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We establish two complementary results about the regularity of the solution of the
periodic initial value problem for the linear Benjamin–Ono equation. We first give a
new simple proof of the statement that, for a dense countable set of the time
variable, the solution is a finite linear combination of copies of the initial condition
and of its Hilbert transform. In particular, this implies that discontinuities in the
initial condition are propagated in the solution as logarithmic cusps. We then show
that, if the initial condition is of bounded variation (and even if it is not continuous),
for almost every time the graph of the solution in space is continuous but fractal,
with upper Minkowski dimension equal to 3

2
. In order to illustrate this striking

dichotomy, in the final section, we include accurate numerical evaluations of the
solution profile, as well as estimates of its box-counting dimension for two canonical
choices of irrational time.

Keywords: Benjamin-Ono equation; regularity properties of solutions to dispersive
PDEs; Talbot effect; revivals phenomenon; fractality phenomenon

1. Introduction

The phenomenon of cusp revivals for dispersive time-evolution equations describes
the emergence of logarithmic cusp singularities in the solution, even for bounded
initial conditions. These singularities are fully characterized in terms of the jump

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2025.10035
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 17:22:50, subject to the Cambridge Core terms of use, available at

mailto:l.boulton@hw.ac.uk
mailto:bm2024@hw.ac.uk
mailto:b.pelloni@hw.ac.uk
http://creativecommons.org/licenses/by/4.0
https://crossmark.crossref.org/dialog?doi=10.1017/prm.2025.10035&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2025.10035
https://www.cambridge.org/core


2 L. Boulton, B. Macpherson and B. Pelloni

discontinuities of the initial condition, and they occur for values of the time variable
which are rationally related to the length of the period.

In this note, we analyse the regularity and behaviour of the solution of one such
equation, the linear Benjamin–Ono (BO) equation, on the torus T = (−π, π],

∂tu(x, t) = H∂2
xu(x, t), x ∈ T, t ∈ R,

u(x, 0) = u0(x);
(1)

where H is the periodic Hilbert transform. For this boundary-value problem, it
is known that at any rational time, t ∈ 2πQ, the solution has a simple closed
expression in terms of the initial condition, u0 : T −→ R and of its Hilbert transform
[4]. This implies that, at these times, initial jump discontinuities of u0 generate cusp
singularities in the solution u(·, t). To our knowledge, the regularity of the solution
at other times has not been previously analysed.

This behaviour is in stark contrast with the properties of the solution of a closely
related problem, the linear Schrödinger equation on the torus,

∂tv(x, t) = −i∂2
xv(x, t), x ∈ T, t ∈ R,

v(x, 0) = v0(x).
(2)

In this case, if v0 is of bounded variation, then the solution is bounded for all t ∈ R,
see [13].

Our purpose is to highlight a simple argument that characterizes the regularity of
the solution to (1) in terms of the solution to (2). This argument yields a new short,
rigorous proof of the phenomenon of cusp revivals for (1), for any discontinuous
u0 ∈ L2(T). In addition, it leads to the proof of the following striking behaviour:
despite displaying cusp singularities for all t in a dense subset of R, the solution
of (1) has the same regularity, as measured in Besov spaces, as the solution of (2).
In particular, it is Hölder continuous for almost every t ∈ R, provided u0 is of
bounded variation.

Cusp revivals are known to occur in linear integro-differential equations such
as the linear BO equation. This was first observed in [4], where a formal proof
of the general case was given. They are also known to occur in linear differential
dispersive boundary-value problems of odd order or with dislocations, where they
are induced by the boundary or dislocation conditions [3]. In all these cases, the
solution at rational times is the sum of three components: a finite linear combination
of translated copies of a function containing all the jump discontinuities of the
initial condition, the Hilbert transform of this function and a continuous function.
The Hilbert transform of the jump discontinuities is responsible for the logarithmic
cusps in the solution.

Our main contribution is the statement of the next theorem, which formulates
rigorously the properties of the solution to (1). In this case, the continuous function
component at rational times is identically zero, and the conclusion of the theorem
is analogous to the quantum Talbot effect described in [2] for Eq. (2), which was
examined in detail in [10, 12–14] (see also [5] and [7, Section 2.2]).
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The periodic linear Benjamin–Ono equation 3
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Figure 1. Solution of (1) for u0(x) = m1[−π
2
,π
2
](x) at time t = 2π 1

3
superimposed on the

real and imaginary parts of the solution of (2). The cusp singularities in the solution of
(1) correspond to jump singularities in either part of the solution of (2).

Here and elsewhere below, BV(T) is the space of functions of bounded variation,
Cα(T) is the space of Hölder continuous functions with exponent α ∈ (0, 1) and
Hr(T) is the L2-Sobolev space with derivative order r > 0.

Theorem 1. Let u0 : T −→ R. The following holds true for u the solution to (1).

(a) If u0 ∈ L2(T), then, for p, q ∈ N co-prime,

u
(
x, 2π

p

q

)
=

1

q
Re

q−1∑
k=0

[
q−1∑
m=0

e2πi
km+pm2

q

]
(I + iH)u0

(
x− 2π

k

q

)
. (3)

(b) If u0 ∈ BV(T), then, for almost all t ∈ R, u(·, t) ∈ Cα(T) for all α ∈ [0, 1
2 ).

(c) If u0 6∈ Hr0(T) for some r0 ∈
[
1
2 , 1
)
, then, for almost all t ∈ R, u(·, t) 6∈

Hr(T) for any r > r0.

Part (a) of this theorem states that the solution, at any time of the form t =
2πp/q, is a superposition of translated copies of the initial profile and of its Hilbert
transform. This implies the validity of the cusp revival phenomenon, first described
in [4], because the periodic Hilbert transform of a jump discontinuity generates a
logarithmic cusp singularity. We discuss and illustrate this property of H in §3,
see figure 1.

The next corollary states the validity of the analogous statement for Schrödinger’s
equation (2), established in [13].
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4 L. Boulton, B. Macpherson and B. Pelloni

Corollary 2. If u0 ∈ BV(T) \
⋃

s> 1
2
Hs(T), then the upper Minkowski dimension

of the graph of u(·, t) is equal to 3
2 for almost every t ∈ R.

We give the proofs of theorem 1 and corollary 2 in the next section. A crucial
role is played by the identity

u(x, t) = Re [(I + iH)v(x, t)] ,

relating the solutions of (1) and (2) that start from the same initial condition,
v0 = u0. This identity is a consequence of the fact that the action of H preserves
the eigenfunctions of the differential operator.

In the final section, we give an illustration, by means of the numerical approxi-
mations of canonical examples, of the significance of the statement (a) and of the
corollary.

2. Proof of the main results

The periodic Hilbert transform H : L2(T) −→ L2(T) is the singular integral
operator defined by the principal value

Hu(x) =
1

2π
p. v.

∫ π

−π

cot
x− y

2
u(y) dy. (4)

Let en(x) = 1√
2π

einx. Then, {en}n∈Z ⊂ L2(T) is an orthonormal basis of eigen-

functions for both H and the Laplacian, −∂2 : H2(T) −→ L2(T). Indeed, for all
n ∈ Z,

−∂2en = n2en; Hen = −i sgn(n)en. (5)

Here and everywhere below, we write the Fourier coefficients of f ∈ L2(T), with
one of the usual scalings on T = (−π, π], as

f̂(n) =
1√
2π

〈f, en〉 =
1

2π

∫ π

−π

e−inyf(y) dy.

Thus, we have

Hu(x) = i
∞∑

n=1

[û(−n)e−inx − û(n)einx],

H∂2u(x) = i
∞∑

n=1

n2[û(n)einx − û(−n)e−inx].

This implies that, for any u0 ∈ L2(T), the solution to (1) is given by the
expression

u(x, t) =
∞∑

n=−∞
einxein|n|tû0(n)
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The periodic linear Benjamin–Ono equation 5

= û0(0) +
∞∑

n=1

[einxein
2tû0(n) + e−inxe−in2tû0(−n)]. (6)

Since u0 is real-valued, û0(−n) = û0(n) and so

e−inxe−in2tû0(−n) = einxein2tû0(n).

Hence, u is also real-valued and

u(x, t) = û0(0) + 2Re

[ ∞∑
n=1

einxein
2tû0(n)

]
. (7)

This representation provides the link between the solutions of (1) and (2), as stated
in the next proposition.

Proposition 1. Let u0 ∈ L2(T) be real-valued and let v0 = u0. Then, the solutions
to (1) and (2) are such that,

u(x, t) = Re [(I + iH)v(x, t)] . (8)

Proof. Since û0(n) = û0(−n), the solution to (2) with v0 = u0 is given by

v(x, t) = û0(0) +
∞∑

n=1

[einxein
2tû0(n) + e−inxein

2tû0(n)].

Then, using (5), we have

∞∑
n=1

einxein
2tû0(n) =

v(x, t)− û0(0) + iHv(x, t)

2
.

Replacing the sum of this expression and of its conjugate into Eq. (7) gives the
relation (8). �

For later purposes, note that the expression (8) can be formulated in operator
form as

eH∂2tu0 = û0(0) + 2Re
(
e−i∂2tΠu0 − û0(0)

)
= 2Re

(
Πe−i∂2tu0

)
− û0(0), (9)

where Πf =
∑∞

n=0 f̂(n)e
inx is the Szegö projector. Indeed, the latter commutes

with both H and −∂2.
Proposition 1 is the main ingredient in the proof of theorem 1, combined with

the analogous statements for (2), which are given in a series of articles (see, e.g.,
[5, 10, 13]).

We consider the proof of the three statements (a)–(c) separately. The proof of
(a) and the proof of (c) follow immediately from (8).
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6 L. Boulton, B. Macpherson and B. Pelloni

Proof of theorem 1(a). Let v be the solution to (2) with v0 = u0 ∈ L2(T). Then,
as shown, e.g., in [7, 14], for any p, q ∈ Z co-prime, the solution has the following
representation at rational times t = 2π p

q :

v
(
x, 2π

p

q

)
=

1

q

q−1∑
k,m=0

e2πi
km
q e2πi

p
qm

2

u0

(
x− 2π

k

q

)
.

Substitution into (8) gives (3). �

Proof of theorem 1(c). By hypothesis, u0 6∈ Hr0(T) for some r0 ∈ [12 , 1). Since u0 is

real-valued, then u0 = Πu0 + Πu0 − û0(0). Hence, Πu0 6∈ Hr0(T). Thus, according
to [5, Lemma 3.2] (or [10, Theorem III]), for almost all t ∈ R,

Re
(
e−i∂2tΠu0

)
6∈
⋃
r>r0

Hr(T).

Hence, by virtue of (9), we have

u(·, t) + û0(0) = 2Re
(
e−i∂2tΠu0

)
6∈
⋃
r>r0

Hr(T).

�

We now turn to the proof of theorem 1(b). In this case, we cannot use (8) or
(9) to confirm the validity of the statement directly, because u0 ∈ BV(T) does
not imply Πu0 ∈ BV(T): indeed, Im(Πu0) = 1

2Hu0 is unbounded as soon as u0

has a jump discontinuity. We adapt instead the ideas given in [10] and [13] for the
analysis of the boundary-value problem (1).

For α ∈ R, the Besov spaces of order α, denoted Bα
p,∞(T), are defined as follows.

Let χ : R −→ [0, 1] be a C∞ function, such that

suppχ = [2−1, 2],
∞∑
j=0

χ(2−jξ) = 1 ∀ξ ≥ 1.

Define χj by

χj(ξ) = χ(2−jξ), j ∈ N, χ0(ξ) = 1−
∞∑
j=1

χj(ξ).

The (Littlewood–Paley) projections of f(x) =
∑

n∈Z f̂(n)e
inx, function or distri-

bution on T, are given by

(Kjf)(x) =
∑
n∈Z

χj(|n|)f̂(n)einx.

Then f ∈ Bα
p,∞(T) if and only if

sup
j=0,1,...

2αj‖Kjf‖Lp(T) < ∞.
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The periodic linear Benjamin–Ono equation 7

We take p=1 in the proof of corollary 2 at the end of this section, but otherwise
we will be concerned exclusively with the case p = ∞.

Below we use the following two properties of Bα
∞,∞(T):

f ′ ∈ Bα
∞,∞(T) ⇐⇒ f ∈ Bα+1

∞,∞(T), ∀α ∈ R; (10)

Bα
∞,∞(T) = Cα(T), ∀α ∈ (0, 1). (11)

The proof of these two statements is included in the appendix. We will also make
use of the next lemma, which is a consequence of [10, Corollary 2.4].

Lemma 2. There exists a set K ⊂ R, whose complement Kc has measure zero but
is dense in R, such that the following holds true for all t ∈ K. Given δ > 0, there
exists a constant C> 0 such that

sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ ≤ C2
j
2 (1+δ), (12)

for all j = 0, 1, . . ..

Proof. According to Dirichlet’s theorem, for every irrational number a > 0 there
are infinitely many positive integers p, q ∈ N, such that p and q are co-prime, and∣∣∣∣a− p

q

∣∣∣∣ ≤ 1

q2
. (13)

By virtue of [9, Lemma 4], there exists a constant c1 > 0 such that, if the irreducible
fraction p

q satisfies (13), then∣∣∣∣∣
N∑

n=M

e2πi(an
2+bn)

∣∣∣∣∣ =
∣∣∣∣∣
N−M∑
k=1

e2πi(ak
2+bk)

∣∣∣∣∣
≤ c1

(
N −M
√
q

+
√
q

)

for all N ∈ N, 0 < M < N and b ∈ R. Here c1 is independent of a and b. Take any
sequence {ωn}, such that ωn = 0 for n <M or n >N, and

N∑
n=M

|ωn+1 − ωn| ≤ d.

Since, ∣∣∣∣∣
N∑

n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M

(ωn+1 − ωn)
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣
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8 L. Boulton, B. Macpherson and B. Pelloni

≤
N∑

n=M

|ωn+1 − ωn|

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣
≤ d sup

n=M,...,N

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣ ,
then, ∣∣∣∣∣

N∑
n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ ≤ dc1

(
N −M
√
q

+
√
q

)
. (14)

This is [10, Corollary 2.4].
Let [a0, a1, . . .] be the continued fraction expansion of the irrational number a,

a = a0 +
1

a1 +
1

a2+
1
···

.

Then, the irreducible fractions,

pn
qn

= a0 +
1

a1 +
1

a2+··· 1

an−1+ 1
an

,

are such that (13) holds true with {pn} and {qn} increasing sequences. According
to the Khinchin–Lévy theorem, for almost every a > 0 the denominators qn satisfy
[11, p. 66]

lim
n→∞

log qn
n

= ρ, ρ =
π2

12 log 2
.

If a is such that this limit exists, then for all j ∈ N sufficiently large we can find
quotients

pn(j)

qn(j)
with denominators satisfying qn(j) = 2j(1+rj), where rj → 0 as

j → ∞. Indeed, we can take n(j ) equal to the integer part of j(log 2)/ρ1. This

choice implies lim
j→∞

log qn(j)

j
= log 2.

Let K be the set of positive times of the form t = 2πa such that the sequence of
quotients of a satisfies the conditions of the previous paragraph. Let t ∈ K and fix
δ > 0. Let J > 0 be such that |rj | < δ for all j ≥ J . Taking M = 2j−1, N = 2j+1,
ωn = χj(n), and

d = 2 sup
ξ∈R

|χ′(ξ)|,

in (14), yields

sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ = sup
x∈T

∣∣∣∣∣∣
2j+1∑

n=2j−1

χj(n)e
in2t+inx

∣∣∣∣∣∣
1Note that {qn(j)} is not a subsequence of {qn}, since log 2/ρ < 1 and therefore indices may be

repeated.
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The periodic linear Benjamin–Ono equation 9

≤ dc1

(
2j+1 − 2j−1

√
qnj

+
√
qnj

)

≤ dc1

(
2j−13

2
j
2 (1−δ)

+ 2
j
2 (1+δ)

)
≤ c22

j
2 (1+δ),

for all j ≥ J . This implies (12) for sufficiently large C > 0. �

Proof of theorem 1(b). Let u0 ∈ BV(T). Define the periodic distribution,

Et(x) =
∞∑

n=1

[
einx+in2t + e−inx−in2t

]
.

Since the Fourier coefficients ei|n|nt of Et are unimodular, the series converges in the
weak sense of distributions and determines Et uniquely for all t ∈ R [15, Theorems
11.6-1 and 11.6-2]. Moreover, for all t ∈ R, Et ∈ Bβ

∞,∞(T) for all β < −1.
Let t ∈ K, with K ⊂ R as in lemma 2. Then it follows from (12) that in fact the

stronger inclusion Et ∈ Bβ
∞,∞(T) for all β < −1

2 . Define the periodic distribution
Ht by H ′

t = Et, namely

H(t) =
∞∑

n=1

einx+in2t − e−inx−in2t

in
=

∞∑
n 6=0, n=−∞

einx+in|n|t

in
.

Then, according to (10) and (11), Ht ∈ Cβ+1(T) for all β < −1
2 .

Note that

û0(n) =
1

2πin

∫
T
e−iny du0(y) =

µ̂0(n)

in
, n 6= 0,

where µ0 is the Lebesgue–Stieltjes measure associated with u0, which satisfies
|µ0|(T) < ∞. Then the solution of (1), given by (6), can be expressed in terms
of Ht as follows:

u(x, t) = û0(0) +
∞∑

n 6=0, n=−∞

ei|n|ntû0(n)e
inx

= û0(0) +
∞∑

n 6=0, n=−∞

ei|n|ntµ̂0(n)

in
einx

= û0(0) + (Ht ∗ µ0)(x).

Hence, since µ0 is a bounded measure, we indeed have u(·, t) ∈ Cα(T) for all
α < 1

2 . �

We conclude this section giving the proof of corollary 2.

Proof of corollary 2. Let D denote the upper Minkowski dimension of the graph
of u(·, t). By virtue of theorem 1(b), it follows that D ≤ 3

2 for almost all t ∈ R, see
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10 L. Boulton, B. Macpherson and B. Pelloni

[8, Corollary 11.2]. Moreover, since

Br1
1,∞(T) ∩ Br2

∞,∞(T) ⊂ Hr(T)

for all r < r1+r2
2 , then u(·, t) 6∈ Br1

1,∞(T) whenever r1 > 1
2 , for those t for which the

conclusions of theorem 1(b) and (c) hold. Thus, by virtue of [6, Theorem 4.2], we
also have the complementary bound D ≥ 3

2 for all such t. This ensures the claim
made in the corollary. �

3. Illustration of the main results

In this final section, we examine the claims of theorem 1 and corollary 2. We
illustrate their meaning for the case that the initial condition is a step function and
for specific values of the time variable.

We first consider how theorem 1(a) implies the cusp revival phenomenon. Assume
that u0(x) = m1[−π

2 ,π2 ](x). Then, according to the statement of the theorem, for
t ∈ 2πQ the solution of (1) is the summation of two functions; a finite linear
combination of characteristic functions (a simple function) and its Hilbert trans-
form. Since the periodic Hilbert transform of the characteristic function of a single
interval can be computed explicitly as

Hm1[a,b](x) =
1

π
log

∣∣∣∣∣∣
sin
(

x−a
2

)
sin
(

x−b
2

)
∣∣∣∣∣∣ , (15)

for a, b ∈ T with −π ≤ a < b < π, it follows by linearity that the graph of the
solution displays finitely many logarithmic cusps for any t ∈ 2πQ. This is illustrated
in figure 1.

We now examine the result of corollary 2 and confirm the conclusion that the
fractal dimension of the graph of the solution is equal to 3

2 for specific irrational
times. We consider rational approximations to two different values of the time

variable: t = 2πφ, where φ = 1+
√
5

2 is the golden ratio, and t = 2πe. Both satisfy
(12).

As the denominator q in theorem 1(a) increases, the number of singularities of
the solution increases. In the limit as p

q approaches almost every irrational number,

theorem 1(b) implies that the solution will approach a continuous function. In
figures 2 and 3, we show an approximation of the values of the solution for 10k
points uniformly distributed on x ∈ (−π, π]. Note that, for the initial profile u0 =
m1[−π

2 ,π2 ], shown in the figures, we have (15) for a = −π
2 and b = π

2 . We generate
the values of the solution by using directly the formula (3) evaluated at the 10k
nodes partitioning the segment (−π, π].

Embedded in figures 2 and 3, we give an estimate of the box-counting dimension
D of each graph. This, in turns, is an upper bound for the upper Minkowski dimen-
sion. Note that both numbers are close to the value 3

2 , namely, D =1.54 and 1.46,
respectively. To arrive at these prediction, we have implemented the Algorithm 1,
as follows. We compute the number M(ε) of square boxes of side ε covering the
graph of the solution, for a range of ε as shown in the graphs, then interpolate the
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Figure 2. Solution for t
2π

a rational approximation of φ ∼ p
q
for p = F16 = 2584 and

q = F15 = 1597. Note that |φ − p
q
| < 1.7 × 10−6. The estimate of the box counting

dimension is D =1.54.
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Figure 3. Solution for t
2π

a rational approximation of e ∼ p
q
for p=23225 and q =8544.

Note that |e − p
q
| < 6.7 × 10−9. The estimate of the box counting dimension is

D =1.46.
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12 L. Boulton, B. Macpherson and B. Pelloni

Algorithm 1. Function for counting the number of boxes of side ε required to cover the
graph interpolated by the data A = [x, y], where x and y are vectors of size N.

1: Procedure NUMBOX (x, y, ε) B ε =size of the boxes

2: N = size(x);

3: a = min(x);

4: b = max(x);

5: if ε < 2(b− a)/N then break B Break for < 2 pts per x coord

6: C =0; B Initialize count variable

7: Ntowers = floor((b− a)/ε) + 1; B Number of towerss

8: for k = 1 : Ntowers do B Loop on each tower

9: I = find
{
j : (k − 1)ε+ a ≤ x(j) < kε+ a

}
;

10: J = max(y(I))−min(y(I));

11: Nboxesintower = floor(J/ε) + 1; B Count boxes in each tower

12: C = C +Nboxesintower; B Add to total count

13: return C B After loop return total

approximated box-counting dimension

D = lim
ε→0

logM(ε)

log 1
ε

using the slope of the linear fitting.
Both graphs point to the fractal nature of the solution. Indeed, they seem to

indicate a self-similar pattern in the solution as x increases and also they appear
to be nowhere differentiable curves.
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Appendix A. The Besov spaces Bα
∞,∞(T)

Consider the definition of Bα
∞,∞(T) given above. Let g ∈ S(R) be such that Fg(ξ) =

χ(ξ), where

Ff(ξ) =

∫
R
f(x)e−iξx dx

is the Fourier transform. Then, (Fgj)(ξ) = χj(ξ) for gj(x) = 2jg(2jx).
If f ∈ S(R), Poisson’s Summation Formula prescribes that∑

n∈Z
f(x+ n) =

∑
n∈Z

(Ff)(2πn)e2πinx

for all x ∈ R. Letting f̃(x) = f(2πx) gives

(F f̃)(ξ) =
1

2π
(Ff)

(
ξ

2π

)
.

Then, ∑
k∈Z

f(z + 2πk) =
1

2π

∑
k∈Z

(Ff)(k)einz.

Hence, we can represent the projections Kj of any periodic distribution F, as

(KjF )(x) =
∞∑

k=−∞

χj(|k|)
(

1

2π

∫
T
F (y)e−iky dy

)
eikx

=

∫
T

(
1

2π

∞∑
k=−∞

χj(|k|)eik(x−y)

)
F (y) dy

=

∫
T

( ∞∑
k=−∞

gj(x− y + 2kπ)

)
F (y) dy
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14 L. Boulton, B. Macpherson and B. Pelloni

=
∞∑

k=−∞

∫
T
gj(x− y + 2kπ)F (y − 2kπ) dy

=

∫
R
gj(x− y)F (y) dy = (gj ? F )(x)

for all x ∈ R. Here the symbol ‘?’ denotes the convolution on R.
Now, according to [1, Lemma 2.1, p. 52] in the case p = ∞, there exists a constant

C > 0 which only depends on r1, r2, and λ, ensuring the following estimates. For
any function u ∈ L∞(R), such that

supp(Fu) ⊂ λ{ξ ∈ R : 0 < r1 ≤ |ξ| ≤ r2},

we have
λ

C
‖u‖L∞(R) ≤ ‖u′‖L∞(R) ≤ Cλ‖u‖L∞(R). (A.1)

This is sometimes called Bernstein’s inequality.

Proof of (10). Take u = gj ? F , λ = 2j , r1 = 2−1, and r2 = 2 in (A.1). Then, the
left-hand side inequality yields

2(α+1)j‖KjF‖L∞(T) ≤ C2αj‖Kj(F
′)‖L∞(T) < ∞

for F ′ ∈ Bα
∞,∞(T). Conversely, the right-hand side inequality yields

2αj‖Kj(F
′)‖L∞(T) ≤ C2(α+1)j‖KjF‖L∞(T) < ∞

for F ∈ Bα+1
∞,∞(T). �

Proof of (11). We know that f ∈ Cα(T), if and only if S1 + S2 < ∞, for

S1 = sup
x∈T

|f(x)|

and

S2 = sup
x∈T
h 6=0

|f(x+ h)− f(x)|
|h|α

.

Recall that, f ∈ Bα
∞,∞(T), if and only if R < ∞, for

R = sup
j=0,1,...

sup
x∈T

2αj |Kjf(x)|.

Let f ∈ Bα
∞,∞(T). We show that S 1 and S 2 are finite. Firstly note that

f(x) =
∞∑
j=0

Kjf(x).

Hence,

S1 ≤
∞∑
j=0

‖Kjf‖L∞(T) ≤
∞∑
j=0

R

2αj
< ∞.
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Here we have used that α> 0.
Now, if

S3 = lim sup
h→0

(
sup
x∈T

|f(x+ h)− f(x)|
|h|α

)
< ∞,

then S2 < ∞. For j = 0, 1, . . ., let

S4(j) = lim sup
h→0

(
sup
x∈T

|Kj(f(x+ h)− f(x))|
|h|α

)
.

Then, on the one hand,

S3 ≤
∞∑
j=0

S4(j).

On the other hand, by the mean value theorem, for suitable |hj | < 2−2j ,

S4(j) ≤ sup
x∈T

0<|h|≤2−2j

|Kjf(x+ h)−Kjf(x)|
|h|α

≤ sup
x∈T

0<|h|≤2−2j

|(Kjf)
′(x+ hj)||h|
|h|α

= sup
0<|h|≤2−2j

|h|1−α sup
x∈T

|(gj ? f)′(x+ hj)|

≤ 2−2j(1−α)‖(gj ? f)′‖L∞(R)

≤ C2j2−2j(1−α)‖gj ? f‖L∞(R)

= C2−j(1−α)2αj‖Kjf‖L∞(T)

≤ CR2−j(1−α).

Thus, indeed, S3 < ∞. Here we have used that 1 − α > 0. This confirms that
Bα

∞,∞(T) ⊆ Cα(T).
Now, let us show that Cα(T) ⊆ Bα

∞,∞(T). Assume that f ∈ Cα(T). That is
S1 < ∞ and S2 < ∞. Considering f as a periodic function of x ∈ R, we have

S1 = sup
x∈R

|f(x)| < ∞

and

S2 = sup
x∈R
h 6=0

|f(x+ h)− f(x)|
|h|α

< ∞.

Our goal is to show that R < ∞.
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16 L. Boulton, B. Macpherson and B. Pelloni

Since g ∈ S(R), then there exists a constant c3 > 0, such that

|gj(x)| ≤ c3
2j

(1 + 2j |x|)2
,

for all x ∈ R. Now for any ϕ ∈ R, thought of as a constant periodic function, we
have that (gj ? ϕ)(x) = ϕχj (0) = 0 for j = 1, 2, . . .. Then,

(gj ? f)(x) = (gj ? (f + ϕ))(x)

for all x ∈ R and j ∈ N. Thus,

|(gj ? f)(x)| ≤
∫
R
|gj(y)||f(x− y) + ϕ|dy

≤ c32
j

∫
R

|f(x− y) + ϕ|
(1 + 2j |y|)2

dy

= c3

∫
R

∣∣f (x− z
2j

)
+ ϕ

∣∣
(1 + |z|)2

dz

for all x ∈ R, ϕ ∈ R, and j ∈ N.
This gives, taking ϕ = −f(x), that

2αj |(gj ? f)(x)| ≤ c32
αj

∫
R

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz = Aj(x) +Bj(x),

where we split the integral as follows. The first term is

Aj(x) = c32
αj

∫ 2j

−2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

= c3

∫ 2j

−2j

|z|α
∣∣f (x− z

2j

)
− f(x)

∣∣(
|z|
2j

)α
(1 + |z|)2

dz

≤ c3S2

∫ ∞

−∞

|z|α

(1 + |z|)2
dz ≤ c4 < ∞

for all j = 1, 2, . . . and x ∈ T. Here we have used that 0 < α < 1. The second term
is

Bj(x) = c32
αj

∫
|z|≥2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

≤ c32
αj2S1

∫
|z|≥2j

dz

(1 + |z|)2

≤ c5S12
(α−1)j ≤ c6 < ∞

for all j = 1, 2, . . . and x ∈ T. Here we have used that α< 1. Then R ≤ c4+c6 < ∞.
This completes the proof of (11). �
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