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Abstract
In this paper a smoothed particle hydrodynamics (SPH) method is introduced for
simulating two-dimensional incompressible non-Newtonian fluid flows, and the non-
Newtonian effects in the flow of a fluid which can be modelled by generalized
Newtonian constitutive equations are investigated. Two viscoplastic models including
Bingham-plastic and power-law models are considered along with the Newtonian
model. The governing equations include the conservation of mass and momentum
equations in a pseudo-compressible form. The spatial discretization of these equations
is achieved by using the SPH method. The temporal discretization algorithm is
a fully explicit two-step predictor–corrector scheme. In the prediction step, an
intermediate velocity field is obtained using a forward scheme in time without enforcing
incompressibility. The correction step consists of solving a pressure Poisson equation
to satisfy incompressibility by providing a trade-off between the pressure and density
variables. The performance of the proposed scheme is evaluated by studying a
benchmark problem including flow of viscoplastic fluids in a lid-driven cavity. Both
Newtonian and non-Newtonian cases are investigated and the results are compared with
available numerical data. It was shown that in all cases the method is stable and the
results are in very good agreement with available data.
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1. Introduction

Many modern materials and manufacturing processes require the investigation of both
Newtonian and non-Newtonian fluids. The categories of viscous and viscoelastic
non-Newtonian fluids and the variety of related constitutive equations they provide
cover applications such as petroleum, lubricants, food industry and blood flow [17].
Examples of such materials can be found in the case of solutions and melts of
macromolecules. The range of behaviour is also diverse: for example, coating
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processes frequently involve fluids that exhibit solid-like behaviour at low shear rates
and a viscous behaviour beyond a yield limit at higher shear rates. Such material
properties, first described by Bingham in 1922, are the characteristics of Bingham-
plastic fluids [3]. These constitutive equations describe the flow of a non-Newtonian
fluid in the form of a fluid with a ‘shear rate’ dependent viscosity. Both Bingham
and power-law fluids are examples of simple non-Newtonian constitutive models
considered as the ‘generalized Newtonian’ model. A computational fluid dynamic
(CFD) approach to non-Newtonian problems is generally far more complicated than
Newtonian cases owing to the complexity introduced by the constitutive equation of
the utilized model in the diffusion term of the Navier–Stokes equation. A number of
methods have been worked out to study non-Newtonian fluid flows [3, 13, 20, 21].

Beside the traditional Eulerian methods, such as the finite element method (FEM),
an alternative class of methods which has attracted much attention is the meshless
method. This is partly due to the ease of implementation and also partly because
of the independence from grid information. In fact, the word ‘meshless’ means that
in these methods there is no inherent reliance on a particular mesh topology. In
practice, however, in many meshless methods recourse must be taken to some kind
of background meshes at least in one stage of the implementation.

The smoothed particle hydrodynamics (SPH) method is a meshless technique which
was originally developed in 1977 by Lucy [12] and Gingold and Monaghan [10]. The
method uses a purely Lagrangian approach and has been successfully employed in a
wide range of problems. The SPH method is a particle-based method; here, however,
the word ‘particle’ does not refer to a physical mass of fluid, but rather to a region
in space. Field variables are associated to these particles and at any other point in
space are found by averaging, or smoothing, the particle values over the region of
interest. This is fulfilled by an interpolation or weight function which is often called
the interpolation kernel.

The SPH method was originally developed to solve compressible astrophysical
problems [10, 12]. The method was later extended to incompressible flows by
Monaghan [15] and Takeda et al. [19] and simulating non-Newtonian flows with SPH
attracted much research. Ellero et al. developed a numerical scheme based on the SPH
method to study viscoelastic fluid flows using a Maxwell model [6, 7]. Also, Shao et
al. presented an SPH method to solve non-Newtonian flow with free surfaces using a
modified form of the so-called cross model [18].

The motivation of this work is to present the ability of the SPH method to simulate
non-Newtonian fluid flows which can be modelled by generalized Newtonian models.
The performance of the proposed solution algorithm is demonstrated by solving the
famous benchmark problem known as lid-driven cavity flow for both Bingham and
power-law fluids along with a Newtonian fluid.

2. Governing equations

2.1. Dimensional form The governing equations for simulating fluid flow in two
dimensions are the mass and momentum conservation equations. The Lagrangian form
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of these equations can be written as

1
ρ

Dρ

Dt
+ ∇ · U = 0, (2.1)

DU
Dt

= g +
1
ρ

∇ · τ −
1
ρ

∇ P, (2.2)

where ρ is density, t is time, U is the velocity vector, P is pressure, g is gravitational
acceleration and τ is shear stress tensor. In the above two equations, D/Dt is the
material (total) derivative defined in the fixed Eulerian frame by

D/Dt = ∂/∂t + U · ∇. (2.3)

In order to close the system of Equations (2.1) and (2.2) we require constitutive
equations for P and τ . For an incompressible generalized Newtonian fluid the extra
stress tensor reduces to a shear stress tensor with a viscosity η that is a function of the
second scalar invariant of the rate-of-strain tensor D:

τ = 2η(|D|)D, (2.4)

D =
1
2 (∇U + ∇UT). (2.5)

For a Newtonian fluid the viscosity is constant for a given temperature, pressure
and composition. For the power-law model, it is given that the viscosity is a function
of shear rate as follows [2]:

η = m|D|
n−1. (2.6)

The power-law model contains two parameters, m (Pa s−1) and n (dimensionless).
If n < 1, the fluid is said to be pseudo-plastic or shear thinning; and if n > 1, the fluid
is called dilatant or shear thickening [2]. For the Bingham model, η is given by [2]{

η = ∞,

η = µ0 + τ0/(|D|).
(2.7)

In this model, µ0 represents the Newtonian viscosity and τ0 is the yield stress, for
stresses below which the fluid behaves like a rigid solid.

2.2. Dimensionless forms and scaling A convenient form of the governing
equations can be obtained by defining the following nondimensional variables:

x =
x∗

L
, y =

y∗

L
, u =

u∗

U
, v =

v∗

U
,

ρ =
ρ∗

ρ0
, p =

P

ρ0U 2 and τ =
τ ∗

ρ0U 2 .
(2.8)
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Here, the superscript ∗ denotes dimensional variables. The nondimensional system of
governing equations is then written as

Dρ∗

Dt∗
= −ρ∗

∂u∗

i

∂x∗

j
, (2.9)

Du∗

i

Dt∗
=

g∗

i

Fr2 +
1
ρ∗

∂τ ∗

i j

∂x∗

j
−

1
ρ∗

∂ P∗

∂x∗

i
, (2.10)

τ ∗
=

1
Re

2η∗D∗. (2.11)

The dimensionless number Re that appears in the above equations is the Reynolds
number,

Re =
ρ0U0L0

η0
. (2.12)

3. SPH formulation

3.1. Basic concepts The SPH method is based on the interpolation theory. The
method allows any function to be expressed in terms of its values at a set of disordered
points, the particles. If we consider A(r) as a typical field variable at a certain
position, r , in space, the kernel estimate of A(r) is defined as [14]:

〈Ah(r)〉 =

∫
space

A(r′)W (r − r′, h) dr′. (3.1)

Here h represents the smoothing length and W is a weighting function with the
following properties:∫

space
W (r − r′, h) dr′

= 1, lim
h→0

W (r − r′, h) = δ(r − r′). (3.2)

Eventually, Equation (3.1) can be expressed as

〈Ah(r)〉 =

N∑
j=1

m j

ρ j
A j W (r − r j , h), (3.3)

where the summation index j denotes a particle label, and m j , ρ j and A j are the
particle mass, density and field variable, respectively.

3.2. Kernel function The kernel function is the most important ingredient of the
SPH method. Various forms of kernels with different compact support have been
proposed by many researchers. Recent studies [14, 16] indicate that the stability of
the SPH algorithm depends strongly upon the second derivative of the kernel. In this
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work, initially a cubic spline kernel was used. It was found however that the quintic
spline kernel leads to more accurate results. The quintic spline kernel is defined as [7]

W (r, h) = W0 ×


(3 − s)5

− 6(2 − s)5
+ 15(1 − s)5, 0 ≤ s < 1,

(3 − s)5
− 6(2 − s)5, 1 ≤ s < 2,

(3 − s)5, 2 ≤ s < 3,

0, 3 ≤ s,

(3.4)

where in 2D the normalization factor W0 takes the value 7/(478πh2). This kernel
has the advantage that its first four derivatives are continuous and has a compact
support 3h.

3.3. Gradient/divergence The gradient and divergence need to be formulated in an
SPH algorithm if simulation of the Navier–Stokes equation is to be attempted. There
are a number of different ways of representing these operators. In this work, the
following approximations are used [4]:

1
ρi

∇i A =

∑
j

m j

(
Ai

ρ2
i

+
A j

ρ2
j

)
∇i Wi j , (3.5)

1
ρi

∇i · Ui =

∑
j

m j

(
Ui

ρ2
i

+
U j

ρ2
j

)
· ∇i Wi j , (3.6)

where ∇i Wi j denotes the gradient of the kernel function W (|ri − r j |, h) with respect
to ri . There are a number of diverse ways of representing these operators but
this choice of discretization operators ensures that an exact projection algorithm
is produced.

3.4. Laplacian A simple way to formulate the Laplacian operator is to envisage it as
the dot product of the divergence and gradient operators. In this paper, the following
alternative approach is adopted [5]:

∇ ·

(
1
ρ

∇ A

)
i
=

∑
j

m j
8

(ρi + ρ j )2

Ai j ri j · ∇i Wi j

|r2
i j | + ε2

, (3.7)

where Ai j = Ai − A j , ri j = ri − r j and ε is a small number introduced to avoid a
zero denominator during computations and is set to 0.1h.

3.5. Viscous terms Several forms of viscosity were presented for the SPH method
by Lucy [12] and Gingold and Monaghan [10]. In this work, the divergence of the
stress tensor in the momentum equation is represented by(

1
ρ

∇ · τ

)
i
=

∑
j

m j

(
τ i

ρ2
i

+
τ j

ρ2
j

)
· ∇i W (ri j , h), (3.8)

where in two dimensions

∇i W (ri j , h) =
dW

dri j

1
|ri j |

[(xi − x j )i + (yi − y j )j]. (3.9)

https://doi.org/10.1017/S1446181108000011 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000011


416 A. Rafiee [6]

Typical derivatives needed for Equation (2.5) can be evaluated in the SPH context as(
∂u

∂x

)
i
=

∑
j

m j

ρ j
(u j − ui )

xi − x j

|ri j |

dW

dri j
, (3.10)(

∂u

∂y

)
i
=

∑
j

m j

ρ j
(u j − ui )

yi − y j

|ri j |

dW

dri j
, (3.11)

where ri j = ri − r j . Other derivatives can be calculated in the same fashion.

4. Simulating the boundary

Simulating boundaries in SPH has received special attention during the past
decades. A number of strategies have been implemented. The employed approach
for simulating a boundary in this paper is the Morris model [16]. Morris used special
particles designed so that they fill the boundary region uniformly. The boundary
particles contribute to the density such that the pressure decreases when the fluid and
the boundary particle diverge. The problem is that the true velocity of the boundary
particle is always zero so they cannot interact correctly with free particles. Morris
came up with a way that assigns an artificial velocity to a boundary particle. In this
case for each free particle ‘A’ the normal distance dA to the boundary is calculated,
and this is used to evaluate the tangent line according to the normal of ‘A’. Then the
normal distance dB from boundary particle ‘B’ to the tangent line has to be calculated.
Eventually the artificial velocity for the boundary particle is given by

UB = −
dB

dA
UA. (4.1)

5. Solution procedure

As mentioned before, in this work a two-step prediction–correction scheme is
used to march in time. Figure 1 shows the solution procedure that we employed in
this paper.

The first prediction step is integration forward in time regardless of
incompressibility and so the temporal particle velocity and position are obtained
as [19]

(4U)∗ =

(
g +

1
ρ

∇ · τ

)
4t, (5.1)

U∗
= Ut + 4U∗, (5.2)

r∗
= rt + U∗

4t, (5.3)

where Ut and rt are particle velocity and position at time t and likewise superscript ∗

denotes the temporal field variable. Because we did not enforce incompressibility in
the first step the density of the fluid deviates from the initial density ρ0 and hence we
use the symbol ρ∗ for it.
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FIGURE 1. Solution procedure.

In the second and prediction step we solve the pressure Poisson equation to enforce
incompressibility [11]. Thus the relevant steps are

∇ ·

(
∇ Pt+4t

ρ∗

)
=

ρ0 − ρ∗

ρ01t2 , (5.4)

(4U)∗∗
=

−1
ρ∗

∇ Pt+4t4t, (5.5)

Ut+4t = U∗
+ 4U∗∗, (5.6)

rt+4t = rt +
Ut + Ut+4t

2
4t. (5.7)

Finally, at the end of each round of computations, the initial density of the fluid
is restored. For numerical stability, several time step constraints must be satisfied as
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FIGURE 2. U-velocity profile along vertical centreline for Newtonian fluid.

FIGURE 3. V-velocity profile along horizontal centreline for Newtonian fluid.

Courant–Friedrichs–Lewy (CFL) and viscous diffusion conditions:

1t ≤ 0.1
l0

Umax
, (5.8)

1t ≤ 0.5
l2

µ/ρ
. (5.9)
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FIGURE 4. U-velocity profile along vertical centreline for Bingham fluid.

FIGURE 5. V-velocity profile along horizontal centreline for Bingham fluid.

In (5.8), Umax is the maximum of velocity in each time step and l0 is the initial
particle spacing; and (5.9) comes from the usual condition for an explicit finite
difference method for simulating diffusion.

6. The lid-driven cavity flow

The lid-driven cavity problem has been used to demonstrate the capability of
the SPH method to simulate fluid flows in the presence of both moving and fixed
boundaries. The Reynolds number considered was Re = 100 for both Newtonian and

https://doi.org/10.1017/S1446181108000011 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000011


420 A. Rafiee [10]

FIGURE 6. U-velocity profile along vertical centreline for power-law fluid.

FIGURE 7. V-velocity profile along horizontal centreline for power-law fluid.

generalized Newtonian cases (Bingham and power-law fluids) and in all simulations
10 000 particles are used (regardless of boundary particles). For the Bingham model
the following parameters were considered:

α =
η

ηr
= 0.01, NB =

τ0L

ηU0
= 2, (6.1)

where NB is the Bingham number, η and ηr are Newtonian and pre-yield viscosities,
respectively.
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The simulation for the power-law model is performed with n = 0.5 in (2.6), which
shows the behaviour of ‘pseudo-plastic’ or ‘shear thinning’ fluids and parameter m
was set to be 1.

For validating the Newtonian results the results of Ghia et al. [9] are used; in the
case of a non-Newtonian fluid for the Bingham model those of Gartling [8] are used;
while for a power-law model the results obtained by Bell and Surana [1] are employed.

Since both normal and shear stresses are small in the lower half of the cavity, in the
Bingham model this part of the cavity behaves as a perfect rigid solid. Consequently
the centre of the main vortex in the Bingham fluid is placed at a higher height compared
with the Newtonian fluid. The results shown in the figures demonstrate a very good
agreement in comparison with available data.

For comparison of the flow of a non-Newtonian fluid with a Newtonian fluid at the
same Reynolds number, we can see that the behaviour of the fluids in the lower portion
of the cavity is markedly different. Another significant difference is the position of the
central recirculating zone in Newtonian and non-Newtonian fluids, which also differs
in the Bingham and power-law models.

7. Conclusion

A numerical code for the computation of viscous non-Newtonian flows has been
presented. The code is based upon the prediction–correction SPH method. Non-
Newtonian flow computations were performed using Bingham and power-law models.
The code has been validated against both Newtonian and non-Newtonian lid-driven
cavity flow cases. It was demonstrated that this method has a strong capability in
modelling the flows in the presence of moving and stationary boundaries and also with
very good accuracy can model the vortices in the flow. Current results were in very
good agreement with results by previous researchers for both Newtonian and non-
Newtonian fluid flow cases.
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