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Abstract. We investigate the complexity of the equivalence problem over a finite
ring when the input polynomials are written as sum of monomials. We prove that
for a finite ring if the factor by the Jacobson radical can be lifted in the centre, then
this problem can be solved in polynomial time. This result provides a step in proving
a dichotomy conjecture of Lawrence and Willard (J. Lawrence and R. Willard, The
complexity of solving polynomial equations over finite rings (manuscript, 1997)).
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1. Introduction. Investigations into the algorithmic aspects of the equivalence
problem for various finite algebraic structures were started in the early 1990s. The
equivalence problem for a finite algebra A asks whether or not two expressions p and
q are equivalent over A (denoted by A = p = ¢), i.e. whether p and ¢ determine the
same function over .A. This question is decidable for a finite algebra .A: checking all
substitutions from .4 yields to an answer of this question. The equivalence problem is in
coNP, since the ‘no’ answer can be verified by a substitution, where the two expressions
differ. In this paper we investigate the computational complexity of the equivalence
problem for finite rings. That is, for a given finite ring R what is the complexity of
deciding whether or not two input polynomials determine the same function over R?

First, Hunt and Stearnes [5] investigated the equivalence problem for finite rings.
They proved that for finite nilpotent rings the polynomial equivalence problem could
be solved in polynomial time in the length of the two input polynomials. Moreover, they
proved that for commutative, non-nilpotent rings the equivalence problem is coNP-
complete. Later, Burris and Lawrence [2] generalised their result to non-commutative
rings, and established a dichotomy theorem for rings.

THEOREM 1. Let R be a finite ring. If R is nilpotent, then the (polynomial)
equivalence problem can be solved in polynomial time. If R is not nilpotent, then the
(polynomial) equivalence problem is coN P-complete.

The proof given by Burris and Lawrence reduces the satisfiability (SAT) problem to
the equivalence problem by using long products of sums. Nevertheless, polynomials are
usually given as sum of monomials. Of course, the length of a polynomial may change
if expanded into a sum of monomials. For example, the polynomial []._, (x; + ;) has
linear length in 7 written as a product of sums, but has exponential length if expanded
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into a sum of monomials. Such a change in the length suggests that the complexity of
the equivalence problem might be different if the input polynomials are restricted to be
written as sums of monomials. For this reason, Lawrence and Willard [6] introduced
the sigma equivalence problem, i.e. when the input polynomials over the given ring
are presented as sums of monomials where each monomial has the form «; . . . @, with
each «; being a variable or an element of the ring. They investigated the equation
solvability problem for finite rings, that is whether or not two input polynomial can
attain the same value for at least one substitution. They formulated a conjecture about
the complexity of the sigma equivalence and sigma equation solvability problem. In
this paper we investigate their conjecture on the sigma equivalence problem.

CONJECTURE 2. Let R be a finite ring and J be its Jacobson radical. If R)J is
commutative, then the sigma equivalence problem for R is solvable in polynomial time. If
R/J is not commutative, then the sigma equivalence problem for R is coN P-complete.

Szab6 and Vértesi proved the coNP-complete part of the conjecture in [9]. For
matrix rings they proved a stronger theorem, that is the equivalence problem is coNP-
complete even if the input polynomials are restricted to only one monomial. To this
problem they reduce the equivalence problem over the multiplicative subgroup of
matrix rings, which is coNP-complete by [4]. For most matrix rings, arguments of
Lawrence and Willard [6] establish coNP-completeness as well.

In this paper we investigate the case when R/J is commutative. The main result
of the paper is the following.

THEOREM 3. Let R be a not necessarily unital, finite ring, and let J denote its
Jacobson radical. Let Z be the centre of R and assume that R)J = Z/(ZNJ). Then
the sigma equivalence problem for R is solvable in polynomial time.

Theorem 3 establishes polynomial time complexity for an abundant class of rings
for which R/J is commutative.

COROLLARY 4. Let R be a not necessarily unital, finite ring, and let J denote its
Jacobson radical. The sigma equivalence problem for R is solvable in polynomial time

(1) if R is commutative, or
(2) if R is nilpotent, or
(3) if R is unital and R/ J is a sum of finite fields of different prime order.

The conditions of Theorem 3 trivially hold in case (1) or in case (2). In the
manuscript [6] one can find an independent argument for the sigma equation solvability
problem in the case of unital commutative rings. Case (2) has already been proven
earlier in [5], we just mention it as a consequence of our main theorem. In case (3)
the unit of R additively generates R /7 by the Chinese Remainder Theorem, thus the
conditions of Theorem 3 hold. For the proof of Theorem 3 we apply the theory of
Galois rings. We summarise some of the most important properties of Galois rings in
Section 2. Then we prove Theorem 3 in Section 3. The case where not every element
of the factor by the Jacobson radical can be lifted into the centre remains open.

PrROBLEM 1. Let R be a ring and 7 be its Jacobson radical. Let Z be the centre of
R and assume that R/J # Z/(Z N J). Prove that the sigma equivalence problem is
solvable in polynomial time for R.
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2. Galois rings. In this section we recall the theory of Galois rings necessary for
our proof. The reader may skip this section if they are familiar with the literature.

Galois rings play an important role in the theory of commutative rings. They were
first examined by Raghavendran [8], and later by Wilson [10]. In the following we list
some of the most important properties of Galois rings (see e.g. [7]). Let /z(x) be a
monic polynomial of degree d, which is irreducible modulo p. Then the Galois ring
GR (p¢, d) is by definition the factor ring Z [x] / (p¢, hq (X)).

The Galois ring GR (p¢, d) is completely characterised by the numbers p, ¢, d,
and does not depend on the choice of the polynomial /,;. The Galois ring GR (p€, d)
is a finite, commutative, unital, local ring. The characteristic of GR (p, d) is p¢, the
number of its elements is p*“. In particular, GR (p, d) is isomorphic to the p?-element
field, and GR (p¢, 1), where A, is of degree 1, is isomorphic to Z,.. For every ideal
T < GR(p¢, d) there exists a number 0 < i < ¢ such that Z = (p%). That is, every ideal
is a principal ideal, thus every finitely generated GR (p¢, d)-module is a direct sum of
cyclic GR (p¢, d)-modules [10, p. 81, Corollary 2]. The Galois ring GR (p°, d) is local,
the unique maximal ideal is the Jacobson radical (p). Forevery 1 < i < ¢ the factor ring
GR (p¢, d) / (p") is isomorphic to the Galois ring GR (p', d). In particular, the factor by
the Jacobson radical is isomorphic to the p?-element field.

Let R be a finite local ring and let 7 be its Jacobson radical. Assume that the
characteristic of R is p¢ and that R/.J is a field containing p?-many elements. Then
R contains a subring isomorphic to GR (p¢, d) [10, p. 80, Theorem B]. Moreover,
there exists an element r in this subring, which has multiplicative order (p? — 1) [8,
p. 215, Theorem 9]. For such element r the set S={0}U{F |1 <j<p?’—1}isa
representation system for R/.7.

3. Proof of Theorem 3. We prove Theorem 3 in this section. First, we fix the
setting and the notations of the proof. Then we sketch a polynomial time algorithm
for deciding whether or not two polynomials are identically equal if the conditions of
Theorem 3 hold. Finally, we explain every step in detail.

Note first that for a ring R and polynomials p, ¢ over R we have R E=p ~ ¢ if
and only if R = p — ¢ = 0. Therefore, from now on we assume that the input of the
equivalence problem is one polynomial / and we need to check whether or not f ~ 0.
Secondly, the sigma equivalence problem can be checked componentwise for a direct
sum of finite rings. It is well known that every finite ring can be decomposed into a
direct sum of finite rings with prime power characteristic. Therefore, in the proof we
only consider rings having prime power characteristic.

Now, we fix the notations for the proof. Let the characteristic of R be p¢ for some
prime p. Let 7 be the Jacobson radical of R and let 7 be the smallest positive integer
for which 7' = {0}. Let Z be the centre of R. By the Pierce decomposition theorem
(see e.g. [3]) the ring Z is the direct sum of a commutative nilpotent ring Z, and some
commutative, unital, local rings Z1, ..., Z;,1.e. Z = @ﬁzozi. Here Zy € J. The unique
maximal ideal of Z; is its Jacobson radical Z; N 7 (1 < i < [). Let the characteristic of
Z; be p“i. As Z; is commutative and local, Z;/ (Z; N J) is a field. Let F; denote the field
Z;/(Z;N J), and let ¢; = p® be the number of its elements. By assumption,

RIT=2/(ZNJ)=&_12Z/(ZNT) = F.

We find a central representation system for R/J in R with the help of Galois rings.
Every commutative finite local ring contains a Galois subring (see Section 2), i.e. for
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each 1 < i <[ there exists a subring R; < Z; such that R; is isomorphic to the Galois
ring GR (p“, d;). Moreover, there exists an element r; € R;, which has multiplicative
order p% — 1. Then, the element r; 4+ (J N Z;) generates F; \ { 0} multiplicatively. For
everyl <i</letS;={0}U{r}|1<j<p%—1}andlet

S=@Si={si+ - +slseSl<isl}.

Now, S, is a representation system for the field F;, and is central as S; € R; € Z;. Hence,

S C Z is a central representation system for R/ 7, i.e. R = {s +ulseS,ueJ }
The idea of the proof is the following. Let f be a polynomial over R written as

a sum of monomials having non-commuting variables and elements of R. Then we

have R &= f ~ 0 if for every uy, ..., u, € J the polynomials f (x| + uy, ..., X, + uy,)
attain value 0 for substitutions from S. In Lemma 5 we will prove that it is enough to
consider such n-tuples u = (uy, .. ., u,), where the number of non-zero coordinates are

at most z. Thus, we only need to check polynomially many new polynomials instead of
exponentially many new ones. We need to consider these polynomials for substitutions
from S = ®f=13i, which is equivalent to check them for substitutions from S; for every
1 <i < I. Now, the Galois ring R; contains S;, and we consider R as an R;-module.
Then R is a direct sum of cyclic R;-modules, and a polynomial is equivalent to 0 if
and only if it is equivalent to 0 in every submodule. This way we reduce the problem to
check polynomials over a Galois ring and consider substitutions only from S;. Finally,
in Lemma 6 we characterise those polynomials that are equivalent to 0 over a Galois
ring for substitutions from ;.

Let f be a polynomial over R written as a sum of monomials having non-
commuting variables and elements of R. We denote the length of f/ by ||f]|. First
we reduce the problem to check substitutions of the variables only from S. Let
u, ..., u, € J bearbitrary and let u = (uy, ..., u,). Let

fa(xt, oo x) =f (1 Fup, .., Xy uy) (1)

be the polynomial attained by replacing every variable x; by (x; 4+ u;) and expanding as
a sum of monomials. We do not compute the monomials that contain at least -many
of u;s as these attain value 0 for arbitrary substitution. Thus, f; can be calculated
in O(||f]I") time and ||f5]l = O(||f||"). Consider the polynomials f; for every possible
uy, ..., u, € J. Wesay that R = f7 ~ 0 for substitutions from S if for every sy, ..., s, €
S we have f; (s, ..., s,) = 0. It is clear that R |=f ~ 0 if and only if for every u we
have R [= f; =~ 0 for substitutions from S. Now, the number of the f; polynomials is
| 71", which is an exponential number in |f||. Nevertheless, by the following lemma
we only need to consider those f; polynomials for which the number of non-zero u;
coordinates in % is less than ¢.

LEMMA 5. We have R = f ~ 0 if and only if R = f7 ~ 0 for substitutions from S
for every i for which |{1 <i<n|u#0}| <1

Proof. If R =f =0, then R = fz ~ 0 for substitutions from S for every i,
in particular R = f; =~ 0 for substitutions from S for # with less than ¢ non-zero
coordinates. For the other direction let uy,...,u, € J be arbitrary. For a subset
IC{1,....n}letu; = (), ..., u,) be the n-tuple for which u;, = u; fori € T and u; = 0
for i ¢ 1. Now separate the monomials in f; depending on which u;s occur in them: for
every I C {1,...,n} let g; be the sum of those monomials of f; in which w; occurs if
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i € I and u; does not occur if i ¢ I. Now, for a fixed subset H C {1, ..., n} we have
n=y (-Df,. 2
ICH

Assume that R = fz, =~ 0 for substitutions from S if |/| < ¢. Since every monomial
in f; contains less than f-many u;s, the right-hand side of (2) always attains the value
0. Hence, R = gy ~ 0 for substitutions from S for arbitrary H C {1,...,n}. Now,
fa= ZHQ{ ... &> thus R = f &~ 0 for substitutions from S. This holds for arbitrary

.....

u from 7, hence R = f ~ 0. ]

Let 7} be the set of u-tuples for which the number of non-zero u; coordinates is
less than ¢:

Ti={(u.....ou) e J.1<i<n|{l<i<n:u#0} <t}

Then
t—1
T <Z(r) TV <Z(" IRIY < (t+ 1) - mIRD = OIf1,
j=0

which is polynomial in ||f||. Thus, R = f =~ 0 if and only if for every u € T, we have
fa ~ 0 for substitutions from S. Each of these polynomials is computable in O (||f]|")
time, thus the reduction is polynomial.

Now, fixu = (uy, . .., u,), where the number of non-zero u;sisless than 7. Let g = f3;.
We prove that it can be checked in polynomial time whether or not R =g ~ 0 for
substitutions only from S. Now, § = 695218[, and §;S; = {0} for i # j. If the constant
coefficient of g is not 0, then g (0, ..., 0) # 0 and R = g % 0. Otherwise, for arbitrary

s(ll),.. s e s (1<z<l)wehave

g <i s(li), o isﬁ?) Zg (') s(’)
=1 i—1

Therefore, R = g & 0 for substitutions from S if and only if for every 1 <i </ we
have R = g ~ 0 for substitutions from S;.

Let i be fixed. Recall that Z; is a local ring in the centre of R with characteristic
p. The factor Z;/Z;N 7 is a field F; of p% =g, elements. Moreover, r; € Z; was
an element of multiplicative order ¢; — 1 and S; = {0} U {rj |1 <j < ¢; — 1}. Note
that s% = s for every s € S;. Let us rearrange every monomial of g into the form
x/f‘ xlf ...xkn .y, where r € R. The resulting polynomial and g attains the same values
for substitutions from S;, since S; is in the centre of R. Forevery 1 < j < nlet us execute
polynomial long division by (x]q" — x;) to obtain the remainder: replace the exponent
of x; by its modulo (g; — 1) equivalent from the set {1, 2, ..., ¢g; — 1}. This requires
O (n- |\ g|l) time. Finally, we collect together every monomial for which the exponents

of x1, ..., x, are respectively equal. The resulting polynomial attains the same values
for substitutions from S;, thus we may assume that these steps are already executed
on g.

The Galois ring R; < Z; lies in the centre of R. Every finite module over a Galois
ring is a direct sum of cyclic modules. Let us consider R as an R;-module. Thus, R is
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a direct sum of R;-modules, i.e. there exist by, ..., by € R such that
R=Rib1® - ® Ribg,

as an R;-module. Every element r € R can be written in the form Zj‘(:l rib;, where

ri € R; (1 <j < k). Let us write every coefficient of g in the form Z;‘:l r;b;. Then, let
us write g as the sum of the corresponding components:

k
g(xl,...,x,,)zZg,-(xl,...,xn)~b~,
j=1

where each g; € R;[xi, ..., x,] is now a polynomial over R; (instead of a polynomial
over R); moreover, every variable in every monomial of g; has exponent at most
(¢i — 1). Every g; can be computed in O(l|g|)) time, and |g;| = O(lgll) (1 <j < k).
Thus, R = g ~ 0 for substitutions from S; if and only if for every 1 <j < k and for
every si,...,S, € S; we have g;(s1,...,s,) € Ann{b;}. Since Ann{b;} is an ideal in
the Galois ring R; ~ GR (p“, d;), for every 1 <j < k there exists 0 < ¢; < ¢; such that
Ann{b;} = (p%). Thus, g; (s1, ..., s,) € Ann{ b; }ifand onlyif p“~% - g; (s, ..., s,) = 0.
In summary: R = g &~ 0 for substitutions from S; if and only if for every 1 <j <k
we have R; = p~% - g; ~ 0 for substitutions from S;. This latter condition can be
decided in polynomial time, as it is equivalent to p“~% . g; being the 0-polynomial by
the following lemma.

LEMMA 6. Let R be isomorphic to the Galois ring GR (p¢,d). Let ¢ =p?, r be
an element of multiplicative order (¢ — 1), and S = {0} U { Pll<j<qg-—1 } Leth e
RIx1, ..., X4] be a polynomial, written as a sum of monomials such that every exponent
of every variable in each monomial is at most (¢ — 1) and every monomial appears at most
once. Then R = h ~ 0 for substitutions from S if and only if each coefficient of every
monomial in h is 0.

Proof. If each coefficient in % is 0, then # ~ 0. We prove the other direction by
induction on ¢. The case of ¢ = 1, i.e. when R is isomorphic to the g-clement field,
is proved in [1] by induction on the number of variables. Assume that ¢ > 2 and
that R = h ~ 0 for substitutions from S. Let F = GR (p¢, d) /(p), then F is the ¢-
element field. Now S is a representation system for F in R, thus F = h ~ 0. By
the induction hypothesis, every coefficient of % is divisible by p, i.e. h=p -}l for
some polynomial /. Hence, R = & =~ 0 for substitutions from S yields that /’ attains
values from the ideal (p°~"). Thus, R/(p°~') k= I’ =~ 0 for substitutions from S. Since
GR(p¢.d) /(p™") ~ GR (p*~', d), by induction every coefficient of /" is 0 in the factor
ring R/ (p¢~'), i.e. every coefficient of /' is divisible by p°~! in R. Thus, every coefficient
of h is divisible by p*. O
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