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Abstract

Complementary variational principles are presented for a class of nonlinear
boundary value problems S* S¢ = g(¢) in which g is not necessarily
monotone. The results are illustrated by two examples, accurate variational
solutions being obtained in both cases.

1. Introduction

Complementary variational principles are known [1] for boundary value problems
described by equations of the form

T*T¢ =f($)in V, ¢ =0 on aV. )

Here V is some region of E™ with boundary &V, T and T* form an adjoint pair
of linear operators, and f(¢) is a monotonic decreasing function of ¢. We assume
the existence of a solution ¢ of (1) and view it as an element in the real Hilbert
space H, with inner product {, >. The operator T acts on elements in H, and sends
them to a second real Hilbert space H, with inner product (, ). The adjoint T*
of Tis defined by

(0, 1) = (T*v, 4>+ (v, 0¢) @
for all v in H, and all ¢ in Hy, where o is a linear operator acting on functions on
the boundary of V.

In this paper we investigate the possibility of extending these results to include
boundary value problems in which f(¢) is not necessarily monotone decreasing.
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For instance, it may be monotone increasing, like e#, or it may not be monotone
at all, like sin ¢. To consider problems such as these, we therefore look at a class

of boundary value problems

S*Sp=g(P)in¥V, ¢=0o0ndV,

€)

where S and $* form an adjoint pair of operators and where g(¢) is not necessarily
monotonic decreasing. Our aim here is to rewrite (3) in a form corresponding to
(1), with f(¢) a monotonic decreasing function. This can be done for a certain class

of problems.

First we shall suppose that S*S is a strictly positive operator, that is there exists

a positive number A such that

b, S*SY) = (Sih, S§) = A<ih, )
for all non-zero ¢ in Hy. Then for some positive number p we can write

S*S=T*T+p, p>0,
for some positive self-adjoint operator T*T, and equation (3) becomes
T*T$ =f(4),
with
T*T=S*S—p=L say,
and
() =g($)-pé.
Now since S*S—p is positive, we must have
<A

where A, is the lowest (positive) eigenvalue of the eigenproblem

S*S0=A0inV, 6#=0o0naV.

In addition we want f(¢$) to be monotone decreasing and this means that

2($)—5(4)
T

for all ¢; and ¢; in Hy. If g(¢) is differentiable this becomes

g@W)<p, forall ¢ in Hy.
Combining (9) and (12) we therefore find that p must satisfy the conditions

g <p<A, forall in Hy.

https://doi.org/10.1017/5033427000000196X Published online by Cambridge University Press

@

&)

(6)

™)

8)

)

(10)

)]

(12)

(13)


https://doi.org/10.1017/S033427000000196X

104 N. Anderson and A. M. Arthurs 3]

We shall assume that such a number p can be found.

To derive complementary variational principles associated with (3), rewritten
as (6), we wish to use a canonical approach. We therefore require, at least in
theory, the operators T and T*, and if we assume that we can write

T=S+gq, (14)
then
T*=S*+q, (15)
where ¢ is some function as yet unknown. Then (7) requires that
S*(q)+9SY+q*y+pp =0 for all ¢ in Hy. (16)
This is of the form
A@@Q)¢ =0,
and so we require a ¢ which satisfies
A(g)=0 (7

at all points of the space V. As we shall see later, beyond its existence, knowledge
of g is not needed in practice for the class of problems under consideration.

2. Complementary principles
In Section 1 the boundary value problem (3) has been rewritten in the form
T*T¢=f(¢)in V, ¢ =0o0naV. (18)

We now derive the associated complementary variational principles.
We write (18) in canonical form

Q: T¢=u=W,, ¢=0o0ndV, (19)
Qy: T*u=f($)=Ws; inV, (20)
where subscripts on the Hamiltonian W denote abstract derivatives. A suitable W
is given by
W(u, $) = ¥u,u)+ F(¢), 1
where
¢
@)= [*<rannan. @
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Equations (19) and (20) are the Euler-Hamilton equations associated with the
action functional

I(u, ¢) = (u, T$)— W(u, $)— (4, 04) (23a)
= <T*u,¢>— W(u, $). (23b)
Using (21) we see that
I(u, §) = (u, T)— $(u, v) — F(¢) - (u, o) (24a)
= (T*u, $>— $(u,u)— F($). (24b)

The action 1 is stationary at the solution (1, ¢) of equations (19) and (20).
Now we define a pair of dual functionals as follows:

J(¢y) = I(u,, ¢,) via (24a), with (43, ¢,) in Q,
= ¥(Tby, Td)— F(¢y)

= §{¢y, L$,> — F(¢,), with ¢, =0 on 9V, (25)
and
K(uy) = I(upy, ¢) via (24b), with (uy, $,) in Q,
= {T* g f T * 1)) — H(ug ) — F[fHT* wp)). (26)
If we take
uy =Ty, h=0 on oV, 27
we have
K(Tifp) = (L, S (Laho) > — $<ihe, Lo — FLf(Lif))- (28)
Here
L=T*T=S*S—p, (29)
and
S =gWp)—pi. (30)
Since
S')<0 for all ¢, 3D

we have the complementary extremum principles [cf. 2]

K(TY) <K(T$) = J$)<I (), 32)
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equality holding when ¢, and ¥, are equal to the solution ¢. With J in (25) and
K in (28), we note that the function g of (14) is not required explicitly.
There is an alternative form for J(¢,) which we give here. By (25)

J(¢1) = ‘Kﬁl’p L¢1> _F(¢’1)
= 3pu (5*S—p) > — f * (g b

= ¥4, $* 5610 - G($)
= (S, S~ G(4y), (33)

where

Ggy) = f *Cg (), di. 34)

Thus we have a formula (33) for J(¢,) in terms of the original operators and
functions of equation (3). In this form the number p drops out and the minimum
principle for J holds provided that

g <A, forall iy, 35

which of course is consistent with equation (13).

3. Example 1

To illustrate these ideas we first consider the nonlinear two-point boundary
value problem described by the equations

%=—e¢, 0<x<l1, (36)
and
$(0) = ¢(1) = 0. @37
It is known [5] that there is a non-negative solution ¢ such that
0<¢$<0.142. (38)

This is an example of our class of problems in (3) with

d d
S=d—_x’ S*=—d_x9 (39)
g(¢) =9, (40)
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and

{,¥> = J:¢¢ dx, (u,v)= J‘:uv dx. 41)
Here
&) = e/ >0, (42)

and so g(¢) is monotone increasing. To reformulate the problem as in Section 1
we need to find a positive number p such that

gW)<p<Ay forall ¢ (43)
If we restrict all admissible functions ¢ to the range
0<4$<0.142, 44
this means that
exp(0.142)<p <72, (45)

which provides a choice of possible p values.
For this example we find that the function ¢ of (16) and (17) must satisfy

—q¢'+¢*+p=0 (46)

and this has the general solution
q = J(p)tan{{(p) (x+0)}, 47)
where ¢ is a constant. With p in the range specified by (45), and O0<x <1, the
existence of g over the whole range is assured by the choice ¢ =—%. We can

therefore use the results of Section 2 with

L=—%p, (48)
and
F@) =¥y (49)

By (25) and (28), the dual functionals J and K are

I = [ b1 - en+ipgax

- f G-y dn, 40 = H1) =0, (50)
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and
K(Ts) = | (WS )~ b L= exp [F- L) d,
hO=$D=0. (D

Since
£y =et—p<0

for all functions ¢ satisfying (44), we see that (31) is satisfied, and the global
complementary principles

K(TY)< K(Th) = J($)<J($) (52)

hold. The minimum principle for J was given previously by Arthurs and Winthrop
[4], but the maximum principle for K appears to be new.

We can use (52) to obtain an approximation to the exact function ¢. Taking
p = exp(0.142) we have performed calculations with the trial functions

¢1 = % an(x—xz)"’
Nl

(53)
da= 3B x—x"
where the parameters a, and b,, were determined by optimizing J and K.
The results are

a, = 0.54920013, b, = 0.55020013,

a, = 0.05310009, b, = 0.05300009,

a; = —0.00498991, by =—0.00301991,

J=-1.0465168, K= —1.0465168. (54)

Since J— K provides a measure of the mean square error in the function ¢, [see 3],
we conclude that ¢, is a very good approximate solution of the problem in (36)
and (37). The estimate (slightly corrected) given in [4] shows that

|$1—dl<1.7x 10,

4, Example 2

Our second example concerns the nonlinear two-point boundary value problem

LY rsiny)=0, 0 55
-d72-+smy(x)— , O0<x<3, (55)
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with
»©0)=0, y(3)=B>0. (56)
This has been studied numerically by Bailey et al. [5] and they find that iteration

methods provide relatively slow convergence to the unique solution y.
Since the boundary conditions in (56) are not homogeneous we shall make them

so by setting

W(x) = $(x)+1Bx, (57)
which gives the new problem
P i Bx)=0, 0 3 (58)
3?+sm(¢+g} x) =0, O<x<3,
with
$(0) = ¢(3) = 0. (59)
Equations (58) and (59) provide an example of our class of problems in (3) with
_ d * _ d
g(¢) = sin (¢ +1Bx), (61)
and
3 ‘3
Gy = [(ax, o= [‘was. (62)

Here we see that g(¢) is not monotone.
To reformulate the problem as in Section 1 we need to find a positive number p

such that
gW)sp<Ay forall . 63)
For this example, (63) is satisfied by choosing p in the range
1<p<hnt (64)

The function ¢ in the decomposition (14) again satisfies (46) and is given over the
whole range by (47) with ¢ chosen to be ¢ = —2. We can therefore use the results
of Section 2 with

d2
= 65)
and
S() = sin @+ §Bx)—p. (66)
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By (25) and (28) the dual functionals J and K are

J@) = f:{%¢11¢1+<¢08 (b1+ 1Bx) + 1pgd)

= fos{%(¢1)2 +cos (¢, + 2Bx)}dx, ¢,(0) = $,(3)=0,

and

{91

(67)

KCTs) = [ {10~ W L 10 U+ 1)+ s,

$2(0) = ¥,(3) = 0.
Since

S'@f) = cos(p+4Bx)—p<0

(68)

(69)

for values of p in the range (64), we see that (31) is satisfied and the global

complementary principles

K(T) < K(T$) = J($) < ($)

hold. These principles appear to be new.

(70)

To obtain an approximate solution of (58) and (59), and hence of (55) and (56),

we have performed calculations with the trial functions

$: = éla,.{(&x)"ﬂ—%x},
and

do= 3 bax(3—X)"

Nl

To avoid difficulties with £~ in (68) we took
p =3

and for comparison with the results in [5] we chose

B=217.
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The parameters a,, and b,, were found by optimizing J and X, and the results are
a, =—2445, a;=-0423, b =0.320,
a,=—2937, a3=-0.078, b, =0.0356,
a;=1322, a,=-0.145, by;=-0.0042,

a, = 1,285, J=-0.2546, K=-0.2822. 5)
By (57), our variational solution of the original problem in (55) and (56) is

Y1 = é1+3Bx. (76)

The variational bounds in (75) indicate that y, is quite a good approximate
solution and to check this we have also obtained a numerical solution. Table 1
provides a comparison between these two solutions which are seen to be in very
close agreement.

TABLE 1

Comparison of variational and numerical solutions in example 2

X » (numerical)

0 0 0

0.5 0.938 0.938
0.75 1.335 1.343t
1.0 1.678 1.688

1.5 2.193 2.197¢
2.0 2.502 2.505
2.25 2.595 2.599%
2.5 2.657 2.661

3.0 2.700 2.700

1 These values agree with the
numerical values given in [5].
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