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1. Introduction

The present note continues the discussion, begun in the first paper with
the above title, of classes of spaces JF which are extensions of L2(0, oo)
and whose elements, which we call 'sequence-functions', exhibit some of the
properties of distributions. The previous paper defined the spaces, and
described how they can be used to extend the domain of definition of Watson
transforms. Further related applications to transform theory are described
in [2] and [3]. In this paper I pursue the analogy between these sequence-
functions and other types of generalized functions further by discussing
their local behaviour, the existence of ordinary and convolution-type prod-
ucts, and of derivatives and integrals.

Ordinary and convolution products are dealt with in §§ 3, 4 and 5.
In each case it proves necessary to introduce new function spaces, to which
at least one factor of a product shall belong, and each of these paragraphs
is devoted in part to a description of the new spaces.

Turning to the definition of derivatives and integrals of sequence-
functions, we find that expressions of the form xaFlx){%) and x~xF{~a)(x)
arise more naturally than Fla)(x) and F<-a)(x). We therefore first find condi-
tions for the existence of these 'affixed' derivatives and integrals, in § 6,
and then attempt in § 7 to detach the factors x±a by using the ordinary
product of § 3 to define x-axaFla)(x) and afx-aFl-a)(x).

This method defines sequence-functions which are interpretable as
derivatives and integrals only over intervals excluding neighbourhoods of
0 and oo, and suggest the necessity of some treatment of the local behaviour
of sequence-functions. Accordingly, a discussion is included of sequence-
functions which belong to L2 on open sets; the paper begins with this.

The reader is assumed to be acquainted with the notation and contents
of the first half of the first paper, [1]; references to equations, theorems etc.
in [1] will be shown by a suffix 1. I must again thank Professor E. R." Love
for his interest; some sections of this paper, particularly §§ 2 and 3, were
suggested by his published papers [4]lt and unpublished work to which he
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268 J. B. Miller [2]

gave me access. The paper contains some modifications suggested by the
referee.

2. Locally numerical sequence-functions

If a sequence-function belongs to L2 it has almost everywhere a numeri-
cal representation. A less restricted member of Jf^x. m a v be numerical on a
subset E of (0, oo), i.e. may be equivalent to a function of L2(E), without
belonging to L2(0, oo). We show that this property of being 'locally numeri-
cal' may be defined precisely, at least when E is an open set.

DEFINITION. A sequence-function F of 3tf'_A is numerical on E if it
possesses at least one Cauchy sequence which converges in L2(E). The mean
limit in L2(E) of this sequence determines the local value of F in E.

That the local value so defined is unique is shown by

THEOREM \. If F of 3^_X is numerical in E, an open set in (0, oo), and
X > \, then all Cauchy sequences for F which converge in L2(E) have the same
limit.

We require a preliminary result.

LEMMA 1. Let (hn), hn eZ,2, be a null sequence in &_x, i.e.

and suppose that hn(x) = h(x), independent of n, for almost all x in the interval
{a, b). Then h(x) == 0.

PROOF OF THE LEMMA. Since [|An||_A -*• 0 as n ->- oo, we have

'dx -> 0.(2.1) f* x~x f" (x-t)^hn(t)dt+x-x [x {x-tf-^h{t)dt
J a J 0 J a

If a = 0, it follows immediately that hl~X)(x) = 0 and hence that h(x) = 0
in (a, b). Suppose a > 0. Consider first the case when A is a positive integer,
and write Hn(x), H(x) respectively for the two expressions within the modu-
lus signs in (2.1). Clearly Hn(x) is a polynomial in ar1 of degree X with zero
constant term, and therefore converges in L2(a, b) to a similar polynomial;
thus H(x) has this form also. Therefore

= co+Clx+ - • • +cx_1x
x~1;

the A-th derivatives of both sides are equal almost everywhere, and so
h(x) = 0. Now suppose that X is non-integral, I < X < 1+1 for some integer
1. Then ||An||_A -> 0 implies ||AB||_(,+1) --> 0 by Lemma 2X: the previous case
gives h — 0.
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[3] Hilbert spaces of generalized functions extending i 2 , (II) 269

PROOF OF THE THEOREM. Let (/„), (gn) be two equivalent sequences for
p which converge to /, g respectively in L2 [a, b). Let {f'n) be another sequence
given by

£ ( * ) = / ( * ) (a<x<b), fn{x) (otherwise).

We show first that (j'n) ~ (/„). Now

II/;-/JI2-A = dx

say.
If A >

and the second factor is finite if 0 < a ^ b < oo. Thus under these condi-
tions Ix -> 0; and similarly 72 -> 0; (f'n) defines F. Let (g'n) be obtained simi-
larly from (gn), so that

in ^"_A. Then An = f'n—g'n satisfies the conditions of the lemma, and h =
f—g = 0. Hence the theorem holds when E is a finite interval not having 0
as an endpoint, and the extension to a countable union of open such inter-
vals and so to any open set is immediate.

We note the corollary: A sequence-function is numerical on an open set
if E and only if it has a sequence which repeats on E, as a function of L2 (E).

3. Ordinary products

We look for a product F<f> in J f which will reduce to the ordinary product
of two functions if F e L2. The evidence of other theories of generalized
functions shows that such a product cannot exist between two arbitrary
sequence-functions; rather, the further removed F is from L2, the greater
the restriction necessary upon $. In the present case it turns out that the
restrictions take forms involving the norm

We shall denote by 0* the new linear spaces of measurable functions which
this norm determines.

https://doi.org/10.1017/S1446788700028299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028299
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DEFINITION. I. 0*^ is the space of measurable functions <f> for which

II. <f> belongs to S?x if there exists some function <£(A) related to <f> as in
(2.1)x (the Lebesgue integral there given existing for almost all x > 0), and if
t*p»(t) e&0. We write ||fl|A = ||^(A)Wllo-

III. <f> belongs to 3P_X if the Lebesgue integral (2.2)! defining <f><-X)(x)
exists for almost all x > 0, and x~A^(-A)(a;) e ^0. We write
|

IV. Spaces ^[ A ] and ^ - A ] are defined similarly.
These spaces in their orderings show less symmetry than spaces 'S and

$P. We find (by judicious use of Schwarz' and Minkowski's inequalities)
that, if 0 < X < (i,

and if 0 ^ X < [i,

From these can be deduced the existence of two broken systems

(3.3) " A ° A " ( 0 < A < « )

We shall prove theorems which determine sufficient conditions for
(fn(f>) to be Cauchy when (/„) is Cauchy, and thus allow us to define F<f>.
The proofs depend upon interated ordinary integration by parts, and we are
obliged to restrict the parameter X to take integer values only. There is a
distinction between cases where (/„$) is to be Cauchy in the same space
^_A as (/„), and where (/„) is restricted to a smaller space than (fn(f>). We
begin with a preliminary lemma.

LEMMA 2. (i) / / / e Z.2, then x-*f<~x>{x) = o(ari) as x-+0, if X > \.
(ii) If tfre^x, 0 < a < X—\, then as x -> 0,

4>{x) = O(Vlog(l/*)), *>V>(x) = o(l).

(iii) / / (f>e^w, X > J, then <f>(x) is bounded,

The proofs of (i) and (iii) are immediate consequences of Schwarz'
inequality. The proof of the second order relation in (ii) is a slight modifica-
tion of that of [6JJ, Theorem 4; the first of (ii) follows from the same proof,
by a varied treatment of the term 'J2' there.
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LEMMA 3. Let I, m be integers, 0 < I <m, and let f eL2. If <j>e&>
or\&>l,

then

(3.4) \\f4>\\-m£\\f\\-r{A\\4\\o+B)\4\\l},

where A, B depend only upon I, m.

If instead I = m, <f> e &m and <f(x) is bounded, then

(3.5) | | M U ^ H/IU, • {sup\*(x)\ + C\\t\\m},

where C depends only on m.

PROOF. Assume <f> e^0 n £?,, and write &(t) = ^>{t)(x—t)m-'1, so that

(3.6) r(

and integrate by parts I times, so as to obtain /(~!) (t) in the integrand. The
integrated terms which arise form a sum of expressions

Lemma 2 shows that the terms for t = 0 vanish; clearly those for t = x
also vanish if I < m, but if I = m there remains one non-zero term
fi-l}(x)<f>(x). If we write &r>(t) for the ordinary r-th derivative of 0 with
respect to t, supposing x fixed, we get from (3.6):

(3.7) (/<£)<-""(*) = r ( m ) - ! ( - l ) ' j*f(-l>{t)&W(t)dt (if / < m)

or

(3.8) = fl-mi(x)4>(x)+r{m)-1(-l)m j*fi-m>(t)&m)(t)dt

(if / = m).
Suppose 0 < / < m; from (3.7),

r{t»)\WU = [j"\x-'j

(3.9) J o U l

- [Jo"''"'/'"
= H/IULfo), say.

Now

(3.10) a< ,

= (-l) l2«r(«-0m-l+r-^(r )W. say,
r=0
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since

&l\t)\*d;

w
»)*

(cf.

VII

J. B. Miller

§ 22). Then

[6]

r -», say;
r=0

and therefore, in (3.9),

i
- 2 »r

r-0

by (3.1). The first part of the lemma follows from (3.9) and (3.11).
Suppose now that l = m. Equation (3.10) is valid again, but now a0 = 0.

With this modification the work down to (3.11) holds, with b0 = 0, and
(3.8) gives the second part of the lemma, (3.5).

Since ^ A ^ &>w t a cognate form of Lemma 3 will provide for multipli-
cation by some functions not covered by that lemma.

LEMMA 4. Let I, m be integers, 0 < / 5S w, and let / e L2. If <f> e &m, then

(3.12) IIMU ^ S'll/li-r
where B' depends only on I, m.

The proof follows the general pattern of the previous one, but the
details are considerably more awkward. If / <m, we find in place of (3.4):

IIMU] ^ ll/lli-q • {A"MU+B"U\\m}'
but this time the first term inside the brackets may be incorporated in the
second, by (3.2); and ||/||c_? = ||/||_, by (4.4)1; while H / ^ l ^ = \\ft\\_
by virtue also of Lemma 2 (iii): this gives (3.12). If I = m we get a cognate
form of (3.5), in which again (by Lemma 2 (iii)) the first term may be
incorporated in the second, giving (3.12) in this case also.

Returning to products of sequence-functions, we now frame the

DEFINITION. The -product F<f> of a sequence-function F and a function $
exists if all sequences (fn<f>) for which (fn)~F, /Me£2, are Cauchy and equiv-
alent; then F<f> is the sequence-function defined by this class of Cauchy sequences.
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Here, the space in which the sequences are to be Cauchy and equivalent
is purposely left unspecified; it is in that space that F(f> will exist.

It is easily seen that under this definition the distributive and associa-
tive laws are valid, in the sense that

(o.loj
p{<h) = (Ftf>)y>

hold provided the right-hand side is defined, in each case. If F e L2 i.e. if F
possesses a repeating sequence (/), / e l 8 , and if F<f> exists in tf-x, then
F<f> is the principal sequence-function f(f>, a function of 18 _x (cf. § 6X).

The following theorem is an immediate consequence of Lemmas 3 and 4.

THEOREM 2. Let I be a positive integer, and suppose F eJf_t. Then Fcf>
exists as a member of ^_ ( , + 1 ) if <f> e&0 n 0*^ or even as a member of 3tf'l if
<f>€&>

l and <f> is bounded, or if (f>e£Pw.

4. Resultant products

Here we consider a product of the form

(4.1) {f.g) (*) = J"°° f(xt) j g (1) dt = J°° f{t) j g ( ^ it.

Such products arise naturally in work with Watson transforms, where they
are perhaps more appropriate than the usual convolution product of two
functions, to which this resultant reduces after simple changes of variables.
We say, at first, that / • g exists if the integral is absolutely convergent for
almost all positive x. Clearly / • g exists if both / and g belong to Z.2.

In order to be able to discuss the existence of the resultant in ^ _ A ,
we find it necessary to introduce new spaces s/ and 31, derived from the
norm
(4.2)

in the same way as <& andJf spaces are derived from the norm || • ||0 and
& spaces from the norm | |- | |0.

DEFINITION. I. M is the space of measurable functions f for which
l/lo < co.

II. / belongs to sfx(X > 0) if there exists some function /(A) related to f
as in (2.l)1{tke Lebesgue integral existing for almost all x > 0), for which
txf^{t)eM; and jtfo = M. We write |/|A = |^/(A)(0lo-

III. / belongs to s/_k(k > 0) whenever /(~A)(a;) exists almost everywhere (as
a Lebesgue integral, defined by (2.2)!), and arA/(-A)(a;) 6 M; S/_Q = S/Q = M.
We write |/|_A = |a
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IV. Sfaces j</[A], ^ _ A ] « ^ defined analogously.
V. ^*_A, "^[-A] a y e ̂ e spaces s^_x> <s/[_A] respectively, completed by the

adjunction of limits in the respective norms (cf. § Qj).
It will be seen that ^0 is related to M as ̂ 0 ( = £2) is to L. Before ap-

plying these spaces to the discussion of the resultant, we list in summary
form some of their properties.

1°. The spaces L2 and M are distinct, and their intersection is dense in
each of them.

2°. For / e Lz, 0 ̂  X < fi, we have (cf. Lemma 2X)

Also, if 0 <; X < fi—\,

(4.4) H/IIA < K{X,

where

The same inequalities hold for norms associated with [ ] forms. [The proofs
use Schwarz' and Minkowski's inequalities. To prove the second of (4.4)
for example, we write

<f>(x, t) = x-fi{x-ty-x-if^{t) (0<t<z), 0{t> x),

so that, by (3.1),.,

\4>{x,

3°. We deduce from the inequalities of 2° that

(4.5) s/llCsfxCMCsf_kCs/_fl {0<X<n)

and

(4-6) ^ c a r A , ^ . A c ^ (o=s A <,*-£).
[The examples c, d of (5.3)x show that the inclusions are proper.] On the
other hand, no ̂  space is wholly contained in any s/ space. [It can be
verified that if

**/<*)(*) = ^( log*) - 1 (1 < 1+e ^ t), 0 (otherwise),

then / e ̂  but / f d'_M for all /i.]
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4°. The formula (5.4)x for fractional integration by parts holds if
X > \ and either / e L2, ges/x or / e M, ge@A.

5°. The spaces s/_x{X > 0) are incomplete, so that jtf_x C JLA CJt_/t

if 0 < A < (i—\. [The sequence (r)n), where rjn(x, £) = n (£ < x < £ + \jn), 0
(otherwise), is Cauchy in s/_x, with no limit in the space.]

6°. M is dense in 38 _x [This follows from 1°, 5°, and the fact that L2 is
dense in 3^_x (Theorem 3J.]

We return now to the resultant (4.1). The linear space M with this form
of product becomes a commutative Banach algebra, without identity (since
M does not contain a delta function). Thus

7°. If /, g e M, then f-geM and

We also have
8°. If / e L2 and g e M, then f • g e L2 and

(4-8)

9°. If /, g e L2, then (/ • g) (x) exists for all x > 0.
It will be convenient to introduce the operator #, defined by

Real M is an algebra with involution #. The operation also maps L2 onto
L2, <SX onto &w,sfx onto ^ A ] .

We seek to extend the definition of • to the sequence-function spaces 34?
and 38, and to this end we first construct inequalities for norms of the
product. These are set out in Lemma 6 below, and the existence of the
extended product is then described in Theorem 3. As a preliminary, we prove

LEMMA 5. The formula

(4.9) x-Hf • gY-X)(x) = (*-*/<-*»(*)) • g

is valid for all positive x in each of the following cases:

(a) feL2, geL2, X > 0,
(b) feL\ geM, X>\,
(c) feM, geL2, X > \;

and for almost all positive x if X > 0 in {b) or (c), or if

(d) feM, geM, X>0.

PROOF. Equation (4.9) in cases (a) to (c) is a consequence of Tonelli's
and Fubini's theorems, by which
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(4.10) r(X)x~x{f • gy~X)(x) = arA f °°g (u)du f" (x-t)^f(ut)dt;
Jo Jo

the repeated integral is shown to be absolutely convergent by judicious use
of Schwarz' and Minkowski's inequalities appropriate to each case; we omit
the details. Case (d) is slightly more involved: to show that the repeated
integral (4.10) converges absolutely, suppose / and g non-negative, and
consider the integral of (4.10),

(4.11)

Invert the order of integration; the repeated integral

= f"£(u)du j " ar»-iu-*dx j ~

= Jo°° ?(u)u-*du J " y-^-Uy H (y~t)^f(t)dt {xu = y)

= Illo • l/lo • / " w-*-*(w-l)*-^Bf (y = wt).

Since this is finite, applications of Tonelli's and Fubini's theorems justify
the inversions of order of integration used, and show that (4.11) converges;
Tonelli's theorem shows that, in the general case (d), the integral in (4.10)
converges absolutely for almost all positive x; finally, both theorems then
justify the inversion involved in (4.10).

Cases (b) and (c) for A > 0 are proved similarly. For example, to show
the convergence of (4.10) in case (b), we note that, if 0 < a < b < oo,

SIdx JT
f°'V \* \X {l-v)x~1\f{xuv)\dv

^ / " \g (u)\u~idu

which is finite if g e M, f e L2, A > 0; the argument proceeds as before.

LEMMA 6. (i) If feL*, geM, X ̂  0 and a ^ 0, then

(ii) / / /, geM, A ̂  0 and a ^ 0, then
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Here ct and c2 are constants depending only on X and a.

PROOF. By two successive applications of Lemma 5, first for the case
(c) and then for the case (b), we get

<-*> = z~x= z~x{f

This is valid for almost all x > 0 under the conditions in (i) (we use 3°
above). Then by (4.8),

From 8° above we have / • g e L2; an application of Lemma 7 (ii), from § 6
below, gives (4.12).

In the same way, Lemma 5 (d) and Lemma 7 (iii) lead to (4.13).
The criterion for the existence of F • g will be the same as for F<f>;

that is, for the definition of F • g we repeat exactly the definition of F<f> in § 3,
with only the formal changes from F<J> to F • g and (/„$) to (/„ • g). Then
the remarks that follow that definition will also apply for the resultant,
with the same kinds of amendments.

But now we shall more generally define also the resultant of two
sequence-functions: F •« will be said to exist if (/„ • gn) is Cauchy for any
pair of sequences (/„) ~ F, (gn) ~ G and if all such sequences are equivalent,
and then F . G is the equivalence class so determined. Here the F, G may be
limits in either Jf or 88 spaces, and the sequences are from L2 or M, as the
case may be. (Here we invoke § 4, 6°). We have:

THEOREM 3. Let X 5: 0, a ^ 0. / / F e3^_x and G e38_a, then F • G

exists as an element of Jf_iX+a). If instead F e 0D_X and G e 38_a, then F • G
exists as an element of ^_(A+a).

PROOF. For the first part, let (/„) ~ F in Jf_A and (gn) ~ G in ^LA.
Then by (4.12),

HA. ' gn-L • gm\\-U+*) ^ Cl{ l l / , - / JU " lgnU+11/mlU ' \gn-gm\-a]>

and hence (/„ • ̂ B) is Cauchy in ^_ ( A + a ) . The non-dependence upon the
particular sequences follows likewise from (4.12). The second part of the
theorem is proved similarly.

The theorem shows that the 38 spaces are perhaps more appropriate
vehicles for the resultant product than the 2^ spaces: no sufficient condition
for F • G e^f_A in terms of tfP spaces alone seems to exist. We have from 5°
that 31 _x CJP-n if A < (J.—\, but no reverse inclusion is possible.

https://doi.org/10.1017/S1446788700028299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028299


278 J. B. Miller [12]

5. Convolution products

A theory like that of § 4 can be constructed for the product

(f*g)(x)=j*f(t)g(x-t)dt.

The auxiliary spaces are t/, Jf (say), derived from the norm |-|0 of L =
1.(0, oo), so that, for example, we write fe/_x if |/ |_A= |*~A/(~"A)(')lo< oo,
and JT_A is the space </_*, completed. These spaces form a broken system:

In place of (4.9) we can first show that (/ *g)<-A>(a:) = (/ *g(-X)){x) if
/, g e L2(0, x) and A > 0; and then we can use the inequality

|0 (a ^ 0 , A S: 0)

to deduce that

Thus F * G exists in ^_ ( A + a ) if F eJi?_x, G e «3T_a.

6. Affixed integrals and derivatives

We have already in § 71 defined F{~X), when F BM>_X, indirectly as the
coefficient of x~x in the L% function x~x

 J?(-A) (a;). We now consider the existence
of expressions of the form x~aFi-a}(x) for general a. > 0, which we shall call
'affixed integrals'.

LEMMA 7. / / / e L2, X ̂  0, a ^ 0, then
(i) ar"(ar^/<-*>(*))<-«) = a;-A(a;-«/<-«>(a;))<-A>;

(ii) there exist constants cx, c2 depending only on A, a such that

/ / instead f e M, A ̂  0, a ^ 0,
(iii) Âc inequalities of (ii) AoW WJ7A | • | in place of || • || (and possibly

with different constants, cz, c4 say).

PROOF. TO prove (i) it is sufficient to observe that either side of the
equation has Mellin transform

by (4.3)x. Likewise for (ii) we have
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2 x r (s = %+it)

l-(A+a) >

since

when SR(s) = \, for some positive constants cx, c2. The other inequality is
proved similarly.

Mellin transform theory is no longer adequate for the proof of (iii),
for which we work differently. By (3.1)1,

|/|_(A+a)=Jo ^ y - J o (x-t)^H-"f^(tyt~af(-tt)(t)t"dt x~idx.

Let ta in the integrand be expanded as a power series in (x—t)jx,

term-by-term integration is permissible because the series terminates or is
at least boundedly convergent. We get

|/|-(A+a) —

r-0

r-0

1 °° /a\ Cx

0
0

by (4.3). The series converges; thus for a positive constant c3, say, we have

which is one of the inequalities of (iii). The other can be proved in a similar
fashion. (Similar methods can be used to prove (ii) also.)

If x~aFl~a) (x) is defined as the equivalence class of sequences (x~af~a) (x))
where (/„) "•> F, /„ e L2, the lemma gives

THEOREM 4. Every sequence-function F of 3^_x has affixed integrals of all
positive orders, and x~aFl-a)(x) belongs to 3f?_ix__a) if a 5S X.

If in fact F € L2, so that (/) ~ F for some / e L2, then araji'(-a)(a;) so
defined is equal to x~a multiplied by the fractional integral /<-*> (a;). Moreover,
if F eJ^_K and a < K < X, then [x~af{~a)(x)) defines the same sequence-
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function in both Jf_iK_a) and J^_u_a), so that the definition is consistent
within the class of spaces Jt?.

It is easily seen that the statements of the above lemma and theorem
remain valid if everywhere the [ ] forms are read in place of the () forms.

Affixed derivatives can be defined in an analogous manner.

LEMMA 8. / / / e &a, X ̂  0, a ^ 0, then
(i) /(*) = *-(«»/<«>(*))'-">;
(ii) there exist constants c'lt c'2 depending only on X, a such that

co-

The identity in (i) is implicit in the formula defining /[~al and in the
definitions of § 2X. Inequalities (ii) can be proved by using Mellin transform
theory as in Lemma 7, (ii). We note that, by (4.4)lf the norms appearing
in the lemma may be replaced by the equivalent norms without square
brackets.

Define X*PW{X) when FeJt?_x as the class of sequences («"/ia)(*))
where (/„) is any sequence of @a functions for F (recalling that ^ a is dense
in J^_A). We have

THEOREM 5. Every sequence-function f of L2 has an affixed derivative
a;a/(a)(a;) in 3^_a, if a > 0. More generally, if F e Jf_A, the affixed derivative
xxF(a)(x) is defined in Jf_u+a) if X ̂  0, a ^ 0.

As in the previous case, the definition of xfF^^x) is an extension of its
usual meaning for the case F e &a, and is consistent within the class of
spaces Jf.

Lemma 8 (i) may be interpreted as a statement on the integrability
of derivatives. More generally, if FeJ^_x, so that xaF<a)(x) belongs to
Jf-u+a) and ar̂ (s6"jp<«>(aO)[-"] belongs to jf^ = Jt_x, Lemma 8 (i)
shows that x-a(xc'F^(x)y-^ equals p . Likewise «*(a;-af["aJ(a;))(a) = F.

As an example on the use of these derivatives, one may prove the
formula

(7.1) f~g(x)a?rW(z)dx = ^ x*gw{x)F{x)dx,

valid if g e ^A, F e3f_u_x), 0 < a < X, and where the integrals have the
meaning given in § 8X. (The proof uses Lemma 5V) The particular case
F = J £ (§ 10J and X—a. ̂  1 gives
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7. Local integrals and derivatives

Powers <}>{t) = tfi as they stand do not satisfy the requirements on <f> of
Theorem 2. However, functions which behave like them on subsets of (0, oo)
are easily constructed. Thus, for positive integral I and positive numbers
/?, A, let <f> be determined by

/•^')(0 = o (o<t<A), r(p+i)r(p)-n-i> (t>A).
It is easily shown that <f> is then the continuous function

a polynomial in x of degree £—1 (0 ̂ .x ^ A),

and this belongs to 0>
l and is bounded.

Again, let y> be determined by

<VI](0 = rtf+l+l)r(p+l)-W (0<t<A), 0(t>A).

so that y> is the continuous function

x/> ( * ' (O^x^A),
{0'A) \ a polynomial in x'1 of degree I, with zero constant term (x ̂  A);

and this belongs to 0>m.
We can use these functions to detach the factors x±ct in the affixed

integrals and derivatives of § 6, on subsets of (0, oo). Thus, let F e Jf_
so that by Theorems 4 and 2, the sequence-function

exists inje_t. If in fact r e ̂ o (a integral), thenX"F^(X) BU andF<°>(a;)(/lj00)

is a function also in Z.2 which equals (— l)"(dldx)aF(x) for almost all x > A,
in the sense of § 2. Again, let F e / . , , ^ , so that x-aFl-a)(x) B2^_X; the
sequence-function

exists in Jf_t; and it equals the oc-order integral of F for almost all x in
0 < x < A in the sense of § 2 if, for example, F e @_a.
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