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Abstract
Stochastic mortality models are important for a variety of actuarial tasks, from best-estimate forecasting to
assessment of risk capital requirements. However, the mortality shock associated with the Covid-19
pandemic of 2020 distorts forecasts by (i) biasing parameter estimates, (ii) biasing starting points, and
(iii) inflating variance. Stochastic mortality models therefore require outlier-robust methods for
forecasting. Objective methods are required, as outliers are not always obvious on visual inspection. In
this paper we look at the robustification of three broad classes of forecast: univariate time indices (such as
in the Lee-Carter and APC models); multivariate time indices (such as in the Cairns-Blake-Dowd and
newer Tang-Li-Tickle model families); and penalty projections (such as with the 2D P-spline model). In
each case we identify outliers using quantitative methods, then co-estimate outlier effects along with other
parameters. Doing so removes the bias and distortion to the forecast caused by a mortality shock, while
providing a robust starting point for projections. Illustrations are given for various models in common use.
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1. Introduction
Covid-19 (The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020)
caused mortality shocks in many countries – Figures 1(b) and (d) show the sharp increase in death
counts in England andWales in 2020 compared to 2019. These shocks were also present in insurer
data sets; Richards (2022a) demonstrated Covid-related mortality shocks in annuity portfolios in
France, the UK and the USA. The other strong feature of Figures 1(b) and (d) is the inflection
point of 2011, but this paper is concerned with outliers, rather than trend changes.

Actuaries typically split mortality bases into two components: (i) current levels and (ii) future
improvements. For current mortality levels actuaries use a portfolio’s own recent experience, often
using individual lifetimes and multiple covariates; Richards (2022b) presents a methodology
allowing for Covid-19 when conducting such analysis. However, to obtain a long enough time
series for forecasting future improvements, actuaries typically use population data. Such data has a
very different structure, namely grouped counts at individual ages with no covariate information
beyond separate data for males and females (Macdonald et al., 2018, Chapter 10).

Many insurers use stochastic mortality models calibrated to population data for future-
improvement modelling, and thus risk management, solvency and reporting. There is a broad
selection of available stochastic mortality models, each with different quantitative and qualitative
properties (Cairns et al., 2009). However, few of these models are designed to cope with outliers,
such as pandemic shock mortality. This is a problem for actuaries, as “the presence of even a few
anomalous data points can lead to model misspecification, biased parameter estimation and poor
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forecasts” (Galeano et al., 2006, p. 654). The 2020 mortality experience constitutes just such a
distorting anomaly.

One easy approach is just to ignore the affected data. This is only a short-term solution,
however, as the 2020 and 2021 experience will over time move from the trailing edge towards the
middle of the exposure period. This “deletion approach” is subjective, and two parties may not
always agree on what counts as an outlier; Figures 6 and 7 give an example for M9, where it is by
no means obvious from visual inspection that 2020 is an outlier. Indeed, outliers can sometimes be
masked (Hadi, 1992), and specific examples of this are given in Section 5 and Figure 8. Finally,

(a) (b)

(c) (d)

Figure 1. Marginal death counts in England and Wales, ages 50–105, 1971–2020
Source: HMD data

Figure 2. Contribution to (negative) log-likelihood for normal variable and robustified contribution using the Huber
ρ-function of Equation (2) with k � 1
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there is an insurance-specific aspect, whereby actuaries repeatedly refit models to measure
recalibration risk. An important example is for value-at-risk calculations for longevity trend risk
under Solvency II (Richards et al., 2014). For such tasks, an automated outlier-detection procedure
is required, for which an objective approach is needed.

The layout of the rest of this paper is as follows: Section 2 describes the data set used; Section 3
outlines some other approaches to dealing with mortality outliers; Section 4 discusses a
methodology for robustifying forecasts of univariate time indices, such as the Lee-Carter and APC
models; Section 5 describes approaches for multivariate random walks, such as the Cairns-Blake-
Dowd and Tang-Lee-Tickle model families; Section 6 presents the results of an approach to the 2D
P-spline model; Section 7 provides conclusions.

(a) (b) (c)

(d) (e)

Figure 3. Types of outliers in moving-average process Yt � εt � 0:8εt�1. Simulation using the R code in Appendix A

3.5
(a) (b)

Figure 4. Observed mortality rates at age 70 with Lee-Carter forecasts using ordinary regression ARIMA model (Appendix B.2)
and robustified regression ARIMA model with critical value 3.5 (Appendix B.3). Data for males and females in England and
Wales aged 50–105, over the period 1971–2020
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2. Data Description
The data consist of observed deaths in England and Wales, dx;y, at age x last birthday in calendar
year y, together with corresponding mid-year population estimates, Ec

x;y. The data thus lend
themselves to modelling the central mortality rate, mx;y, without adjustment. Alternatively, the data
can be viewed as suitable for modelling the mortality hazard at age x� 1=2

� �
at time y� 1=2

� �
.

The data are sourced from the Human Mortality Database (HMD) and we use the subset
x 2 50; 51; . . . ; 105f g and y 2 1971; 1972; . . . ; 2020f g. We therefore have nx � 56 ages and
ny � 50 years. The age category x � 105 technically contains all ages 105 and over, but as the
numbers are very low we will treat all those aged 105 and over as being age 105 for simplicity. We
alternate our illustrations between males and and females for variety, but both sexes exhibit similar
forecasting problems caused by pandemic-affected mortality. Figure 1 shows the marginal death
counts, with panels (b) and (d) showing the unusually large number of deaths in 2020 due to the
Covid-19 pandemic.

Models in this paper assume that the number of deaths at age x in year y follow a Poisson
distribution. With the exception of the 2D penalised-spline model, no allowance is made for over-
dispersion in the Poisson counts. With the exception of the Lee-Carter model, models are fitted as
penalised constrained generalised linear models using the algorithm of Currie (2013).

3. Some Other Approaches to Outliers
3.1. Ignoring Affected Data

The immediate response by most actuaries was to ignore the 2020 data and to continue using
models calibrated up to 2019. This was a practical, short-term approach to a highly unusual
situation. However, ignoring the mortality experience of 1 or 2 years is not a permanent solution,
and more rigorous approaches are required. This is particularly the case once the affected years
move towards the middle of the data series, as is the case at the time of writing.

3.2. Robust Likelihood Estimation

Maximum-likelihood methods can be very sensitive to the presence of outliers in the data. To
illustrate, consider an observation, z, supposedly from a N(0,1) distribution. The contribution of
this observation to the negative log-likelihood is quadratic:

� ‘ z� �∝ 1
2
z2 (1)

which means that an outlier has an outsized – and unbounded – influence on estimation. As a
result, much early work on time series robustification focused on robustifying the likelihood
through use of ρ functions. A ρ function is designed to replace the usual quadratic contribution in
Equation (1) with a function that is non-quadratic for extreme values. An ideal ρ function should
behave approximately quadratically for observations that are a modest distance from the mean,
but it should limit the contribution of extreme values (unlike Equation (1), where an outlier can
make an unlimited contribution, thus causing bias). There are many options for such functions,
such as in Hampel (1974) and Maronna et al. (2006, Section 2.2.4). One early example is the ρ
function from Huber (1964):

ρ z; k� � �
1
2 z

2; zj j ≤ k
k zj j � 1

2 k
2; zj j > k

�
(2)

which is shown in Figure 2 for k � 1. The Huber ρ function is identical to the quadratic �‘
function within one standard error of the mean, but extreme observations have a linearly
increasing contribution to the robustified log-likelihood instead of an exponentially increasing
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contribution. The extent to which an outlier contributes to the robustified log-likelihood is
dependent on the value of k, which requires some judgement.

ARIMA models are a particularly useful representation of stochastic univariate mortality
processes, and Martin et al. (1983) examined in detail how to robustify the conditional log-
likelihood function for such models. One benefit of this approach is the ability to calculate a “clean”
version of an affected time series, thus allowing (i) the estimation of an outlier effect, and (ii) the
calculation of a sensible forecast start point where the most recent observations contain outliers.

However, robustifying the log-likelihood involves trade-offs. One is reduced estimation
efficiency: in Figure 2, observations around 1.5–2 standardised deviations away from the mean
make less of a contribution to the log-likelihood than they should in theory, thus making less than
full use of all available data. Maronna et al. (2006, Section 5.9.1) presented an “optimal” function
that balances robustness and efficiency, but it still does not achieve full efficiency. This is a
particular issue for mortality-forecasting work, where actuaries often only use data for the past 50
years or so. A particular concern is efficient estimation of the variance of the innovation process,
as this plays a large role in determining value-at-risk capital requirements (Kleinow & Richards,
2016, Section 7).

3.3. Weighting

Daneel et al. (2022) introduced a weighting system for the likelihood, initially with zero weights
for pandemic-affected years 2020 and 2021. This was later extended to fractional weights for post-
pandemic years in Daneel et al. (2023). This approach has at least four problems. Firstly, it
requires the analyst to decide which years are outliers, as in Section 3.1. While this can be relatively
straightforward for univariate time indices, it is far from simple in multivariate cases; see Section 5,
in particular Figures 6 and 7.

Second, weights are manually chosen and therefore arbitrary. This is a potential issue for value-
at-risk assessments, which involve repeated simulation and refitting of mortality models. Such
repeated model recalibrations require objective criteria for dealing with outliers automatically.

Third, weighting the log-likelihood does not give an estimate of the size of the outlier effect.
This means weighting cannot provide a clean starting point for a forecast if recent observations are
outliers.

The final problem with weighting the log-likelihood is that it does not fully address the bias
problem. Consider weighting the log-likelihood contribution by w 2 0; 1� �. The weighted
contribution to the negative log-likelihood function is then ρ z� � � w

2 z
2, which is still an

exponentially increasing function of the outlier, z. Thus, weighting observations is not only
arbitrary, but it still leaves the distorting potential of severe outliers.

Figure 5. Estimates for period effects under the minimally-constrained M9 model. These parameter estimates are not
consistent with a multivariate random walk with drift. Contrast with the over-constrained equivalent in Figure 6. The plots
are based on HMD data for females aged 50–105, 1971–2020
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If a model cannot handle a feature of real-world data, then a new model is required. In the
following three sections we consider three major classes of stochastic model in common actuarial
use and how they can be modified to cope with outliers such as those caused by Covid-19.

4. Univariate Time Indices
4.1. Univariate Mortality Models

Univariate mortality indices are central to several important stochastic projection models,
including the model of Lee & Carter (1992):

log mx;y � αx � βxκy (3)

and the Age-Period-Cohort (APC) model:

log mx;y � αx � κy � γy�x (4)

Both models require identifiability constraints in order to be fitted, but both fit and forecast for
these models are independent of the choice of linear constraints (Currie, 2020). When fitting such
models it is useful to smooth αx and βx, as this reduces the dimensionality of the models and
improves forecasting performance by reducing the risk of crossover at adjacent ages in the forecast
(Delwarde et al., 2007).

To forecast mortality under the Lee-Carter and APC models we need to forecast κy. We can
either use a simple random walk with drift, or a full regression ARIMAmodel; see Appendix A for
the structure and operation of both within an ARIMA framework. Note that a random walk with
drift is just an ARIMA(0, 1, 0) model, and that a full ARIMA(p, 1, q) model often fits κy better
(Kleinow & Richards, 2016, Table 2). Appendix B.1 considers fitting a random walk with drift in
R, while Appendix B.2 considers fitting an ARIMA model around a linear trend.

4.2. Outlier Types

For robust estimation of ARIMA models for univariate forecasting we consider the approach of
Chen & Liu (1993), which contains two elements. First, Chen & Liu (1993) proposed objective
tests to identify where outliers occur. Second, they proposed tests to identify the type of outlier.
The ARIMA-robustifying methodology of Chen & Liu (1993) works for two kinds of forecasting
model for κt : either a simple random walk with drift, or a regression ARIMAmodel. Appendix B.3
shows how an outlier effect is co-estimated with the model parameters once an outlier location has
been decided.

Chen & Liu (1993) presented tests for four types of outlier: additive outlier (AO), innovation
outlier (IO), temporary change (TC) and level shift (LS). Stylised illustrations of each of these are
given in Figure 3 for a simple moving-average process, Yt , defined as follows:

Yt � εt � 0:8εt�1 (5)

where εt � N 0; 0:1� � and Cov εi; εj
� � � 0;8i≠ j. Figure 3(a) shows the first 50 simulations of such

a process using the R code in Appendix A.
In Figure 3(b) an additive outlier of 1 has been added to the uncontaminated process at t � 30

with all other observations unchanged. The AO represents an external contamination at a specific
point without further downstream consequences. In Figure 3(c) an innovation outlier of 0.5 has
been added at t � 29 – since an IO is an integral part of the process it also affects the series value at
t � 30. In Figure 3(d) a number of consecutive additive outliers of 0:9�0:7t�30 have been added at
t ≥ 30 to form a temporary change in the series whose impact diminishes. Finally, in Figure 3(e)
the series has a permanent shift in level of +0.9 for t ≥ 30.

Chen & Liu (1993) developed statistical tests to identify outliers and classify them according to
type. However, while it is possible to identify an outlier anywhere in the series, “it is impossible to
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empirically distinguish the type of an outlier occurring at the very end of a series” (Chen & Liu,
1993, p. 286). This has direct relevance to present-day modelling – whilst Covid-19 is a detectable
outlier, approaches like that of Chen & Liu (1993) cannot tell us the nature of the outlier until we
have observations after the end of the pandemic.

In mortality work we seek to robustify by identifying and measuring AO, TC and LS outliers1.
In contrast, IO outliers are left in as they are part of the underlying process. The rationale for this is
that occasional winters of heavy mortality are a recurring feature, so we do not want to exclude
them. Furthermore, “least squares estimates are less affected by innovation outliers than by
additive outliers” (Martin et al., 1983, p. 6). Also, excluding IOs would lead to underestimation of
the variance of the ARIMA innovation process, σ2; this would be undesirable in actuarial work,
since this parameter is a major driver of value-at-risk capital requirements for longevity trend risk
(Kleinow & Richards, 2016, Section 7).

4.3. Choice of Critical Value

Outliers are determined by Chen & Liu (1993) with reference to a critical value. This varies by
researcher, but many have opted for a critical threshold of 3 standardised deviations (Maronna
et al., 2006, p. 6); with a normally distributed sample, only around 0.3% of observations should be
that far away from the mean.

Chen & Liu (1993, Section 3) carried out extensive tests of critical values between 2.25 and 3.5
using simulated series with 100 observations. However, the mortality patterns of the 1920s and
1930s are not generally pertinent to modern actuarial work, so actuaries typically use time series of
much shorter lengths, around 50 years. As a result, it is often best to use a critical threshold greater
than 3. Consider the example of a Lee-Carter model fitted to the mortality of females in England &
Wales over 1971–2020. The best-fitting ARIMAmodel for κy using the Chen & Liu (1993) outlier-
identification approach leads to the results shown in Table 1.

Using a critical threshold of 3, the methodology of Chen & Liu (1993) finds outliers in 10 out of
50 years, which is excessive. This suggests that for univariate mortality models a higher critical
threshold is required. In contrast, using a critical threshold of 3.5 for females in England and
Wales identifies the one expected outlier in 2020. This is supported by the test results for simple
AR(1) and MA(1) models in Chang et al. (1988, Tables 1 and 2), where a critical value of 3.5 also
worked well for a series length of 50. Once again, there is also a specific actuarial reason to use a
higher critical threshold – Table 1 shows that excluding too many observations leads to an
artificially low estimate of σ2. Since σ2 is a main driver of value-at-risk capital requirements for

Figure 6. Estimates for forecasting parameters under the over-constrained model M9. Contrast with the minimally-
constrained equivalent in Figure 5. The plots are based on HMD data for females aged 50–105, 1971–2020

1It is important to be aware of the distinction between an outlier in a differenced series and an outlier in an undifferenced
series. For example, an AO in a differenced series is equivalent to a LS in the undifferenced series (and vice versa).
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longevity trend risk (Kleinow & Richards, 2016, Section 7), too low a critical value would lead to
under stated capital requirements.

A critical value of 3.5 performed well in identifying an AO of five standardised deviations in
Chang et al. (1988, Table 4), and the t-values in Table 1 suggest that the Covid-19 mortality in
2020 was also a five-sigma event, i.e. an event five standard deviations away from the mean.
However, a true five-sigma event might occur a handful of times every million years, and yet the
two mortality spikes due to Covid-19 in 2020 and 2021 were no worse than the two mortality
spikes due to influenza in 1918 and 1919 (Richards, 2022b, Figure 2). Two “five-sigma” events in
100 years suggests that the model is wrong (either the Lee-Carter structure or the ARIMA
assumption is incorrect) or that σ̂2 underestimates the true variance of the innovation process.
Either way, it is a reminder that value-at-risk methodologies calibrated to 50 years of data can only
set a lower bound for the capital required.

Figure 4 shows the impact of robustifying the regression ARIMA model for forecasting.
According to Martin et al. (1983, p. 2) “outliers can (lead to) incorrect model identification ( : : : )
and seriously impede the construction of forecasts based upon these historical data.” We see an
example of this in Figure 4(b), where the unrobustified forecast for males is rendered nonsensical
due to the bias in the likelihood caused by Covid-19 mortality. However, the robustified forecast
has a more sensible starting point and direction.

5. Multivariate Time Indices
In this section we look at stochastic mortality models that forecast using a multivariate random
walk with drift. There are two broad families: (i) Cairns-Blake-Dowd models, which assume a

Table 1. Selected results from fitting a Chen & Liu (1993) regression ARIMA model to the κ̂y
� �

values in a Lee-Carter model.
Mortality data for females in England and Wales, ages 50–105, years 1971–2020

Critical value 3 3.25 3.5

Years identified as containing AOs 1973, 1976, 1984, 1991, 1994, 1996, 2003,
2011, 2014 and 2020

2003, 2011 and 2020 2020 only

σ̂2 2:78 × 10�5 9:37 × 10�5 1:29 × 10�4

Estimated effect of 2020 outlier 0.0954 0.0572 0.0597

t-value of 2020 outlier n/a 5.23 4.96

Table 2. Selected members from the CBD model family for log mx;y . The layout of the formulae emphasises the
commonality and differences between adjacent models. x � Pxmax

x�xmin x=nx � 77:5 is the unweighted mean age, while
σ̂2 � Pxmax

x�xmin �x � x̄�2=nx � 252:25 is a normalising constant2 based on the average squared deviation around x̄

Model Formula Reference

M5 κ0;y � κ1;y x � x� � Cairns et al. (2006)

M6 κ0;y � κ1;y x � x� � � γy�x Cairns et al. (2009, Section 4.6)

M7 κ0;y � κ1;y x � x� � � γy�x � κ2;y �x � x�2 � σ̂2
� �

Cairns et al. (2009, Section 4.7)

M9 κ0;y � κ1;y x � x� � � γy�x � κ2;y �x � x�2 � σ̂2
� �� αx Dowd et al. (2020, Section 2)

2σ̂2 is the standard notation for this normalising constant, which is used to keep parameter estimates well scaled. This
notation unfortunately clashes with the σ̂2 used in Table 1 and elsewhere in this paper, which is the standard notation for the
variance of the innovation process of a univariate time series.
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Gompertz mortality pattern with age and (ii) Tang-Li-Tickle models, which use Hermite splines to
allow for slower mortality increases at advanced ages. Both families are well suited to actuarial
work because they naturally extrapolate mortality rates to ages higher than the maximum age of
the calibrating data set.

5.1. Cairns-Blake-Dowd Models

Table 2 gives an overview of four CBD models. The missing model, M8, is excluded as it tends to
produce unstable forecasts (Cairns et al., 2011, Section 6), although as a three-dimensional
random walk with drift it could be robustified in the same way as M7 and M9.

The parameter naming convention in Table 2 is kept consistent with Cairns et al. (2006) and
Cairns et al. (2009), where the various κ terms form the bivariate and trivariate random walks with
drift for forecasting. However, it is worth emphasising that these are dependent parameters, and
that their values and role depend on the other parameters in the model. This is particularly the
case for M9, where the age term, αx, changes the shape, scale and nature of the κ terms compared
to the other three models.

The models in Table 2 are all fitted as Generalised Linear Models (GLMs) with a Poisson
assumption for the number of deaths at each combination of age and year (Currie, 2016). We

Figure 7. Scatterplot of Δκ̂ for M9. The plot is based on HMD data for females aged 50–105, 1971–2020
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ignore the over-dispersed nature of the death counts, as over-dispersion does not bias estimated
means. Djeundje & Currie (2011) discuss dispersed mortality counts in more detail.

Many stochastic mortality models require identifiability constraints (Currie, 2020), but M5
does not require any. M6, M7 and M9 contain a cohort term, γy�x, which ordinarily requires two
or more identifiability constraints. However, following Richards et al. (2019, Appendix B) we do
not estimate cohort terms with fewer than four observations, which means no identifiability
constraints are required for M6 or M7. This contrasts with the implementation in Cairns et al.
(2009), where two identifiability constraints were used for M6 and three for M7. If we drop cohort
terms with fewer than four observations, the only CBD model requiring identifiability constraints
is M9, which needs three linear constraints. Here we use the following for M9:

Xymax

y�ymin

κ0;y �
Xymax

y�ymin

κ1;y �
Xymax

y�ymin

κ2;y � 0 (6)

However, there are nevertheless circumstances when we might want to impose more constraints
than are mathematically necessary for identifiability. One such reason is to obtain parameter
estimates that are forecastable. Figure 5 shows some parameter estimates under minimal
identifiability constraints, and these patterns are not consistent with a multivariate random walk
with drift. In this paper we therefore over-constrain our M9 models – Figure 6 shows that
additional constraints on γy�x, although mathematically unnecessary for identifiability, do
nevertheless produce parameter estimates more consistent with the forecasting assumption of a
multivariate random walk with drift. Currie (2020) provides an extensive treatise on identifiability
constraints in linear models, including tests for determining the minimum number of
identifiability constraints required.

For forecasting we define κ as an ny × p matrix composed of the relevant parameters in
Table 2. For example, for the M9 model using data for 1971–2020 we would have the following
50 × 3 matrix:

κ �

κ0;1971 κ1;1971 κ2;1971
κ0;1972 κ1;1972 κ2;1972

..

. ..
. ..

.

κ0;2020 κ1;2020 κ2;2020

0
BBBBB@

1
CCCCCA (7)

Figure 8. Mahalanobis distance for Δκ̂ for M9. The plot is based on HMD data females aged 50–105, 1971–2020
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We will confine ourselves to robustifying the multivariate random walk element of models M5,
M6, M7 and M9, which allows the forecasting of existing cohorts. The projection of γy�x under
M6, M7 and M9 does not require robustification. We note that such outlier cohorts as have been
identified in raw data (Cairns et al., 2015) are largely dealt with by the method protocols used by
the HMD. See Boumezoued (2021) for details on how outlier cohorts arise from sudden shifts in
birth distribution, and how fertility data can be used to improve exposure estimates.

5.2. Tang-Li-Tickle Models

A new class of stochastic mortality models was introduced by Tang et al. (2022). Instead of the
linear Gompertz assumption in CBD models, TLT models use Hermite splines:

h00 x� � � 1� 2f x� �� ��1 � f x� ��2 (8)

h10 x� � � f x� ��1 � f x� ��2 (9)

h01 x� � � f 2 x� � 3 � 2f x� �� �
(10)

h11 x� � � f 2 x� � f x� � � 1
� �

(11)

f x� � � x � x0
x1 � x0

(12)

where x0 is the minimum modelled age and x1 is the maximum modelled age. Often these are set
to the minimum and maximum age of the calibrating data set, but they can lie outside this range.
For example, although the maximum age in the England and Wales data set in this paper is 105,
we can set x1 � 120 to extrapolate mortality rates to this age. With the Hermite basis splines we
can define the Tang-Li-Tickle family of models in Table 3.

The models in Table 3 are all fitted as GLMs and do not require identifiability constraints. The
TLT family is new, and so has not yet been extended to include cohort terms. Like CBD models,
TLT models are useful actuarially because they can extrapolate fitted mortality rates beyond the
highest age of the calibrating data set (Richards, 2023, Figure 1).

As with the CBD models in Table 2, the models in Table 3 are also forecast using multivariate
random walks with drift: HS1 and HS5 are bivariate, HS2 and HS3 are trivariate and HS4 is
tetravariate. In practice there is often such a weak or non-existent trend in some of these variables
that it makes sense to impose a common value across time. This is done for HS5, which is a version
of HS2 with ωy � ω, i.e. turning a trivariate forecast into a bivariate one. HS5 is essentially the
Hermite-spline analogue of M5 in Table 2.

For forecasting we define κ as an ny × p matrix composed of the relevant parameters in
Table 3. For example, for the HS2 model using data for 1971–2020 we would have the following
50 × 3 matrix:

Table 3. TLT model family for logmx;y

Model Formula Reference

HS1 αyh00 x� � � ωyh01 x� � Tang et al. (2022)

HS2 αyh00 x� � � ωyh01 x� � � s0;yh10 x� � Tang et al. (2022)

HS3 αyh00 x� � � ωyh01 x� � � s1;yh11 x� � Tang et al. (2022)

HS4 αyh00 x� � � ωyh01 x� � � s0;yh10 x� � � s1;yh11 x� � Tang et al. (2022)

HS5 αyh00 x� � � ωh01 x� � � s0;yh10 x� � Richards (2023)
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κ �

α1971 ω1971 s0;1971
α1972 ω1972 s0;1972
..
. ..

. ..
.

α2020 ω2020 s0;2020

0
BBBBB@

1
CCCCCA (13)

5.3. Outlier Detection for Multivariate Random Walks

Forecasting for the CBD and TLT families is performed as a p-dimensional random walk with
drift. This means that the row differences in κ̂ between any two consecutive years are assumed to
have a multivariate normal distribution with mean vector µ and covariance matrix Σ, neither of
which vary based on the years in question, i.e. Δκ̂ � MVN µ; Σ� �.

The detection of outliers in multivariate data can be tricky – “it is quite possible for data to be
outliers in multivariate space, but not outliers in any of the original univariate dimensions” (Hadi
et al., 2009, p. 57). A possible example of this is shown for M9 in Figure 6 – there is no trace of an
outlier in κ̂1;2020 or κ̂2;2020, with only a weak suggestion of a possible outlier in κ̂0;2020. This is an
interesting contrast to the univariate example in Figure 17, where the outlier in 2020 is quite clear.

Since model parameters are dependent on each other, the real question is whether the triplet
κ̂0;2020; κ̂1;2020; κ̂2;2020
� �

is an outlier? Figure 7 shows a scatterplot of Δκ̂, which further illustrates
the difficulty of using visual inspection – is 2020 the outlier, or is 1977? Or are there any outliers
at all?

One approach to multivariate random walks is to use the Mahalanobis distance, Dj, for a
p-dimensional observation, zj � Δκj:

Dj �
��������������������������������������������
�zj � µ�TΣ�1 zj � µ

� �q
(14)

Figure 8 plots the distance measures for Δκ̂. If there are no outliers, and zj has a normal
distribution, then Dj � χ2

p, where p is the number of columns in κ̂. The upper 5% quantile of χ2
3 is

7.815, so at face value it looks like 2020 is not an outlier for females in England and Wales
under M9.

However, Hadi et al. (2009, p. 60) noted that the “Mahalanobis distance is not robust, as it is
affected by masking and swamping.” Masking is the phenomenon whereby an outlier is hidden
because it inflates the estimate of variance used to detect outliers. Swamping is the phenomenon
whereby non-outliers have a large Mahalanobis distance because an outlier has distorted the mean
of the process. We therefore have an example of masking in Figure 8 because the estimate bΣ used
in Equation (14) has been distorted by the presence of the outlier we suspect is there. This is an
issue for insurers in particular, since a distorted bΣwill likely lead to excessive capital requirements.
Hadi (1992) presented an approach to identifying multivariate outliers, later updated in Hadi
(1994), which used robust measures for the mean and covariance matrix to minimise the risk of
masking and swamping.

More recently, Galeano et al. (2006) presented a methodology for outlier detection for
multivariate data using projection pursuit; see also (Huber, 1985) for an early introduction to this
topic. Like the Mahalanobis distance, projection pursuit reduces a multidimensional problem to a
univariate one. Galeano et al. (2006) presented a methodology that sought a mapping from a
vector ARMA (VARMA) model to a univariate ARMA one, and furthermore sought mappings
that maximised and minimised the kurtosis coefficient. This is done because the kurtosis
coefficient, being the fourth moment, is even more sensitive to outliers than the quadratic function
of Equation (1). Illustrations of applying Galeano et al. (2006) to some M9 models are given in
Figure 9.
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Galeano et al. (2006) considered far more complicated VARMA and VARIMA models with
more dimensions and longer time series than actuaries face with CBD and TLT models;
Appendix C examines some of the limitations of this methodology when applied to shorter
time series with fewer dimensions, which are more typical of stochastic mortality work.

6. 2D Penalty Projections
The last of our three classes of projection is the penalty method of the 2D age-period (2DAP)
penalised-spline model of Currie et al. (2004). This 2DAP model was extended to include period
shocks by Kirkby & Currie (2010). In the models fitted in this section we further extend Kirkby &
Currie (2010) to allow for over-dispersion.

Kirkby & Currie (2010, Equation 2.9) defined the 2DAP model as a generalised linear array
model (GLAM):

log M � log Ec � BaΘB0
y (15)

where M is the matrix of mortality rates indexed by age in the rows and by calendar year in the
columns, Ec is the corresponding matrix of population exposures, Ba is a B-spline basis matrix for
age, By is a B-spline basis matrix for time, and Θ is a matrix of regression coefficients.

Fitting the GLAM is done by expressing Equation (15) in vector form:

log vec M� � � log vec Ec� � � By 	 Ba

� �
θ (16)

where the vec�� function stacks the columns of a matrix into a single vector, 	 is the Kronecker
product and θ � vec Θ� �. In the fitting procedure, the coefficients in Θ are simultaneously
smoothed in the age and time dimensions by suitable penalty functions. The problem with a
mortality shock is that smoothing in the time dimension is no longer sensible. Kirkby & Currie
(2010) therefore extended the model in Equation (16) to include period shocks as follows:

log vec M� � � log vec Ec� � � By 	 Ba

� �
θ� Iny 	 B̆s

� 	
θ̆ (17)

where Iny is the identity matrix for ny years, B̆s is a B-spline basis in age and θ̆ is a vector of shock
coefficients. B̆s and Ba are both basis matrices in age, but B̆s typically has fewer knots than Ba.
When applied to the mortality of females in England and Wales, Equation (17) reveals the period
shocks shown in Figure 10.

Figure 10 shows that the model of Kirkby & Currie (2010) not only picks up the Covid-19
mortality shock of 2020, but also various minor period shocks since 1971. However, for

(a) (b)

Figure 9. Observed mortality rates at age 70 with forecasts using the ordinary M9 model (Dowd et al., 2020, Section 2) and
robustified M9 model. The data are for males and females in England and Wales aged 50–105, over the period 1971–2020
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robustification we are arguably less interested in the minor shocks and would prefer to smooth the
most trivial ones towards zero. Kirkby & Currie (2010) therefore proposed an extension whereby
the amount of smoothing varies by a scaling factor that is defined by a given year’s shock size
relative to the largest shock. Thus, if the basic smoothing parameter is λs, the scaled smoothing
parameter for year i, λi, is then:

λi � λs
largest shock size

shock size for year i


 �
α

; i � 1; . . . ; ny (18)

Figure 11 shows the inverse relative scaling factors (λs=λi) for simple scaling with α � 3:24.
The factor λs=λi is small for all years relative to 2020, showing that all years bar 2020 have heavy
smoothing applied.

Equation (18) gives rise to four smoothing options: (i) no scaling (α � 0), as used in the model
behind Figure 10; (ii) simple scaling (α � 1); (iii) fixed scaling, where α is set to a given value; and
(iv) optimised scaling, where α is set by minimising an information criterion such as the BIC.
Figure 12 shows the period shocks under optimised scaling, which shows that minor period effects
are smoothed towards zero, leaving a focus on the most significant (and otherwise most
distorting) shocks. One result is that the magnitude of the 2020 shock is larger in Figure 12 than in
Figure 10. Another feature of Figure 12 is that the 2020 shock reduces in size with increasing age.
This has parallels with the age-dependent shocks shown in Kirkby & Currie (2010, Figure 5),
where the excess mortality of the 1919 influenza pandemic was dramatically higher at ages 20–40
than at post-retirement ages. The reducing shock mortality with increasing age in 2020 contrasts
with the pattern of increasing excess mortality with age for the minor shocks in Figure 12. The
minor shocks are therefore not just smaller in magnitude, but also qualitatively different.

Figure 10. Unscaled period shocks under the model in Equation (17). The data are for females in England and Wales aged
50–105, over the period 1971–2020
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The use of the 2D period-shock model removes the distorting influence of the Covid-19
pandemic. This produces more sensible forecasts without the undue influence of outliers, as
shown in Figure 13.

7. Conclusions
The Covid-19 mortality shock of 2020 created outliers in the population mortality data of many
countries. These outliers bias parameter estimates in mortality projection models, thus affecting
central forecasts and value-at-risk assessments of insurer capital requirements for longevity risk.
The short-term solution of ignoring the 2020 and 2021 experience works only as long as those

Figure 12. Period shocks under optimised scaling using Equation (18). The data are for females in England and Wales aged
50–105, over the period 1971–2020

Figure 11. Inverse relative scaling factors (λs=λi) for 2D period-shock model of Kirkby & Currie (2010) with α � 3:24. The
data are for females in England and Wales aged 50–105, over the period 1971–2020
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years are at the trailing edge of the data set. As the Covid-affected years move towards the middle
of the time series, other approaches are needed, especially objective procedures that can be
automated for value-at-risk assessments.

Determination of outliers by visual inspection is unreliable, as how an outlier affects parameter
estimation is model-dependent. Simplistic solutions like weighting the log-likelihood are similarly
subjective, while also failing to insulate parameter estimates from the bias caused by extreme
values. We therefore require objective procedures to (i) identify outliers and – where possible –
classify them, (ii) estimate outlier effects alongside forecasting parameters to reduce bias, and (iii)
calculate a robust starting point for forecasts where recent observations contain outliers. We
outline such objective methods for three classes of stochastic mortality-forecasting models: (i) the
approach of Chen & Liu (1993) for univariate mortality indices, (ii) the approach of Galeano et al.
(2006) for multivariate mortality indices, and (iii) the approach of Kirkby & Currie (2010) for 2D
smoothed models. In each case we illustrate how these methods co-estimate parameters and
outlier effects, resulting in robust forecasts.
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Appendices
Appendix A. R Code to Simulate Outlier Types

##############################################################################
#
# R script to generate pseudo-process Yt in Equation (5) to illustrate the
# types of univariate outlier in Section 4 and Figure 3.
#
n = 51
set.seed(-1)
epsilon = rnorm(n, sd= 0.1)
kappa = epsilon[2:n] - 0.8*epsilon[1:(n-1)]
t = 1:(n-1)

plotter = function(kappa)
{

plot(kappa, ylim= range(-1, 1), type= “n”)
lines(kappa, lty= 1, lwd= 2)

}

plotter(kappa)

#
Additive outlier
kappaAO = kappa
kappaAO[30] = kappaAO[30]+1
plotter(kappaAO)

# Innovation outlier
epsilonIO = epsilon
epsilonIO[30] = 0.5
kappaIO = epsilonIO[2:n] - 0.8*epsilonIO[1:(n-1)]
plotter(kappaIO)

# Temporary change
kappaTC = kappa
index = 0:(n-30-1)
kappaTC[30+index] = kappaTC[30+index]+0.9*0.7^index
plotter(kappaTC)

# Level shift
kappaLS = kappa
index = 30:(n-1)
kappaLS[index] = kappaLS[index]+0.9
plotter(kappaLS)
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Appendix B. AR(I)MA Models for Univariate Mortality Indices

B.1. ARMA Models for Differences

From an outset year, y, we denote by κy�t the value of a univariate mortality index in year y� t; t ≥ 0. Let Xtf g be the
stochastic process of the first differences of κy�t

� �
, i.e. Xt � Δκy�t .

We define an autoregressive moving-average (ARMA) model for Xt as follows:

Xt � φ1Xt�1 � . . .� φpXt�p � εt � θ1εt�1 � . . .� θqεt�q (B1)

with autoregressive parameters φi; i � 1; . . . ; p
� �

and moving-average parameters θi; i � 1; . . . ; q
� �

. εtf g is a white-noise
process where each εt is i.i.d. N(0, σ2). Equation (B1) is for an ARMA(p, q) model without a mean. An ARMA(p, q) model for
a process Xtf g with a mean µ is defined as follows:

Xt � µ� � � φ1 Xt�1 � µ� � � 
 
 
 � φp Xt�p � µ
� �� εt � θ1εt�1 � 
 
 
 � θqεt�q (B2)

µ in Equation (B2) is a constant drift term and represents the long-term tendency for κy�t to change roughly linearly, albeit
with potentially long meanders around the linear trend caused by the autoregressive and moving-average parameters.

We further define the backshift operator, B, such that Biεt � εt�i for i ≥ 1. (B is sometimes described as the lag operator
and denoted L (Harvey, 1981, p. 26).) For conciseness we can define polynomials in B as φ B� � � 1 � φ1B � 
 
 
 � φpBp and
θ B� � � 1� θ1B� 
 
 
 � θqB

q. Different authors use different signing conventions – see for example Martin et al. (1983, p.5) –
but the signing used here is the same as used in R’s arima() function. We can then rewrite Equation (B2) more compactly:

φ B� � Xt � µ� � � θ B� �ɛt (B3)

We will concern ourselves only with stationary processes, which impose bounds on the permissible values taken by parameters
(see Harvey (1981, pp.28–35)). We illustrate the estimation of the parameters in Equation (B3) using the univariate mortality
index in Table B.1 and illustrated in Figure B.2. The R command in Figure B.1 fits an ARMA(1, 2) model with a mean to the
first differences of a variable kappa by maximum-likelihood, where the diff() function calculates the first differences and the
arima() function fits the model. The output stage in Figure B.1 shows φ̂1 as ar1, θ̂1 as ma1, θ̂2 as ma2 and σ̂2 as sigma2.
Somewhat confusingly, the mean, µ̂, is labelled intercept in R’s output, a topic we return to in Section B.2.

Figure B.1. R command and output for fitting ARMA(1, 2) model with a mean using the data in Table B.1

Figure B.2. κ̂1971�t values from Table B.1
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B.2 Regression ARIMA Models

Equation (B3) is a model for Xtf g, the first differences of κy�t

� �
. This is equivalent to a regression ARIMA model for κy�t .

Such models are termed REGARIMA models by Maronna et al. (2006, p. 300). The regression ARIMA model can be fitted to
the κ variable directly by specifying an external regressor vector containing 1; 2; . . . ; ny as shown in Figure B.3.

A comparison of Figures B.1 and B.3 shows that an ARMA(p, q) model with a mean for the first differences of κy�t

� �
is

equivalent to a linear regression model for κy�t

� �
with ARIMA(p, 1, q) errors. The drift estimate, µ̂, is labelled intercept in

Figure B.1, but in Figure B.3 it is the coefficient of the external regressor vector 1:ny, i.e. the slope of the assumed linear trend in
κy�t . It is somewhat less than helpful that the same drift term, µ̂, variously goes by the label “mean,” “intercept” and “slope,”
but the labels stem from the model context. For example, we can re-arrange Equation (B3) as follows:

Xt � µ� θ B� �
φ B� � ɛt (B4)

If we start at κy , the t-steps-ahead forecast, κy�t , is then κy plus the cumulative sum of the next t differences:

κy�t � κy �
Pt
i�1

Xi

� κy � tµ� Pt
i�1

θ B� �
φ B� � εi

(B5)

from which we can see that κy�t is composed of a linear trend, κy � tµ, plus the addition of a complex ARMA error process.

Table B.1. κ̂1971�t ; t � 0; 1; . . . ; 48 from Lee-Carter model with smoothed α̂x and β̂x parameters. ONS data for males aged
50–105 in England and Wales, 1971–2019

0.18412 0.11476 0.00424 −0.17621

0.19929 0.12355 −0.00759 −0.19528

0.18853 0.11168 −0.01694 −0.19882

0.18332 0.09380 −0.03658 −0.20079

0.17802 0.08792 −0.05260 −0.21459

0.18316 0.08054 −0.06030 −0.20565

0.16383 0.06914 −0.06925 −0.21550

0.16668 0.06339 −0.09412 −0.21880

0.16434 0.04904 −0.10786 −0.22087

0.15019 0.05352 −0.12381 −0.23705

0.14077 0.02797 −0.13560

0.13771 0.02890 −0.14444

0.13148 0.01764 −0.16489

Figure B.3. R command and output for fitting a linear regression with ARIMA(1, 1, 2) model for trend deviations using data
in Table B.1
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Thus, the mean (intercept) of the ARMA process for Xtf g becomes the slope of the linear trend for κy�t

� �
in the regression

ARIMA model. For a regression ARIMA(p, 1, q) model, Equation (B3) can therefore be written directly in terms of κy�t as:

φ B� � 1� B� � κy�t � µt

� � � θ B� �ɛt (B6)

where µt � tµ. Note that it is common to fit ARIMA models by recasting them in state-space form and applying a Kalman
filter; see Martin et al. (1983, Section 5.1) or Harvey (1981, Chapter 3). Indeed, once the model is in state-space form it would
be possible to allow µt to vary more flexibly in time as a full dynamic linear model (Petris et al., 2009), but this is beyond the
scope of this paper.

B.3 Regression ARIMA models with outliers

We now consider the fitting of a regression ARIMAmodel for κy�t

� �
where there is contamination with one or more outliers.

Table B.2 is equivalent to Table B.1 but with the addition of an extra year’s data. Figure B.4 shows the outlier in 2020 caused by
the first Covid-19 shock in April and May 2020.

The outlier in 2020 has distorted the model fit in Figure B.5 considerably, as all parameter estimates have taken very
different values compared to Figure B.3. To fit a regression ARIMA model for κy�t

� �
with allowance for an outlier in 2020 we

define a matrix of external regressors, XREG. The first column of XREG is the linear trend 1 : ny as before, whereas the second
column is an indicator variable taking the value 1 in 2020 and 0 in all other years. Further outliers for other years can be added
similarly as additional columns for XREG. The R commands to fit this outlier-aware model are shown in Figure B.6, along
with the output.

In Figure B.6 the estimated drift term, µ̂, now appears as XREG1, while the estimate of the outlier effect of the 2020 Covid-
19 mortality appears as XREG2. Note that the estimates φ̂1, θ̂1, θ̂2, µ̂. and σ̂2 are little changed between Figures B.3 and B.6,
showing that co-estimation of the outlier effect along with the ARIMA parameters eliminates the distortion demonstrated in
Figure B.5.

Finally, for forecasting we need to robustify the starting point. In the case of the data in Table B.2, the cleaned value is κ̂2020
minus XREG2, i.e. �0:1669� 0:0631 � �0:2300.

Table B.2. κ̂1971�t ; t � 0; 1; . . . ; 49 from the Lee-Carter model with smoothed α̂x and β̂x parameters. ONS data for males
aged 50–105 in England and Wales, 1971–2020

0.18483 0.11651 0.00768 −0.17030

0.19979 0.12518 −0.00398 −0.18911

0.18918 0.11349 −0.01321 −0.19261

0.18405 0.09588 −0.03258 −0.19457

0.17883 0.09010 −0.04837 −0.20816

0.18389 0.08283 −0.05598 −0.19938

0.16484 0.07160 −0.06482 −0.20906

0.16765 0.06593 −0.08932 −0.21232

0.16534 0.05181 −0.10288 −0.21436

0.15140 0.05622 −0.11862 −0.23029

0.14211 0.03106 −0.13025 −0.16691

0.13912 0.03197 −0.13898

0.13298 0.02088 −0.15912
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Appendix C. Multivariate Outlier Detection in R

R offers an implementation of Galeano et al. (2006) in the outliers.hdts() function in the SLBDD package. This is intended for
multivariate data generated by a variety of vector ARMA (VARMA) and vector ARIMA (VARIMA) processes, potentially
with a large number of dimensions. In this appendix we look at the performance of the outliers.hdts() function when applied to
the multivariate random walks in the CBD and TLT families of stochastic mortality models.

Galeano et al. (2006, Table 2) provide the empirical critical thresholds for eight specimen models for time series of various
lengths. One issue for actuaries is that the shortest time series tested has 50 observations, whereas typically this would be close
to the maximum relevant length for actuarial work. A second issue for actuaries is that none of the eight models tested
corresponds to a multivariate random walk with drift. Finally, the outliers.hdts() function uses a hard-coded critical value
derived from the square root of a power of the upper 5% value of a χ2

1 distribution. We are therefore interested in the

Figure B.4. κ̂1971�t values from Table B.2, showing the outlier in 2020

Figure B.5. R command and output for fitting linear regression with ARIMA(1, 1, 2) model for trend deviations using data in
Table B.2

Figure B.6. R commands and output for fitting outlier-robustified linear regression with ARIMA(1, 1, 2) model for trend
deviations using data in Table B.2
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performance of the outliers.hdts() function with the shorter series of fewer dimensions that are likely to be encountered in
actuarial work.

We fit M5 and M7 models to the mortality experience of males aged 50–105 in England & Wales over the period
1971–2019. The estimated parameters of the bivariate random walk with drift for κ̂0;y and κ̂1;y in the M5 model are:

bµ � �0:01750290
0:000331263


 �
bΣ � 5:081656 × 10�4 1:251913 × 10�5

1:251913 × 10�5 7:224136 × 10�7


 � (C1)

and the estimated parameters of the trivariate random walk with drift for κ̂0;y , κ̂1;y and κ̂2;y in the M7 model are:

bµ �
�7:283770 × 10�3

�4:100712 × 10�4

�5:730169 × 10�7

0
@

1
A

bΣ �
6:811852 × 10�4 2:514202 × 10�5 5:142949 × 10�7

2:514202 × 10�5 1:321879 × 10�6 2:860279 × 10�8

5:142949 × 10�7 2:860279 × 10�8 1:239491 × 1009

0
@

1
A

(C2)

We simulate the random walks with drift for a term of 50 years, first by simulating the differenced series (the VARMA
process) then calculating the cumulative sum (the VARIMA process). We then call outliers.hdts() for both the differenced and
undifferenced series using the full 50-observation series, but also for the first 25, 30, 35, 40 and 45 values to check the function
performance with shorter series. The proportions of simulated series erroneously identified as containing outliers (the false
positives) are shown in Table C.1.

Table C.1 shows that the outliers.hdts() function has a radically different performance based on whether the differenced or
undifferenced series is used. The false-positive rate for the differenced series is typically smaller than the hard-coded 5% rate,
and is in fact smaller than this for mortality series of length 40–50 years. On the basis of this limited assessment, the
unmodified outliers.hdts() function looks appropriate for application to the multivariate random walks for CBD and TLT
stochastic mortality models, but only when passed the differenced series. In practice, one can edit the source code for
outliers.hdts() and related functions to vary the p-value from the hard-coded 5%. However, Table C.1 shows that the false-
positive rates of outliers.hdts() vary strongly, with undifferenced bivariate random walks particularly at risk of greater false
positives than the programmed p-value implies.

Despite its restricted functional interface, the outliers.hdts() function is useful for robustifying multivariate mortality
indices. The function returns a cleaned version of the indices, which can be used to calculate robust estimates of the forecasting
parameters while also providing robustified starting points for the forecast. Estimates of the multivariate outliers can be
obtained by simply deducting the cleaned series from the original series.

Table C.1. False-positive rates for outliers.hdts() function with hard-coded p-value of 5% in SLBDD package with 10,000
simulated random walks with drift. For mortality work with CBD and TLT models it is therefore better to robustify the
differenced multivariate series. Results derived from simulating random walks with drift specified in Equations (25) and (26)

Series Differenced Undifferenced

Length M5 M7 M5 M7

25 4.80% 4.12% 15.44% 10.26%

35 3.97% 3.91% 15.31% 9.24%

35 3.76% 3.38% 14.86% 8.46%

40 3.09% 2.94% 14.55% 7.77%

45 3.06% 2.50% 13.98% 7.35%

50 2.97% 2.24% 13.93% 7.24%

Cite this article: Richards SJ. (2024). Robust mortality forecasting in the presence of outliers. British Actuarial Journal. https://
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