THE J-DIFFERENTIAL AND ITS INTEGRAL
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WE consider the possibility of generalising the statement

dy =f)dx  ———  y)—y@) = rfdx

to the case

dy = f(x)dg(x) - W(x)—y(a) = J fdg.
The question centres around the definition of dg(x) on the one hand and of
the integral J fdg on the other: as ordinarily understood, the generalisation

is impossible when g(x) is any arbitrary function of limited variation, or is
merely not continuous. We define a differential, the vector j-differential, of
a function g(x) with respect to any interval I, having x as one terminal and
x-+dx as the other, and vector weight determined by values of a function
f(x) on the interval /., whose weighted scalar sum, for any chain of such
intervals from a to x, has a limit by refinement of the chain (i.e., by subdivision
of intervals), namely the g-limit. Reciprocally, the j-differential operator, when
applied to this integral, gives back the weighted j-differentials appropriate to
a class of intervals with common terminal x. A reciprocal differential and
integral Stieltjes calculus is thus seen to exist. Of incidental but designed
advantage is the circumstance that the integration-by-parts formula and a
substitution rule are smooth generalisations of the ordinary. Certain ad hoc
limitations are of course imposed on the functions f(x) and g(x) but they are
permitted the discontinuities, possibly simultaneous, in every subinterval of the
fundamental interval [ab], of functions of limited variation.

1. Definitions .
We shall use the following symbols for classes:
D;—bounded functions having discontinuities of the first kind at most;
B—functions of bounded variation;

B’—functions in the class B such that if g(x) is in B’ and v,(x) is the total
variation of g(x) over [ax], then both

gt (x ) = limga 4o [g(x +8) —g(x+)1/6

and v,*(x-+), similarly defined, exist and are in D,;

B*—functions in the class B’ such that, if g(x) is in B*, the difference
quotient [g(x+0) —g(x-+)]/d, >0, converges uniformly over [ab].
E.M.S.—F

https://doi.org/10.1017/5001309150002527X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150002527X

86 W. H. INGRAM -
The j-differential is defined by either of the equations
jdg = jg+g'* (x+)dx, dg = (jg, g'* (x+)dx),

in which jg = g(x+)—g(x); we shall call dg the vector differential. With
dx non-negative and g(x) continuous on the left, jdg is an approximation to
Ag. The mean ii(x) and the vectorisation u(x) of a function u(x) are defined
by the equations

#(x) = $ux+H)+ux)), u(x) = [a(x), u(x+)].

Vectorisations result in economies in many places, e.g.,

Jjduv) = u(x+) jdv+v(x) jdu+jv - w' * (x-+)dx,
u(x) jdv+o(x+) jdu-+ju - v’ *(x4-)dx,
= w(x-+) jdv-+ov(x+) jdu—ju - jv;

but, if each term of the right member of the following equation is understood
to be the middle product (defined in § 6), then

d(uv) = udv-i-du - v.

The first integral permitting the simultaneous occurrence of discontinuities
in f({x) and g(x) to be invented was the interior-Pollard-Moore-Stieltjes
o-integral

b
P f Fig = 1im, Zyoguny JEIg Gt )~ 905

in which &; is subject to the interior Pollard 1 condition x;<¢&;<x;,, which
permits the simultaneity and where the index refers to points x;, i = 1,2, ..., v
of the open interval (ab) and to the end points xo = @, x,4; = b, x;<X;41,
in which the summation is from i = 0 to i = v, and in which lim, is the o-limit.
The limit of a sequence of values of functions of intervals corresponding to,
and given by, a sequence ¢y, 0,, ... in which each set o, (giving the ith value)
is any proper subset of ¢;,, and such that (1) for any two sets g;, o; there is a
set g, such that o;,<0,, 6;c 0y, and (2) for every o in the class of all finite sub-
divisions of [ab] there is a set o; such that 6co;,] namely the g-limit, was
first defined by Moore (2) and Pollard (4).

The left-Cauchy-Stieltjes o-integral (§) and the TP-integral are the o-limits,
respectively of the functions of intervals

Zotar /DAY, Zijopan f(xi H)Ag,

1 Ref. 4, p. 123, §12; Pollard called this the * restricted ” integral, Hildebrandt the
*“ modified ” integral in Ref. 1, §6, p. 273.

1 l.e. the aggregate {o} of all finite subdivisions of [ab] is (1) * directed * by the relation
0,Co,,, [vide E. J. McShane, Am. Math. Monthly, Vol. 59 (1952) p. 3] and (2) effectively
exhausted by the enumeration.
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where Ajg = g(x;4,1)—g(x;), fis in D, and g is in B, and their integration-by-
parts formulas for functions in B and continuous on the left, are

b b
f udv+ J vdu = [uv]y F Zogc<pju(x)  jo(x),

respectively. The LM- or left-mean-integral is defined by the equation
b
J fdg =1im, Ty f(XDAG; oo (LM)
it is easily shown to be the mean of the LCSs- and IP-integrals.

2. Existence of the Integrals
Theorem I. When f(x) is in D, and g(x) is in B, then

b b
(IP)f Jfdg exists and (LM) f fdg exists.

b
The existence of the left-Cauchy-Stieltjes o-integral (LCSa)f wdg, in

which w(x) is in D; and g(x) is in B, has been established by Price [Ref. 5,
Theorem 3, p. 627]. The IP- and LM-integrals are LCSo-integrals with
weight-functions w(x) equal to f(x+) and f, respectively, when f(x) is in D,
and g(x) is in B.

3. Elementary Integral Theorems

The elementary properties of linearity with respect to the integrated
function, linearity with respect to the weight function, the property that

x B B
f fdg+ j fdg = j fdg, a<x<f, asa<p=b,
and the properties

rfdg=0, f‘dg=g(x)—g(a), IZfdg=Zf fidg,

which hold for the Riemann-Stieltjes integral also hold for the IP-, LCSe-
and LM-integrals. These elementary theorems are immediate consequences
of the definition of integral as a limit or are true by definition.

The Mean-value Lemma. When w(x) is in D, and g(x) is in B, numbers
w,, w, berween the Lu.b. and g.Lb., inclusively, of the weight function w(x) on
any closed interval [x, x-+6), always exist such that

x+é x+3 _ x+3
J~ wdg=fl—_-;&J\ dg+w1Twzj dv,,

x x x
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and, when f(x) is in D, and g(x) is in B’,

. 1 x+0
im [ g = e s
++0 0 J 4

these equations hold for each of the four t kinds of integral just mentioned;
supplementary thereto are the equations

x4+ x+ x+
(LCSo) f Jdg = f(x)jg, (IP)j fdg = f(x+)jg, (LM)I Jdg =fjg.
x x x
To prove this lemma, let g(x) —g(a) be represented as the difference between
two non-decreasing functions p(x) and g(x) such that p(x)+q(x) = v,(x).
Then, for any o restricted to the subinterval [x, x+4d] of [ab] and, with
x;SE:<x;44, X80, X; 4,80, there are the inequalities

infw.Z,,Ap = Zyw(l)Ap £ supw.ZyAp

for p(x), and similarly for g(x), which hold up to, and including, their norm
and o-limits. The equations

x+é x+4 x+4 x+é
f wdp = w, f dp, j wdgq = wzj dq,

are seen to be implied. The first statement in the lemma follows by virtue
of the equations Ag = Ap—Ag, v = p+q, and the linearity property of the

x+8
integrated function. Next, the limit 5 fdg is seen, by a Cauchy test, to
x+
exist and, by a slight adjustment of first statement and proof,

x+8 * * x+é *_ L,k x+4
im 1|7 fdg = lim {Klizriz lf dg + u—lj dvg},

540 5-+0 o : 2 o
x+ x+ x+

where wi and w3 are numbers between the l.u.b. and gl.b. of f(x) on the
semi-open interval (x, x+43] and both having the limit f(x+) as d— +0; the
second statement is implied.

To obtain the supplementary results, let F;, be a number such that Fo>| f(x)|,
a<x=b, let the point x now be called x4 and let ¢ consist of v points in
(x0, Xo-08) together with the end points, v+2 points in all. Then, in the case
of the LCSo-integral,

|37= 0 f(x)AG —f(x0)[g(x1) — g(x0)] |< FoYi - 1| Mg | = Folv,(xo+8)—v,(x,)].

Since the variation v, of g(x) over the semi-open interval (xo, xo+4] tends
to zero as —0, it follows that to each £>0 there corresponds a d4(¢)>0 such
that, for all 0<d§ <dg,

l Zi/af(xi)Aig —f(x0)Aog ' <ég;

+ In the case of the Riemann-Stieltjes integral, it is first necessary that the left members
of the equations exist.
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and, corresponding to the same ¢, there also exists a g4(¢) on [xg, xo+3J] such
that for all 6264 and 0<d<J,,

{ f " fdg—fxo)iog

IA

xo+4
J Sfdg— Zi/uf (x)Ag ||

+ | LS (x)Ag = f(x0)Aog | + | f(x0)Aog —f(x0)jog | < 3e;
for we can always provide that the point x, of 6, be so close to x, that
| g(x)—g(x0)—jog | <¢/Fy whenever xo<x<x,, and therefore such that
| f(x0)Aog —f(x0)jog | <e. This 3e-inequality implies the first supplementary
result and since it holds when for f(x) we write f(x+) or f(x) it implies the second
or third supplementary result, respectively, as the case may be.

4. Elementary Properties of ¢(x) = .[ fdg.

For all four integrals (in the case of the Riemann-Stieltjes integral, it is
first necessary that the integral exist), we have the properties, fin D,

P, When g is in B, then ¢(x) is in B.
P, When ¢ is in B’, then ¢’ *(x-+) exists and is bounded. -
P, When ¢ is in B*, then (¢(x+06)—d(x+))/d, 6>>0, converges

uniformly over [ab], the convergant being written ¢’ *(x+).

For the integral indicated in each case and for g in B’, we have

P, Jjdp = fix+) jg+Ax+)g’ " (x+)dx, (IP)
Ps Jjdp = f(x) jg+fx+)g’ T (x+)dx, (LCSo)
Py Jjdp = fig+fx+)g' " (x+)dx = fdg (LM)

To prove Py, let Wo>| w(x) |, a=x=<b and let i be the index of any point
of alax] and I; the corresponding interval [x;, x;+,]. Then, invoking the
mean-value lemma for each of the v+1 intervals 7;, we have a boundedness

relation
W1+W2 Wy — W,
— 21 Ag+ | 21— Ap
(2572 dw (2157) 4o

Zi | Ai¢i | = 2'i
<Wo{Z|Ag | +ZAw,} = 2Wyu,(b),

which is uniform with respect to the class of subdivisions ¢[ax] and terminal
x. The proofs of P, and P, are each essentially the same as that of the second
statement of the mean-value lemma. To prove P, let now i be the index of
any point of any set ¢ on [xg, xo-+6]; then

| Zyef(xi+)Aig —f(x0 +)Aog | SFo)i- | Ag I = Folv,(xo+8)—v,(x1)];
Li_lgzi/af(xi'i')Aig = f(xo+) - jg(xo)-
To each ¢>0 there corresponds a d4(¢) such that, for all 0 < <y,
| Zief (x4 )Mig = f(x0+) -Jog | <&,
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and for any such J a set a[xg, xo+3] exists such that

xo+d xo+d
fdg—f(xo+)jog | £ fdg =2, f(x;+)Ag
’ ' , + | Zyaf O H)AG —f(%0+)jog | <2¢.
Hence j j fdg =f(x+)jg.

This jump result and the derivative result in the lemma, together, give P,.
This proof of P, has an obvious adaption to the case of the LCSo-integral to
give Ps; Pg follows immediately from the fact that the LM-integral is the
mean of the IP- and LCSo-integrals.

Theorem 1. When f is in D, and g is in B¥ and dx = Ax is relevant to o,
then

b

j fdg = lim,Z_ fdg.

Proof. To each >0, there corresponds a ¢,(g) such that for all 6>,

b
J Sfdg—- Zi/af (xDAg

<§g,

and a dy(¢), independently of x, such that for all 0<d<J,

g(x+8)—gx+)
5

gt (x+) | <e.

Let o, be of norm less than d,. Then, for all 6 >0, +0,,

b
fdg—X fAg

Ja

f " fdg—% JAg ‘ + }zi,,f’(g("f%—;"(’“” —g'*(x.~+)) Ax

-+

b
j g~y Jdg | <

£ f(bg —dg) )

=

< &+ Fy(b—a)e,

b
where Fo>|f(x) | on [ab]. Thusj fdg =1im, X fdg. The theorem follows
now from the inequality ‘

b
f fdg—Z,fdg ' s

b
J fdg—Z,fdg I +Zy, | fdg—fdg |,

from the equation fdg = fdg-+3}jf g *(x+)dx, from the boundedness of
g’ " (x+) and since the kth jump-abscissa of f{x) can be covered by an interval

of length %
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b
We may use the symbol J fdg for the right-hand member of the just

b b
established theorem and have the corollary: J dg = J jdg. Bt it is to be

a a

b

noted that J dg = g(b)—g(a) is false.

5. Integration-by-parts

In the case of the IP-integral, if both functions are in B and one or other
is continuous on the left at each common point of discontinuity, then the
integration-by-parts formula mentioned in §1 holds [Ref. 1, §6.2, p. 274].
The same is true in the case of the LCSo-integral. But, for functions continuous
on the left, the LM-integral is the same as the mean integral

b
(SM) J‘ fdg = lim, zi/a%(f(xi) +f(x; 4+ 1))Ag

of H. L. Smith and therefore has the ordinary integration-by-parts formula
{Ref. 1, § 7). Since the definition of the jump-differential, as given, requires
continuity on the left in order that jdg— Ag be an infinitesimal in Ax at all
points, a desideratum, we assume from now on that all functions are con-
tinuous on the left and that all integrals are SM-integrals or, what is then
the same thing, LM-integrals.

6. The Substitution Theorem

The substitution theorem, in the case where g(x)=f udv is known
a

[lim,AfAulAv = 0 is assumed, vide Ref. 1,§7]. A generalisation which permits
the functions to have simultaneous points of discontinuity, is given when
we vectorise the functions, the vector multiplications being properly under-
stood. Ordinary products become vector products. By the lower product
of any two vectors u and v is to be understood the scalar function Zu,v;, middle
product the vector whose ith element is z;v;, and upper product the square
matrix with element u;v; in the ith row and jth column. Three vectors u, v,
w have a lower product Zu,v;,w;, a middle product with ith element u,p,w,,
but no (defined) upper product. No distinguishing symbols are necessary
for our purpose as the kind of product intended can be inferred from the
context in all cases. Thus, in the case of the triple-product fudv of Theorem III,
the context implies the lower product. But, to avoid ambiguity in a term, we
may diagonalise a vector u, i.e. call [u) the square matrix with the elements
of u along the principal diagonal and zeros in the remaining places, and have
Sflu)dv, unambiguously, the lower product.
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Theorem III. When f and u are in D,, g and v are in B*, and dg = udv,

then
b b
f Jdg = J' Sudv.

b b
Proof. The result follows from the equation f fdg = ffdy, both formally

a

b
and in fact, if by J Sfudv we understand lim, X flu)dv. For the left member

of the integral equation of the theorem has the approximation X, fdg and this
is equal to Z, flu)dv for all 6> a(e), with dx in both appropriate to ¢; the
limit of the first exists and so the limit of the second exists. Since f-& =

— x
Ju—% jf . ju, it is evident that J

a

fdg = J JSudv if, and only if, at each point
on [ab] at least one of the three functions is continuous.

A corollary, by Pg, is that jd J fdg = flu)dv. Another corollary is that

when Y fidg, = udv holds at all points on [ab] and the integrals exist,
k=1

n b b
kzl Jv fidg, = j udv.

7. The Fundamental Theorem

then

By P, f fdg is a function such that its j-differential fdg exists for all x,
a<x<b. By Theorem II, the aggregate of all sums X fdg appropriate to all
sets o on [ax] has the o-limit f fdg. With dx = x;,, —Xx; appropriate to o,

P and II together imply the essential theorem:

X
Theorem IV. When fis in D, and g is in B*, then de' Jfdg = fdg.

a

Taking the j-differential of the integral of the vectorially weighted vector-
differential regains the vectorially weighted vector-differential appropriate to
the variable terminal x of integration.

The reciprocity, by virtue of the corollary to Theorem IHI;
jdy = fdg(x)  ———  y()—ya@) = f fdg

is now seen to hold.
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