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Abstract

An inverse semigroup S is said to be modular if its lattice S£^{S) of inverse subsemigroups is
modular. We show that it is sufficient to study simple inverse semigroups which are not groups. Our
main theorem states that such a semigroup S is modular if and only if (I) S is combinatorial, (II) its
semilattice E of idempotents is "Archimedean" in S, (III) its maximum group homomorphic image G
is locally cyclic and (IV) the poset of idempotents of each S-class of S is either a chain or contains
exactly one pair of incomparable elements, each of which is maximal. Thus in view of earlier results of
the second author a simple modular inverse semigroup is " almost" distributive. The bisimple modular
inverse semigroups are explicitly constructed. It is remarkable that exactly one of these is nondistribu-
tive.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 10, 08 A 30.

The study of the lattice ^^{S) of full inverse subsemigroups of an inverse
semigroup S was initiated by the latter author in [6], [7]. An inverse semigroup 5
is called modular if ^C^(S) is modular. (As noted in [6], although modularity of
the lattice of all inverse subsemigroups seems a more natural concept to study, the
theory is rather trivial.) As a consequence of [6], S is modular if and only if each
of its principal factors is, and thus it is sufficient to consider 0-simple modular
inverse semigroups. In fact, as we show, only the simple case need be treated. The
following characterization is given (the group and completely 0-simple cases
having been discussed elsewhere).

The first author gratefully acknowledges the support of a research grant from the College of
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48 Katherine G. Johnston and Peter R. Jones [2 ]

THEOREM. A simple inverse semigroup S (not a group) with semilattice E of
idempotents is modular if and only if

(I) S is combinatorial,
(II) E is Archimedean in S (that is, for any e, f e E and for any nonidempotent

right unit x ofeSe, x'"x" < ffor some positive integer n),
(III) the maximum group homomorphic image of S is locally cyclic, and
(IV) the poset of idempotents of each 3-class of S is either a chain or contains

exactly one pair of incomparable elements, each of which is maximal.

This theorem is remarkable for its similarity to the description in [7] of
distributive simple inverse semigroups: there the second alternative in (IV) cannot
occur. Various consequences of the above properties are discussed in Section 4.
We briefly mention some of interest here. If S is modular then it is locally
distributive (that is, each local submonoid eSe, e e E, is distributive; this usage
differs from that current in lattice theory;) its maximum group homomorphic
image is also distributive and further the kernel of the least group congruence is
distributive and completely semisimple. An important property held by modular
inverse semigroups is local £-unitariness.

In Section 5 the bisimple modular inverse semigroups are completely described.
It is notable that there is precisely one such which is not distributive—the Munn
semigroup of the semilattice obtained from an w-chain, by adjoining two new
incomparable maximal elements. The distributive ones are described completely
in terms of subgroups of the rationals.

The techniques are in general based on those in [7], but the arguments are
rather more difficult. Unfortunately, we do not obtain an analogue of the
subdirect decomposition of JSf̂ " found there in the distributive case.

1. Introduction

Let S be an inverse semigroup. If A c S then EA will denote the set of
idempotents of S which are in A; EA is partially ordered in the usual way. We
shall generally just write E for Es. An inverse subsemigroup of S is termed full if
it contains E. The full inverse subsemigroups of S form a complete sublattice
£C^(S), or just &&, of the lattice (3?(S), n , V) of all inverse subsemigroups. If
S is a group then &&= &. A significant deviation from the notation of [6,7] is
that (A) will denote the full inverse subsemigroup generated by the subset A of
S. For properties of inverse semigroups the reader is referred to [5,10], and for
those of lattices to [4]. Recall that a lattice (L, A, V) is modular if a <; b => b A
(c V a) = (b A c) V a. We shall more often encounter the equivalent form: L is
modular if a^b^cVa=*b = (b A c) V a.

https://doi.org/10.1017/S1446788700028950 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028950


[ 3 ] Modular inverse semigroups 49

For completeness we review some of the relevant results from [6].

RESULT 1.1 [6,Theorem 1.4]. For any inverse semigroup S, ££& is a subdirect
product of the lattices of full inverse subsemigroups of its principal factors. Hence S
is modular if and only if each principal factor is.

RESULT 1.2 [6, Corollary 3.6]. A modular completely 0-simple inverse semigroup
S is either a modular group with adjoined zero or is a combinatorial Brandt
semigroup with at most three nonzero idempotents. In the latter case, if S has fewer
than three nonzero idempotents it is in fact distributive.

As mentioned earlier, simple distributive inverse semigroups were characterized
in [7] as follows.

RESULT 1.3. A simple inverse semigroup S is distributive if and only if S satisfies
(I)—(III) above and the poset of idempotents of each 2>-class is a chain.

Modular and distributive groups are discussed in some detail in [11]. Of course
every abelian group is modular. The following provides a partial converse which
we shall need.

RESULT 1.4 [11, from Proposition 1.12]. A torsion-free modular group is abelian.

RESULT 1.5 [11, Theorem 1.2]. A group G is distributive if and only if it is locally
cyclic.

Thus a torsion-free distributive group is an abelian group of rank 1. It is
therefore isomorphic to a subgroup of the additive group Q of rationals [3].

We show next that modularity of inverse semigroups is preserved by quotients.
The kernel, ker y, of a congruence y on an inverse semigroup S is the full inverse
subsemigroup {x e S: xye for some e £ E).

PROPOSITION 1.6. Let y be a congruence on an inverse semigroup S. The map T:
£f^{S) -* SC^{S/y) induced by y is a join-preserving surjection. When restricted
to the principal filter [kery, S], T is a homomorphism upon JiCJF(S/y). Hence if S
is modular so is S/y.

PROOF. The first statement is clear. Now let A, B e [kery, S], and suppose
x eAT n BT. Thus a = ay = by for some a e A, b e B. Now a~xbyb'xb, so
a'xb G kery c A. Therefore aa'xb e A, and aa'xb e B since aa'1 e B. So
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x = (aa-lb)y e (A n B)T. Thus v4r n BY c ( 4 n 5 ) r and the opposite inclu-
sion is clear.

The following technical lemmas will find repeated use.

LEMMA 1.7. Let S be an inverse semigroup and let A, B e .S?J£\ / / x is a
nonidempotent of Ay B then x is expressible in the form x = xxx2 • • • xn, where
each xt is nonidempotent, the JC, alternately belong to A and B and xxdlxSPxn. In
particular, either A n Rxx-i or B D Rxx-i contains the nonidempotent xx.

PROOF. That each xt may be chosen nonidempotent follows from the fullness
of A and B. Replacing x1 and xn by xx~xxx and xnx'lx, respectively, yields

LEMMA 1.8. Let S be an inverse semigroup and b £ S, b £ E. If x is a

nonidempotent in (b) then x = xx~lbn for some nonzero integer n. Thus xx~l <

PROOF. By [7, Lemma 2.1], x = ea for some e e E, and nonidempotent a in
the inverse subsemigroup which b generates: a = (b~kbk)b"(blb~l) for some k,
/ > 0 and nonzero integer n [10, Chapter IX]. Thus x = exb

nfx = ex(b
nfxb-")bn

for some ex, fx e E, and so x = xx'lex{bnfxb'n)b" = xx~lb".

2. Necessity

We first show that only simple inverse semigroups need be considered.

PROPOSITION 2.1. Let S be a modular inverse semgroup which is 0-simple but not
completely 0-simple. Put S* = S\ (0). Then S has no zero divisors and S* is a
simple inverse semigroup with <e&{S*) =

PROOF. If 5 has a zero divisor then there exist nonzero idempotents e and /
whose product is 0; moreover, by 0-simplicity S contains a nonzero idempotent
g3)e such that g < f, so without loss of generality e2f. It is clear that the union
eSe U fSf is in fact O-disjoint, whence an inverse subsemigroup of S.

Put A = E U eSe, B = E U eSe U fSf and C = (*> where x e Re n Lf.
(Recall from §1 that (x) denotes the full inverse subsemigroup generated by x.)
It is easily verified that x'\eSe)x = fSf, so B c C V A. By modularity it follows
that B = (B n C)V A.
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Now suppose y e (B n C)\E. By Lemma 1.8, y = yy'lxn for some nonzero
integer n. If n > 0 then ^V"1 < xx"1 = e and j>-1y < x"1* = / , that is, _y = eyf.
Similarly, if n < 0, g = /ye. But y also belongs to 5 \ E c eSe U fSf, yielding
y = 0 since e/ = 0. Thus B n C c £ and B = A, a contradiction.

Thus 5* is a (simple) inverse subsemigroup of S. The map ^ 4 - > ^ 4 u { 0 } i s
easily verified to be an isomorphism of Ji?JF(S*) upon ^^(S).

In the remainder of this section when S is assumed simple it will be implicit that
S is not completely simple, that is, not a group. In order to prove (I)-(IV) of the
Theorem, several additional properties of modular inverse semigroups will be
established. We begin, however, with a direct proof of (I).

PROPOSITION 2.2. A simple modular inverse semigroup is combinatorial.

PROOF. Suppose S is not combinatorial. Let e e E and c e He, c ¥= e. By

Simplicity there exists / e E, f < e, f3le. Let a e ReC\ Lf. Now c = ece =
aba'1, where b = a'lca e Hf. Thus (b) c (b, c) c (a) V (b) whence by modu-
larity (b, c) = ((b,c) n (a)) V (ft).

Now c G (b,c), so applying Lemma 1.7 there is a nonidempotent u in either
((b, c) n ( a » n Re or (&) n i?e. However, since b e Hf, f < e, it is clear from
Lemma 1.8 that (b) n Re= {e}.Thusw e (Z>,c> n (a).

From w G (a), Lemma 1.8 gives u = a" for some « > 0. On the other hand
from M e (fc, c) another application of Lemma 1.7 yields either u = ck (if
« e (c» or u = ckbly for some nonzero integers k and /, and y e S1. The
former case is impossible because c e / / e and a" £ i/e. But so is the latter
because it implies that ckb'@e, that is, ckb'b~'c~k = ckfc~k = e, or / = ef =
(c-kck)f(c-kck) = c-kck = e.

We turn next to (IV), where we must first prove some weaker properties. Recall
that the width of a poset P is the cardinality of the largest antichain in P. The
notation e\\f in P will mean e and / are incomparable.

An element x is called strictly right regular if e = xx'1 > x~xx, in other words
if x is in the right unit subsemigroup Pe— {a e Re:ae = a] of eSe and x € He.
Strict left regularity is defined dually. Note that the inverse subsemigroup
generated by an element of either type is bicyclic.

PROPOSITION 2.3. Let D be a 3-class of the simple modular inverse semigroup S.
Then

(a) (ED, < ) has width at most 2, and
(b) (ED, < ) is locally a chain, that is, if e,f,g& ED, e > f and e > g then f

and g are comparable.
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P R O O F , (a) Suppose e, f, g G ED, pairwise incomparable. By simplicity there

exists h G ED, h < efg; let a^ Ren Lh, b G Rfn Lh and c <= Rgn Lh. Put
x = ab'1 G Ren Lf and y = ftc"1 e Rf n Lg.

Now b = bh = ba~xa = x^a, so ̂  = x'W"1. Thus

(a)Q(a,y)Q(c,x)w(a)
and by modularity

(a,y)=((a,y)n(c,x))v(a).

Applying Lemma 1.7 to y, it follows that there is a nonidempotent z, say, in Rf:
either z G (c, x) n (a, j ) or z e (a). By Lemma 1.8, the latter case is impossi-
ble, since aa'1 = e\\f and a'xa = h < f. Applying a similar argument to z, then,
as a member of (c,x), z = uw for some w G S1 and nonidempotent « of
<JC) n i?r. (By Lemma 1.8, (c> n i?r = { / } ) . In fact, since xx~l = e\\x~lx = / ,
(x) C\ Rf= {/,x"1}, so M = x"1. If w =£ 1 then w begins in c±l, whence
x~lc±l3?f = x-1x, which would imply that xx"1 < cc~l = g or xx"1 < c'lc = h,
each a contradiction. Thus z = x~l. However a similar argument applied to z as a
member of (a, y) yields z = y. Since j =£ x"1 a final contradiction is obtained.

(b) Suppose e,f,g&ED,e>f,e> g and / | |g. Let b e i?g n Lf and c e i?,
n Lg. Put A: = c'^c G Rc-igc n Lc-ifc. Note that since f\\g, C^fcWc^gc and also
that both c~lgc and c"1^ are below c~lc = g. (In particular gc e Pg.)

Now since g, f < e, b — ebe = cc~lbcc~l = ckc'1. Thus (k) c (Z>, fc) c (c)
V (/c) whence, by modularity,

(b,k)=((b,k)n(c))v(k).

By arguments similar to those in (a), Rg contains a nonidempotent u, say, in
(b, k) O (c>. If w e (b) then « = b, since 622r2 < g and b'lb\\g. Similarly if
u £ (b), u = Wfc'u for some /' # 0 and v G S1: however this easily yields / = b~xb
< k'k~' < A;̂ "1 or k~lk, a contradiction since kk~l and A:"1^ are below g and
g||/. But now b G (c), so ft = gc" = (gc)" (since eg = c) for some n + 0, which
is impossible since Wr1!^"1/? but gc G Pg.

Part (b) has the following useful consequence.

PROPOSITION 2.4. Let S be a simple inverse semigroup with the property that for
each 2-class D, (ED, < ) is locally a chain. Then for each e G E the local
submonoid eSe has the property that the idempotents of each of its 3-classes are
totally ordered.

PROOF. Let D be a S-class of eSe and suppose / , g G ED, f\\g. (Note that D
need not contain e, so the hypothesis cannot be directly applied.) There is an
idempotent h in D such that h < fg. Let x G Re n Lh. Then x~lfx G ED since
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f®fx<ex~lfx, and x~lgx e ED similarly. But x~lfx, x~lgx < x~lx = h < / and
x~lfx\\x~lgx, contradicting the hypothesis.

We next prove (II) of the Theorem. With the terminology introduced above we
may restate "E is Archimedean in 5 " as "for any e, f e E and any strictly right
regular element x of Re, x'"x" < / for some positive integer n".

PROPOSITION 2.5. / / S is a simple modular inverse semigroup then E is Archi-
medean in S.

PROOF. Let e, f e E and suppose x is strictly right regular in Re, that is, (since
S is combinatorial) x e Pe, x # e. Let g e E, gSie, g < (x~lx)f. It is sufficient
to prove that x~nx" < g for some integer n. Let b e Re n Lg. Then b is also in
Pe. Now x = exe = b(b'lxb)b-\ so (Jr1**) c <x, Zr1^) c (b) v ( Z r ^ ) ,
whnce by modularity, (x, Zrbci) = ((x, fe"^) n (b)) V ( f t " ^ ) .

Applying Lemma 1.7 to x, (and noting that (b'lxb) n Re= {e} since b'lxb
e g^g), we obtain a nonidempotent M in ((x, b'lxb) n (fc)) n i?e. Since M G
(Z>), u = bm for some m > 0. Now if u e (x) then M = x" for some n > 0,
whence x""x" = 6"mfcm < b'xb = g, as required. Otherwise u = x ' X ^ x ^ w for
some nonzero integer k and w e S1. In that case, since b'lxb e gSg, xng&u<%x",
whence x"gx~" = xnx~" and x""x"g = x~"x", again as required.

Propositions 2.2 and 2.5 generalize Lemma 2.6 of [7].
As a corollary of the foregoing we obtain several useful subsidiary properties of

modular inverse semigroups. We first review some terminology and introduce
some notation.

Denote by a the least group congruence on the inverse semigroup S. Thus
a = {(x, y): ex = ey for some e e E). Throughout, we shall denote the maxi-
mum group homomorphic image S/a by G. It follows from Proposition 1.6 that
if S is modular then so is G. A useful observation from [8] is that for any
idempotent e of 5, the natural homomorphism of S upon G maps eSe onto G
and induces aeSe. Thus G = eSe/a.

Let K = kercj = (x: ex = e for some e e £ } . Then 5 is E-unitary ii K = E.
Equivalently [10, Proposition II.7.2], S is ^-unitary if 9t n a is the identical
relation on S.

The following result was used in [7] to show that distributive inverse semi-
groups are ^-unitary.

RESULT 2.6 [7, Lemma 2.7]. Let S be a simple combinatorial inverse semigroup
such that E is Archimedean in S and, for each 2-class D of S, (ED, <) is a chain.
Then S is E-unitary.
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The following corollary is immediate from Proposition 2.4 (and the easily
verified fact that local submonoids inherit simplicity).

COROLLARY 2.7. Let S be a simple combinatorial inverse semigroup such that E is
Archimedean in S and, for each 3>-class D of S, (ED, < ) is locally a chain. Then S
is locally E-unitary. In particular every simple modular inverse semigroup is locally
E-unitary.

PROPOSITION 2.8. Let S be a locally E-unitary inverse semigroup. Then K\E c
(x: xx"1!!*"1*}.

PROOF. By the comments above, for each e e E, K n eSe = ker aeSe = EeSe. If
xx"1 and x-1x are comparable then x belongs to some eSe and so if x £ E,
x£K.

Eventually it will be shown that for modular inverse semigroups, K= (x:
xx^Hx^x} U E. Next, however, we show how properties of K are reflected in
those of G.

PROPOSITION 2.9. Let S be a simple modular inverse semigroup. Then G is
torsion-free abelian. Thus for each e e E the right unit subsemigroup Pe of eSe is
commutative.

PROOF. AS noted above, G is modular so by Result 1.4 it suffices to prove G is
torsion-free.

Let x G S and suppose x" e K for some n > 0, that is, (xa)" = 1 in G. By the
previous proposition x"x~n\\x~nxn. But then, by considering the known structure
of monogenic inverse semigroups, we see that the n + 1 ^-related idempotents
xnx~n, (x-1xXx"-1x-<"-1)),...,(x-'x'Xx'1-'x-("-')),...,x-'1x" form an anti-
chain (see, for instance [10, Chapter IX]). By Proposition 2.3, n + 1 < 2, that is,
n = 1 and xa = 1 in G, as required.

The final statement is now immediate from is-unitariness of eSe.
The following preliminary result, based on [7, Lemma 3.1], will also be used in

Section 3.

LEMMA 2.10. Let S be a combinatorial simple inverse semigroup such that E is
Archimedean in S,G is abelian and for each 2-class D, (ED, < ) is locally a chain.
Let A G £C^(S), let e e E and suppose A O Pe± {e}. Then for each g e A/a
there exists a e PeC\ A, aa = g ±1. In particular for each g e G and e e E there
exists a e Pe, aa = g ±1.
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PROOF. Let e e E. Then the local submonoid eSe satisfies all the above
hypotheses and, moreover, by Proposition 2.4 (ED, <) is a chain for each Si-class
D of eSe. Thus eSe satisfies the hypotheses of Lemma 3.1 of [7]. But the
consequences of that lemma are precisely those above. The proof is therefore
completed by its application to A n eSe, noting A/a = eAe/a = (A n eSe)/a
and P. c eSe.

• e —

PROPOSITION 2.11. / / S is a simple modular inverse semigroup then G is locally
cyclic.

PROOF. Suppose G has a two-generator subgroup H which is not cyclic. Since
G is torsion-free abelian, H therefore has free generators g and h, say, with

Let e e E. By the preceding results the above lemma may be applied to A = S.
Thus there exist a, b in Pe with aa = g, ba = h (replacing g or h by its inverse,
if necessary). By Proposition 2.9, a and b commute. Further, since (ED, <) is
locally a chain, without loss of generality a'la < b'lb.

Then a = abb'1 = bab^ = b(b~lba)b-1, so

(b-1ba)c(a)Q(b)v(b-1ba),

whence by modularity

Noting that, since b'lba e b'lbSa'la, Re n (b~lba) = {e}, an application of
Lemma 1.7 yields a nonidempotent M in /?c n (&) Pi (a). Since a, b e Pe,
u = bm = a" for some w, n > 0, that is, gm = /*". But since G is torsion-free, this
contradicts (g) n (/i> = {1}.

This proves (III) of the Theorem. To complete the proof of necessity it remains
to complete that of (IV), by showing that if xx~l and x'lx are incomparable then
x'xx (and similarly xx~l) is maximal in (ED , <). The first step is to reduce this
to the case x e l

LEMMA 2.12. Under the hypotheses of Lemma 2.10, and thus in any simple
modular inverse semigroup, suppose xx'1 and x'lx are incomparable but x £ K.
Then there existsy e K, yS)x, such that eitheryy'1 < xx'1 ory'ly < x~xx.

PROOF. Let xa = g # 1, and put e = xx"1. By the lemma there exist a e Pe

such that aa = g±1.U aa = g, put y = a'lx. Then y e K, yy'1 = a'xxx'xa -
a~xa < e and y~xy = x^aa^x = x'xex = x'xx, so y££x. If aa — g'1 put y = ax.
A similar argument yields y'xy < x'xx and

The proof of (IV) can now be completed.

https://doi.org/10.1017/S1446788700028950 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028950


56 Katherine G. Johnston and Peter R. Jones [10 ]

PROPOSITION 2.13. Let S be a simple modular inverse semigroup. If x £ S and
xx'^x"1* then x~lx is maximal in (ED, <).

PROOF. By the preceding lemma, it suffices to prove this when x e K. Let
e = xx'1 and / = x~lx and suppose / is not maximal in (ED, <). Thus gSfif,
g > f for some g e E. By Proposition 2.3b, (ED , <) is locally a chain, so g Jfc e.
Let a G Ren Lg. Note that a <£ K, for otherwise a^x e K and a'lx e Rgn Lf,
contradicting Proposition 2.8.

Put b = a~lxa~l. Then box'2, and since xg = xfg = xf = x,

bb'1 = a~lxgx~la = a'xxx'ya = g

and

Zr1/) = ax'xexa~x = a/a"1 = h, say, h < e.

Now JC = ex/ = exg = a{a'lxa'1)a = aZ>a, so

whence by modularity

(b,x)=((b,x)n(a))v(b).

Since b e gS/i, /Je n (ft) = [e], so by Lemma 1.7 there is a nonidempotent « in
Re n ((fe, x> n (a)). In fact since aa"1!^"1^, Re n (a) = {e, a}, so a = u e
(b,x) and aa G (b,x)a = (b)a, since * e Â . But this implies aabnaaln for
some « =̂= 0, a contradiction since G is torsion-free.

Combining Propositions 2.3 and 2.13 completes the proof of (IV), and thus of
necessity, of the Theorem.

3. Sufficiency

Let S be a simple inverse semigroup satisfying (I)-(IV) of the Theorem. From
(IV) it follows that for each S-class D of S, (ED, <) is locally a chain. In fact if
(ED, <) is not a chain and {e, / } is the unique incomparable pair in ED then the
remaining idempotents of ED all lie below e and / and are totally ordered.

PROPOSITION 3.1. The semigroup S is locally E-unitary, K = {x: xx"1!!*-1*} u

E and for each e e E,\Kn Re\ < 2.

PROOF. That S is locally ̂ -unitary follows from Corollary 2.7, that K\ E c {x:
xx'^lx^x} from Proposition 2.8.
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Suppose xx~x\\x~xx but x <£ K. Since the hypotheses of Lemma 2.12 hold there
exist incomparable idempotents yy'1 and y~xy in (ED, <) such that either
yy'1 < xx'1 or y'xy < x~xx, contradicting the maximality of yy'1 and y'xy.
Thus{x: xx^Wx'h} c K.

Next let e G E, and suppose x, y G (K n Re)\{e}. Then JOT1!!*"1* and
xx'1 = yy~l\\y~ly- By (IV), x'xx = y~xy. Since S is combinatorial x = y. Thus
K<1 Re= {e,x}.

A preliminary lemma is now required.

LEMMA 3.2. Let ft G K\E and suppose there exist nonidempotents x G Rb,
z G Lb such that ft e xSz. Then b G (X, Z).

PROOF. Put e = bb'1, f = ft"1* and D = Db. Since Z> e AT, e||/ so by (IV), e
and / are maximal in d and the remaining idempotents of D form a chain below
e and / .

Let b = xyz where, without loss of generality, yy'1 = x'xx and j ' " 1 ^ = zz'1.
Suppose x G K. By the proposition Z> = x. Similarly if z e Jf then b = z. So
from now on assume x, z € K. From the comments above, x'xx and zz'1 are
comparable and both lie below e and / .

Suppose x'xx = zz'1. Then yy'1 = j'~1y and since S is combinatorial y & E.
Hence b G (X, Z).

Next suppose x'xx < zz'1 = y'xy. Let w = (y'xy)xz. Then

w " 1 = {y~xy)xzz~1x~1 = (J"1J);C(;( :"1-X:ZZ"1)-X:~1 = (-F'V)**'1 = ^~V>
that is, w^j" 1 . Further, since fc e AT, 1 = b'xa = (za)~x(ya)'x(xa)'1, so
y'xaxzaw, (G being abelian). Also (^"1)~V~1 = yy'1 = x lx K ww'1. As above,
ww'1 and w'xw are comparable; let g be the larger. Then (y~x,w) G 01 n a in
the £-unitary local submonoid g5g, and so j " 1 = w. Therefore b = xw~xz &
(x,z).

A similar argument applies if x xx > zz 1.
We now prove modularity of S. Suppose A, B, C G <£& and i c B c C V l

We must show B Q (B C\ C)V A (the opposite inclusion being obvious). So let
b G B\E. Since b e C V >4, then by Lemma 1.7, fc is expressible in the form
b = xxx2 • • • xn, where the xf are nonidempotents alternately belonging to C and
J4, *! G Rb and xn e Lb.

The case « = 1 is trivial, so assume n > 2.
Suppose xx G .4. Then Z> = x-^x^b), where xj"1^ e fi and x{xb =

(xi1x1x2) ••• xn, with x{1xlx1 G C. So it is sufficient to prove b G (C n 5 ) V A
whenever xx and, similarly, xn belong to C. If ft e AT then by the lemma
ft G B n (x1 ; x n ) c B n C. So from now on assume ft £ A", so that, by Proposi-
tion 3.1, ftft"1 > ft-1ft without loss of generality. Put e = ftft"1: thus ft G Pe.
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Next suppose xx £ K. (The case xx e K will be treated later.) By Proposition
3.1, *f x*i is comparable with J^jef1 = e. If x{ lxx < xxx{1 put c = xx; if
x^Xj > xxx{1 put c = XjXf2. In either case c e C D Pe and c £ K. Let g = bo
and /i = ca. Then since G is locally cyclic and g, /i =£ 1, there exists A; G G such
that g = km and h = k" for some nonzero integers w and «. Applying Lemma
2.10 (with A = S), there exists l E f , with sa = k (replacing k by A:"1, if
necessary). Thus smob and s"ac. If w were negative then s'm would belong to Pe,
as would s~mb; but (s'mbyl(s~mb) < Zr1^ < e, contradicting s~mb G AT. Thus
m and, similarly, n are positive, whence sm, s" G Pe. Since eSe is £-unitary,
b = i m and c = 5". Thus 5"1" e ( 5 f l C ) n Pe, 5m" # e.

To complete the proof we use the following lemma. (Note that Proposition 1.6
proves only that 2 is a homomorphism on the interval [K,S]ot

LEMMA 2.3. On any inverse semigroup S, a induces a homomorphism 2 of
upon y(G).

PROOF. AS in the proof of Proposition 1.6 it is sufficient to show that
A2 n B1 c (A n 5 )2 for A, B e jSfi .̂ Let x e ,42 n 52 . Then x = ao = bo
for some a e A, b e B, whence ea = ei for some e e £. Now ba'lea e 5, since
crW G £, and ba'lea G ̂ 4 since fta"^ = bb'le G £. But {ba'xea)o = bo = x,
so x G (^ n .8)2, as required.

Modularity of JS?(G) now yields

£ 2 = (£2 n C2) V ^ 2 = ((B n C) V A)1.

Thus g = k G p n C ) V ,4)2. Applying Lemma 2.10 to (B n C)V A yields
an element ( o f ( 5 n C ) V ^ , (G Pe, to = g±1. But fa * g"1 (otherwise ?Z> G K
and (tb)~l{tb) < Z)"1^ < e). Thus /aft and £-unitariness of eSe yields b = t e (5
n C) V 4̂, as required.

The remaining case is where xl G K. Let y1 = x1(x1 • • • xnXx2 • • • xn)~
l =

bx'n
l • • • Xj1 = bx~l • • • (xjVfVi) ' where b3ty and x^y{xyxy?yv Lemma 3.2

now yields yl G (b, JfjVfVi)- ^ u t since xx G C, x2 G A and so y1 G B n C.
Again, b = yi(y{lb) where y{lb G JB and j'f1/? = (y{lyiX2) • • • xn. Repeating
the above arguments completes the proof of this case.

4. Properties and examples

Whilst (I)-(IV) characterize simple modular inverse semigroups, further details
of their structure and various alternative descriptions may be elucidated. These
illustrate how close to being distributive these semigroups are.
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PROPOSITION 4.1. Let S be a modular inverse semigroup. Then for each 3-class D
of S, (ED, < ) is either a chain or a chain with two incomparable maximal elements
adjoined.

PROOF. This is equivalent to (IV).

PROPOSITION 4.2. A modular inverse semigroup S is locally distributive. In fact S
is modular if and only ifS is locally distributive and (IV) holds.

PROOF. The properties (I)—(III) hold in S if and only if they hold locally. If
(IV) also holds then by Proposition 2.4, the ^-classes of the local submonoids
have totally ordered idempotents. By Result 1.3 S is then locally distributive.
Conversely, if S is locally distributive then (I)—(III) hold locally, thus in S.

We next elucidate properties of K = ker a and G = S/o.

PROPOSITION 4.3. Let S be a simple modular inverse semigroup. Then
(i) S is locally E-unitary, and E-unitary if and only if distributive;

(ii) G is distributive and is isomorphic with a subgroup of the additive group Q of
rationals;

(hi) K = {x: xx'l\\x'lx) U E = {x: x3 = x2}. Thus a nonidempotent of S
generates either a bicyclic semigroup or a five element Brandt semigroup;

(iv) K is distributive.

PROOF, (i) That S is locally £-unitary follows from Corollary 2.7. If S is
distributive then S is .E-unitary (Result 2.6); conversely if 5 is .E-unitary then
K = E. Thus, by (iii) below, xx'1 and x~lx are comparable for every x e S, that
is, (ED, < ) is a chain for each ^-class D, whence S is distributive.

(ii) See Result 1.5 and the comments following it.
(iii) That K = {x: xx'^x^x) U E is proven in Proposition 3.1. Clearly if

x3 = x2 then x e K. Conversely, suppose x e K\E, so that xx'l\\x~lx. Now
x2 e K and x2 £ E then {x2x'2,(xx'l)(x'1x),x~2x2} forms an antichain in
(ED , <) , which is impossible by (IV). Thus x2 e E, whence x2 e He. Since 5 is
combinatorial, this implies x3 = x2.

(iv) K is completely semisimple and each of its principal factors contains at
most two nonzero idempotents, so distributivity follows from Result 1.2.

We now consider some examples. In view of Proposition 4.1, a semilattice
which is bound to play an important role is that in Figure 1, which we shall
denote by Y. It is obtained from the w-chain Cu = {e0 > el > e2 • • • } by
adjoining two elements fx and f2 covering e0.
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FIGURE 1

Each principal ideal of Y is isomorphic to Cu so Y is uniform. The Munn
semigroup TY is therefore bisimple. (The reader is referred to [5, Chapter V] for
details.) Each local submonoid eTYe is clearly bicyclic, so TY is locally distribu-
tive. In view of Proposition 4.2, TY is therefore modular and TY/a = (Z, +) .
Note that TY is generated by the two or-related transformations a: Y/i -» Ye0

and /?: Yf2-* Ye0 shown in Figure 1.
In the next section it will be shown that TY is the unique modular, nondistribu-

tive bisimple inverse semigroup.
In the remainder of this section we consider some examples which are not

bisimple. For instance let A be the full inverse subsemigroup of TY generated by
a2 and ft2. Since TY is modular so is A. Now A has two ^-classes, whose
idempotents are ED/i = { fv f2, elt e3,e5,...} and EDt = { e0, e2, e4,...}. Thus

S is simple but not bisimple. In contrast with the distributive case only the
.©-class De here is a subsemigroup.

That local distributivity does not imply modularity is clear on consideration of
the Munn semigroup of the semilattice obtained from Y by adjoining a further
covering / 3 of e0.

The strong restrictions placed on the posets of idempotents of ^-classes of
modular (and distributive) inverse semigroups do not mean that the whole
semilattices cannot be quite complicated.

PROPOSITION 4.4. Any semilattice can be embedded in the semilattice of idempo-
tents of some simple distributive inverse semigroup.
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PROOF. Let X be a semilattice. We may assume X = X1. Form the Bruck-
Reilly extension S = BR(X,6), where 6: X -> {1}. (See [5, Section V.6] or [10,
Section II.5].) Then S is a simple combinatorial inverse monoid. The semilattice
E is isomorphic with the ordinal product of Ca and X. (See [10, Corollary
II.5.13].) Each element of X corresponds to a unique ^-class whose poset of
idempotents is isomorphic with Cw. It is easily verified that E is Archimedean in
S and S/a = (Z, +) . Therefore S is distributive.

By replacing the chain Cu by the semilattice Y in this construction, a class of
simple modular nondistributive inverse semigroups can be constructed. We omit
the details.

5. The bisimple case

The bisimple modular inverse semigroups are completely determined here: in
Theorem 5.1 it is shown that TY (see §4) is the unique nondistributive instance; in
Theorem 5.3 the bisimple distributive inverse semigroups are determined.

THEOREM 5.1. Let Y be the semilattice in Figure 1, Section 4. The Munn
semigroup TY is the only modular nondistributive bisimple inverse semigroup.

PROOF. Let S be such a semigroup with semilattice E. Since S is nondistribu-
tive E contains exactly two maximal idempotents, gx and g2, say. Put h0 = g1g2.
By Proposition 4.1, E = {gv g2} U Eh0, and Eh0 is a chain.

Let i G / l ^ n Lho, and put ht = x~(i+1)xi+1, i > 1. Now g: and g2 cover hQ,
and the map e -* x'xex is an isomorphism of Egx upon Eh0, so x~lx covers
x'2x2. By induction, x~'x' covers x~('+1);c'+1, that is, ht_x covers ht, i > 1. Let
A 6 £A0. Since E is Archimedean in 5, there is a least positive integer n such
that hn_l = x'"x" < h. But Eh0 is a chain, so hn_2 > h > hn_v whence h =
hn_v Hence E = {gi,g2} U {hn: n> 0), clearly isomorphic with Y.

Since S is combinatorial it is fundamental, and so is isomorphic to a transitive
inverse subsemigroup of TY, [5, Theorem V.6.4]. But TY itself is combinatorial, so
it is its only transitive subsemigroup. Thus S = TY.

The bisimple distributive inverse semigroups will be described in terms of
lattice-ordered subgroups of (Q, +) . We briefly review a construction of Reilly
[8,9] generalizing one of Clifford [2].

Let G be an /-group written additively, with positive cone P. Let R be a filter
of G containing P, in the sense that if x e R and y > x then y e R. Then
(R, P) is an .&P-system in the sense of [8]. Denote by R'1 ° R the set R X R with
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product (a, b)(c,d) = ((c - b) + + a,(b - c)++ d), (where if g e G,g+= gV
0). Then [8, §6], R~l ° R is a bisimple inverse semigroup whose semilattice of
idempotents is E = {(a, a): a e /?}, with (a, a) < (b, b) if and only if a > /> in
G. Thus £ is order anti-isomorphic with R (under the order induced from G).
Further [8, Theorem 5.3], (iT1 ° R)/a = G.

In [9] Reilly called such semigroups l-bisimple, and characterized them ab-
stractly as follows. (For further discussion of the case where S is a monoid, see
[10, Section X.2].)

RESULT 5.2 [9, Theorem 5.4]. A bisimple inverse semigroup S is isomorphic to an
l-bisimple inverse semigroup if and only if S is E-unitary, combinatorial and
aPe = Pea for all a e Pe, e e E; in that case we may take G = S/a, P = Pe and
R = Re for some e e E.

Note that if G = S/a is abelian, the last condition is always satisfied, for if
s e Pe then (as, sa) e <% n a, so as = sa since S is E-unitary. As we have noted
earlier any simple distributive inverse semigroup S is is-unitary and has abelian
G, so is isomorphic with some /-bisimple inverse semigroup. We now make the
connection explicit. In the following (Q, +) will be (totally) ordered in the usual
way.

THEOREM 5.3. Let G be any nontrivial l-subgroup of (Q, + ), with positive cone P.
Let R be any filter of G containing P. Then the semigroup R~l ° R is a bisimple
distributive inverse semigroup. Conversely any bisimple distributive inverse semi-
group is isomorphic to an l-bisimple inverse semigroup of this form.

PROOF. Let G, P, R be as above and put S = R'1 ° R. From the remarks above
it follows that S is combinatorial, S/a = G is locally cyclic and £ is a chain.

To show E is Archimedean in S we use the fact that (Q, +) is an ordered
Archimedean group (see [1, Chapter VIII, especially Section 7]), that is, if g > 0
and a e G then ng> a for some positive integer n. So let (a, a) and (b, b)
belong to E and let (x, y) e P(aa), (x, y) * (a, a). Since (x, y)(x, y)~l = (x, x)
and (x, y)'\x, y) = (y, y) this means (x, y) = {a, y) with (y, y) < (a, a), that
is, y > a in G. Now y - a > 0 and so for some positive integer n, n(y - a)> b
— y, that is, n(y - a) + y > b. This is equivalent to the inequality
(a, y)-("+1\a, y)"+1 < (b, b). Hence S is Archimedean and therefore distribu-
tive.

Conversely let S be any bisimple distributive inverse semigroup. As remarked
above, 5 is isomorphic to an /-bisimple inverse semigroup R1" R, with G = S/a.
Since G is locally cyclic, G is isomorphic with a (nontrivial) subgroup of (Q, +) .
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It only remains to show that G is ordered in the usual way. So let P be its
positive cone, and suppose P contains q > 0 (in the natural order). Let r e G ,
r =£ 0. Since G is locally cyclic there exists g e G , g > 0 without loss of
generality, such that q = mg and r = ng, for integers m and «, m > 0. Now by
[1, Theorem XIII.3], since ^ e P and m is positive, g e P . By a similar
argument, then r e P if and only if n > 0, that is r > 0. So P = { r e G: r > 0}
and G is ordered in the usual way. If, on the other hand, P contains q < 0, then
P = {r <E G: r < 0} and G is ordered in the reverse of the usual way. Then,
however, we may replace G by its anti-isomorphic image.

If S is a bisimple distributive inverse monoid then R may be taken equal to P.
Thus there is a one-one correspondence between such semigroups and nontrivial
subgroups of (<2, +). Further, if G is such a subgroup with positive cone G+ then
R1 o R is just the inverse hull of G+. (See [10, Sections X.I, X.2] for further
details.)
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