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WE consider the possibility of generalising the statement

dy=f(x)dx < > y(.x)-y(a)= fdx
Ja

to the case

dy=f(x)dg(x) « • y(x)-y(a)= [" fdg.

The question centres around the definition of dg(x) on the one hand and of

the integral fdg on the other: as ordinarily understood, the generalisation

is impossible when g(x) is any arbitrary function of limited variation, or is
merely not continuous. We define a differential, the vector ^'-differential, of
a function g{x) with respect to any interval Ix having x as one terminal and
x+dx as the other, and vector weight determined by values of a function
f(x) on the interval lx, whose weighted scalar sum, for any chain of such,
intervals from a to x, has a limit by refinement of the chain (i.e., by subdivision
of intervals), namely the <r-limit. Reciprocally, they-differential operator, when
applied to this integral, gives back the weighted ^-differentials appropriate to
a class of intervals with common terminal x. A reciprocal differential and
integral Stieltjes calculus is thus seen to exist. Of incidental but designed
advantage is the circumstance that the integration-by-parts formula and a
substitution rule are smooth generalisations of the ordinary. Certain ad hoc
limitations are of course imposed on the functions f(x) and g(x) but they are
permitted the discontinuities, possibly simultaneous, in every subinterval of the
fundamental interval [ab], of functions of limited variation.

1. Definitions

We shall use the following symbols for classes:

D,—bounded functions having discontinuities of the first kind at most;
B—functions of bounded variation;
B'—functions in the class B such that if g(x) is in B' and vg(x) is the total

variation of g{x) over [ax], then both

and v'g
+{x-\-), similarly defined, exist and are in D, ;

B*—functions in the class B' such that, if g(x) is in B*, the difference
quotient [g(x-\-5)—g(x-\-)]ld, <5>0, converges uniformly over [ab].

E.M.S.—F
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86 W. H. INGRAM

The ̂ -differential is defined by either of the equations

jdg = jg+g'+(x+)dx, dg = (jg, g'+(x+)dx),

in which jg = g(x+)—g(x); we shall call dg the vector differential. With
dx non-negative and g(x) continuous on the left, jdg is an approximation to
Ag. The mean u(x) and the vectorisation u(x) of a function u(x) are defined
by the equations

«(*) = *[«(*+)+«(*)], «(*) = [«W, "(*+)]•

Vectorisations result in economies in many places, e.g.,
jd(uv) = u(x-\-)jdv-\-v(x)jdu-\-jv • u'+(x+)dx,

= u(x)jdv+v(x+)jdu+ju • v'+(x+)dx,
= u(x+) jdv+v(x+) jdu-ju -jv;

but, if each term of the right member of the following equation is understood
to be the middle product (defined in § 6), then

d(wv) = udv+du • v.

The first integral permitting the simultaneous occurrence of discontinuities
in f(x) and g(x) to be invented was the interior-Pollard-Moore-Stieltjes
er-integral

{IP)[bfdg = limffIiM

in which £; is subject to the interior Pollard f condition Xi<ii<xi+l which
permits the simultaneity and where the index refers to points xh i = 1, 2, ..., v
of the open interval (ab) and to the end points x0 = a, xv+1 = b, xt<xt+1,
in which the summation is from i = 0 to / = v, and in which limff is the <r-limit.
The limit of a sequence of values of functions of intervals corresponding to,
and given by, a sequence at, a2, ... in which each set a{ (giving the rth value)
is any proper subset of ai+ ] and such that (1) for any two sets ah Oj there is a
set ak such that ai<=ak, <Tj<=ok, and (2) for every a in the class of all finite sub-
divisions of [ab] there is a set <r; such that aaah% namely the <7-limit, was
first defined by Moore (2) and Pollard (4).

The left-Cauchy-Stieltjes w-integral (5) and the IP-integral are the a-limits,
respectively of the functions of intervals

t Ref. 4, p. 123, §12; Pollard called this the "restricted" integral, Hildebrandt the
" modified " integral in Ref. 1, §6, p. 273.

% I.e. the aggregate (a) of all finite subdivisions of [ab] is (1) " directed " by the relation
o,colt, [vide E. J. McShane, Am. Math. Monthly, Vol. 59 (1952) p. 3] and (2) effectively
exhausted by the enumeration.
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where A,g = g(xi+1)— g(x:),/is in D t and g is in B, and their integration-by-
parts formulas for functions in B and continuous on the left, are

f* f6

udv+
J a Ja

respectively. The LM- or left-mean-integral is defined by the equation

f
Jait is easily shown to be the mean of the LCScr- and IP-integrals.

2. Existence of the Integrals
Theorem I. Whenf(x) is in Dt and g(x) is in B, then

(IP) fdg exists and (LM) fdg exists.
J a J a

f*The existence of the left-Cauchy-Stieltjes cr-integral (LCSo) wdg, in

which w(x) is in Dj and g(x) is in B, has been established by Price [Ref. 5,
Theorem 3, p. 627]. The IP- and LM-integrals are LCSa-integrals with
weight-functions w(x) equal to f(x+) and / , respectively, when f(x) is in Dj
and g(x) is in B.

3. Elementary Integral Theorems
The elementary properties of linearity with respect to the integrated

function, linearity with respect to the weight function, the property that

and the properties

rx re re
fdg+\ fdg= fdg,

J a J x J a

ties

['fdg = 0, [* dg = g(x)-g(a), P £ fdg, = £ [" fdg,
Jx Ja Ja'= 1 ' = 1 Jowhich hold for the Riemann-Stieltjes integral also hold for the IP-, LCSCT-

and LM-integrals. These elementary theorems are immediate consequences
of the definition of integral as a limit or are true by definition.

The Mean-value Lemma. When w(x) is in Dx and g(x) is in B, numbers
tvj, w2 between the l.u.b. and g.l.b., inclusively, of the weight function w(x) on
any closed interval [x, x+8], always exist such that

J ,
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and, whenf(x) is in D t and g(x) is in B',

these equations hold for each of the four f kinds of integral just mentioned;
supplementary thereto are the equations

{LCSa) [X+ fdg =f(x)jg, (IP) {"*fdg =f(x + )jg, (LM) [*+fdg =fjg.
Jx Jx Jx

To prove this lemma, let g(x) —g(a) be represented as the difference between
two non-decreasing functions p(x) and q(x) such that p(x)+q(x) = vg(x).
Then, for any a restricted to the subinterval [x, x+<5] of [ab] and, with
JC, -^£J^JC, + 1 , x;8(T, Xj+1£cr, there are the inequalities

inf w. 2i/ffA,p ^ ^i/Mid^iP ^ sup w. Z//(TA,P

for p(x), and similarly for ^r(x), which hold up to, and including, their norm
and (T-limits. The equations

rx+d rx+d rx+i rx
wdp = wt dp, wdq = w2

dq,

are seen to be implied. The first statement in the lemma follows by virtue
of the equations Ag = Ap — Aq, v = p+q, and the linearity property of the

1 Cx+d

integrated function. Next, the limit - fdg is seen, by a Cauchy test, to

exist and, by a slight adjustment of first statement and proof,

lim - fdg = hm<— - - \ dg-\ --] dvg>,
t~ + o SJX+ s~ + o[ 2 6JX+ 2 8JX+ J

where w* and w* are numbers between the l.u.b. and g.l.b. of /(x) on the
semi-open interval (x, x+5] and both having the l imit / (x+) as <5->+0; the
second statement is implied.

To obtain the supplementary results, let Fo be a number such that Fo> | /(x)|,
a^xiS,b, let the point x now be called x0 and let a consist of v points in
(x0, xo+<5) together with the end points, v+2 points in all. Then, in the case
of the LCSff-integral,

Since the variation vg of g(x) over the semi-open interval (x0, xo+<5] tends
to zero as (5->0, it follows that to each e > 0 there corresponds a <50(e)>0 such
that, fora

t In the case of the Riemann-Stieltjes integral, it is first necessary that the left members
of the equations exist.
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and, corresponding to the same e, there also exists a ffo(e) on [x0, xo+S] such
that for all ff=>ff0 and 0<d<50,

U fdg-f(xo)jog

for we can always provide that the point xl of a0 be so close to x0 that
\g(x)—g(xo)—jog\<ejFo whenever xo^x^Xi, and therefore such that
\f(xo)Aog—j{xo)jog\<e. This 3e-inequality implies the first supplementary
result and since it holds when for/(x) we write/(x+) or/(x) it implies the second
or third supplementary result, respectively, as the case may be.

f4. Elementary Properties of <t>(x) s fdg.

For all four integrals (in the case of the Riemann-Stieltjes integral, it is
first necessary that the integral exist), we have the properties, / in Du

Px When g is in B, then <j>(x) is in B.
P2 When g is in B', then $ ' + (x+) exists and is bounded.
P3 When g is in B*, then (0(x+<5)-</>(*+))/<5, <5>0, converges

uniformly over [ab], the convergant being written 0'+(x-f).

For the integral indicated in each case and for g in B', we have

^4 jd<j>=f{x+)jg+f{x+)g'\x+)dx, (IP)
P5 jd<t>=f(x)jg+f(x+)g'+(x+)dx, (LCS<r)
P6 jd<t> = fjg +f(x+)g'+(x+)dx = fdg (LM)

To prove Plf let Wo>\ w{x) |, a^x^b and let i be the index of any point
of a[ax] and 7; the corresponding interval [x;, xi+l]. Then, invoking the
mean-value lemma for each of the v + 1 intervals /,, we have a boundedness
relation

< WO{11 A;3 | + E A ^ } = 2Wovg(b),

which is uniform with respect to the class of subdivisions a[ax] and terminal
x. The proofs of P2 and P3 are each essentially the same as that of the second
statement of the mean-value lemma. To prove P4, let now i be the index of
any point of any set a on [x0, xo+<5]; then

:. MmI.i/J(xi
a->o

To each e>0 there corresponds a 50(e) such that, for all 0<<5<<50,

I Zi/Jix,+)A,g-f(x0 + ).jog\<£,
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and for any such 5 a set a[x0, JCO+<5] exists such that
Xo + i

fdg-f(xo+)j0g

Hence

fdg--Li/J(xi

\ fdg=f(x+)jg.

<2e.

This jump result and the derivative result in the lemma, together, give P4.
This proof of P 4 has an obvious adaption to the case of the LCSc-integral to
give P5; P6 follows immediately from the fact that the LM-integral is the
mean of the IP- and LCS<x-integrals.

Theorem II. When f is in Dt and g is in B* and dx = Ax is relevant to 'a,
then

f
J aProof. To each e>0, there corresponds a a^s) such that for all

and a <50(e), independently of x, such that for all 0<8<d0

< £ .

Let a2 be of norm less than 80. Then, for all a^ay +a2,

^ fdg-ZjAg ZRAg-dg)

g fdg-HfAg
V

I

-9 (*r

c s + F0(b-a)e,

where F0>\J(x) | on [at]. Thus | fdg = lim^S,./^. The theorem follows

now from the inequality

U'fdg-EJdg g\["fdg-'Lafdg +Zi/a\Jdg-fdg |,

from the equation fdg = Jdg-\-%jf • g'+(x+)dx, from the boundedness of
g'+(x+) and since the kth jump-abscissa of/(x) can be covered by an interval

of length —k.
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We may use the symbol fdg for the right-hand member of the just
Ja

rb rb
established theorem and have the corollary: dg = jdg. But it is to be

Ja J a

fdg = ,
Ja

noted that dg = g{b)-g{a) is false.

5. Integration-by-parts
In the case of the IP-integral, if both functions are in B and one or other

is continuous on the left at each common point of discontinuity, then the
integration-by-parts formula mentioned in § 1 holds [Ref. 1, §6.2, p. 274].
The same is true in the case of the LCSir-integral. But, for functions continuous
on the left, the LM-integral is the same as the mean integral

(SM) ['fdg = limoEi/oK/(xI.)+/(xi+1))A,.0

of H. L. Smith and therefore has the ordinary integration-by-parts formula
[Ref. 1, § 7]. Since the definition of the jump-differential, as given, requires
continuity on the left in order that jdg-Ag be an infinitesimal in Ax at all
points, a desideratum, we assume from now on that all functions are con-
tinuous on the left and that all integrals are SM-integrals or, what is then
the same thing, LM-integrals.

6. The Substitution Theorem

The substitution theorem, in the case where g{x) = udv is known

[limaA/AMAi; = 0 is assumed, vide Ref. 1, § 7]. A generalisation which permits
the functions to have simultaneous points of discontinuity, is given when
we vectorise the functions, the vector multiplications being properly under-
stood. Ordinary products become vector products. By the lower product
of any two vectors w and v is to be understood the scalar function EM^,, middle
product the vector whose rth element is utvh and upper product the square
matrix with element utvj in the rth row and yth column. Three vectors u, v,
w have a lower product EWjUjiVj, a middle product with rth element W;U;Wf,
but no (defined) upper product. No distinguishing symbols are necessary
for our purpose as the kind of product intended can be inferred from the
context in all cases. Thus, in the case of the triple-product fudv of Theorem III,
the context implies the lower product. But, to avoid ambiguity in a term, we
may diagonalise a vector w, i.e. call [M) the square matrix with the elements
of u along the principal diagonal and zeros in the remaining places, and have
f[u)dv, unambiguously, the lower product.
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Theorem III. When f and u are in Du g and v are in B*, and dg = udv,
then

[fdg = [fudv.

rb rb
Proof. The result follows from the equation fdg = fdg, both formally

J a J a

and in fact, if by fudv we understand lim,, Yf[u)dv. For the left member
Jo

of the integral equation of the theorem has the approximation T,afdg and this
is equal to I,af[u)dv for all a^ao(s), with dx in both appropriate to a; the
limit of the first exists and so the limit of the second exists. Since f • u =

Cx fx

fu—\jf-Ju> it is evident that fdg = fudv if, and only if, at each point
J a J a

on [ab] at least one of the three functions is continuous.

A corollary, by P6, is that jd fdg =f[u)dv. Another corollary is that
n J<"

when YJ fkdSk = udv holds at all points on [ab] and the integrals exist,
k = 1

then
n C

I
* = l j a

fkdgk =

7. The Fundamental Theorem

B>' p6, fdg is a function such that its y-differential fdg exists for all x,
Ja

. By Theorem II, the aggregate of all sums ~Lfdg appropriate to all

sets o on [ax] has the cr-limit fdg. With dx = xi + 1 - X ; appropriate to a,
Ja

P6 and II together imply the essential theorem:

Theorem IV. When/ is in Dt and g is in B*, then jd fdg —fdg.

Taking the ^-differential of the integral of the vectorially weighted vector-
differential regains the vectorially weighted vector-differential appropriate to
the variable terminal x of integration.

The reciprocity, by virtue of the corollary to Theorem III;

jdy = f(x)dg(x) < • y(x)-y(a)= fdg
Jo

is now seen to hold.
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