thus prove t ha t 

/ ( x , 3/) = uv{\ — u — v). 

In a forthcoming paper by one of us a more direct method of solving such 
functional equations will be described. 

In §4 we use (2.3) to determine the coefficients fitJ, thereby establishing the 
general validity of (2.1). 

3. Proof of t h e c o n j e c t u r e . Let M be any rooted non-separable planar 
map . We refer to the face incident on the left with the root as the external 
face of M. We say t ha t M is of type {n, rn,j} if it has n edges and j + 1 faces, 
and if the valency of the external face is m. Let wn,m,j be the number of such 
maps. We define as formal power series 

CO CO 

(3.1) W.m.(xtz) = ^ S Wn,m,jXnz\ 

CO 

(3.2) w(x,y,z) = X) w.mXx,z)ym. 
wi=2 

We now apply the argument of (1 , §3) in a slightly more general form. As 
in t ha t discussion we observe t ha t M decomposes uniquely into its root and a 
sequence of 5 + 1 > 1 rooted non-separable planar maps Ma (0 < a < s). 
We write the type of Ma, as {nai rna,ja}- The link-map, or map of one edge 
with distinct ends, considered to be of type { 1 , 2 , 0 } , may appear in this 
sequence; cf. (1 , Figure 1). 

With each member Ma of the sequence we associate an index ra. This is 
the number of edges which Ma contributes to the boundary of the external 
face of M. 

We observe t ha t the following conditions are satisfied : 

0 < Ya < May 

1 — àma,i < nai a = 0, 1, . . . , 5 

s 

(3.3) £ ' « = * » - 1, 

s 

J2 na = n — l, 
a=0 

s 

E i« = j - i-
a-0 
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Conversely, suppose we are given a sequence (Mot Mu • • • , Ms) of 5 + 1 > 1 
rooted non-separable planar maps, possibly including link-maps. 

Suppose also that Ma (0 < a < s), is of type {na, rna,ja), that Ma has an 
associated index rai and that conditions (3.3) are satisfied. Then the sequence 
of maps Ma, together with the indices ra, determines a rooted non-separable 
map of type {n,m,j}. 

We deduce that 
OO S 

Wn,m,j = L L 1 1 K a . m a . i a + ^ . l ^ ^ S j a . o ) , 
s=0 a=0 

where the second summation is taken over all ordered sets of integers 

(«0, nu ... j ns\ wo, mi, . . . , m8'Jo,ji, • • • > j s ; fo, n , • . • , r8) 

satisfying (3.3), for each s. This formula may be rewritten as 

w{%, y, z) = xyz^ \ ^ w.m.(x, z)[y + y2 + . . . + y*"1] + xy ( . 

This equation can be simplified by the method used for (1, (3.3)). We 
then obtain 

(3.4) w2(x, y, z) + [(1 — y)(l — xy) + xyz — yw(x, 1, z)] w(x, y, z) 

— xy2z[x(l — y) + w(x, 1, 2)] = 0. 

Let Ai,;fW be the number of rooted non-separable planar maps, excluding 
link-maps, such that the number of vertices is z + 1, the number of faces is 
7 + 1, and the valency of the external face is m. By the Euler polyhedron 
formula we have 

(3.5) hi,j,m — wi+j,m,j-

We define the following formal power series: 

00 00 

(3.6) hj.(x,z) = X S ^,i.mX2m, 
t=l m=2 

00 

(3.7) h(x,y,z) = J2 hjXx,z)yj. 
3=1 

Thus h(x, y, z) — w(x, z, x~xy), by (3.5). Applying this result to (3.4) we obtain 

(3.8) h2(x, yy z) + [(1 — z)(l — xz) + yz — zh(x, y, 1)] h(x, y, z) 

— yz2[x{\ — z) + h(x, y, 1)] = 0. 

We note that h(x,y, 1) = f(x,y). 
Now equation (3.8) can be rewritten as 

(3.9) (1 - s)(l - xz)h(x,y,z) 

= — h2(x, y, z) + [—yz + 2Â(a;, 3/, 1)] A (a, 3/, z) 

+ 3/s2[x(l - 2) + h(x,y, 1)]. 
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If the functions hmjm(xi z) a r e known from j = 0 to j = q > 0, then we can 
find the corresponding function for j = q + 1 by equating powers of yQ+1 

in (3.9). Hence, the functions hjXx> z) a r e uniquely determined by (3.8) and 
the single extra condition 

(3.10) h.o.faz) = 0, 

which is an immediate consequence of the definition of hitjm. 
We deduce that the only solution-pair {<r(x, y, z), r(x, 3;)}, in non-negative 

powers of the indeterminates, of the functional equation 

(3.11) o-2(x, y, z) + [(1 — z)(l — xz) + yz — ZT(X, y)] a(x, y, z) 

—yz2[x(l — z) + r(x, y)] = 0 

which satisfies the conditions 

(3.12) a(x, y, 1) is well defined and equal to r(x, y) 

and 

(3.13) <r(x,0,z) = 0 

is {h(x,y,z),f(x,y)}. 
For any function r(x, y) which is analytic at (0, 0) we can solve (3.11) as 

a quadratic equation in o-(x, y, z). If one of the solutions satisfies (3.12) and 
(3.13), then its Taylor expansion about (x, y, z) = (0, 0, 0), if any, must be 
h(x,y, z). 

Let us take 

(3.14) r(x, y) = uv{\ — u — v), 

where u and v are defined parametrically by (2.3). Write 

(3.15) B = (1 - *)(1 - xz) + yz - zr(x, y), 

(3.16) C = yz2[x(l - z) + T(X, y)]. 

On substituting the appropriate expressions in u and v for x, y and r(x, y) 
in (3.15) and (3.16), we obtain 

(3.17) B = l - ( l + u - v + uv- 2u2v)z + u{\ - v)2 z\ 

(3.18) C = uv(l - u)2 {(1 - v - uv)z2 - (1 + v)2 z3}. 

Hence, we may verify that 

(3.19) B2 + 4C = {1 - (1 - v)z}2{\ - 2w(l + v - 2uv)z + u2(l - z;)2 z2}. 

We may now write one solution of (3.11) as 

(3.20) o-(x, ;y, z) 

= \{-B + (1 - (1 - v)z) vr"^(TTV"::^^)"sT"^(i - v)V}, 
where the square root is chosen to have the value + 1 when u = 0. 
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Putting z = 1 in (3.17) and (3.20), we obtain 

(3.21) u v/>, y, LJ — 2 

= uv{\ — u — v) 

= T(X9 y). 

o-(x, y, 1) = §{ — z; + Suv — 2u2v — uv2 + v(l — u — nv) \ 

Hence the solution (3.20) satisfies (3.12). 
Let us put y — 0 in (2.3). Then, in any sufficiently small neighbourhood of 

(0, 0), we have u = x and v = 0. Substituting these values of u and v, we find 
that the solution (3.20) satisfies (3.13). 

It is clear that o-(x, % s), as given by (3.20), is analytic in a sufficiently 
small neighbourhood of (0, 0, 0). We may now assert that its Taylor expansion 
about (0,0,0) is h(x,y,z). Hence the Taylor expansion of r(x,y) about 
(0,0) is/(x,;y). 

4. The coefficients ftJ. We note that 

uv(\ — u — v) = uv{(\ — u) + (1 — v) — 1} 

= xy 
I , _ _ _ J i I 

(1 - «)(1 - vf ^ (1 - w)2(l -v) (1 - u)\\ - vf) 
by (2.3). 

Let r and s be positive integers. Then, by (2.3) and (2, Theorem 12), 

i _ v xy 
(1 - u)r{\- v)s t * *!/'• 

j>0 

- 1 , f*ni 1 
LdaldblJ g (1 - a ) r ( l -b) Ja=0 

6=0 

where 

and 

1 

a - by a-ar 1 

A = 
1 

-yfa * 

= 1 
4xy 

(l-aY(l-b)3-

Hence, 

( 1 - - w)r(l -v)s 

v x'y1 d 
Sda' 

V+j ( 1 \2j+r / i \ 2 i + s 1 

J>0 
0 

6=0 
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(2j + i + r- l)\(2i+j + s- 1)! 1 J 

= V £ X 
& *!j! L (2j + r - l ) ! ( 2 * + s - l ) ! 
;>0 

_ 4 r „ (2j + » + r + 2)!(2*+j + s + 2)!l 
*x:y (2j + r + 2)!(2i + 5 + 2)! J 

_ y xy{2j + i + r-iy.(2i+j + s-iy. 
~ U Hj\ C2j + r)!(2» + 5)! l ^ + 2w + rs | . 

i>0 

We may now write 

f(xy y) = uv(l — u — v) 

xi+1y1+\2j + i)\(2i + j)\ 
£ , i!j!(2j + 2)!(2i + 2)! A ' 

where 

X = (2j + 2) (2* +j + l)(4j + 2i + 2) 

+ (2t + 2) (2j + * + 1) (4* + 2j + 2) 

- (2* + i + l) (2j + * + 1) (4t + 4/ + 4) 
= 4 ( 2 t + j + l)(2i + t + 1). 

Hence, 

* r V> = V xi+1yi+\2j + i + l)\(2i + j + IV. 
J{ ' y) h (i + 1)!(J + 1)!(2» + l)!(2j + 1)! 

= V xV /(2j + i - 2 ) ! ( 2 i + i - 2 ) ! 
i l i ! j ! ( 2 i - l ) ! ( 2 / - l ) ! 

Thus, formula (2.1) is valid for all positive integers i and j . 
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