A METRICAL THEOREM IN DIOPHANTINE
APPROXIMATION
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Introduction. In this paper we prove a sharpening and generalization
of the following Theorem of Khintchine (4):

Let ¥1(q), - . ., ¥u(q) be n non-negative functions of the positive integer q and
assume

v(g) = 11 ¥i(Q)

1is monotonically decreasing. Then the set of inequalities

(1) 0=qb:; — p: <¥i(g) G=1,...,n)
has an infinity of integer solutions ¢ > 0 and pi, ..., p, for almost all or no
sets of numbers 0y, ... ,80,, according as pr (q) diverges or converges.

Actually, Khintchine proved the Theorem with |¢6; — p.| < ¢:(g) instead
of (1). The first author who used the one-sided inequalities (1) was Cassels (1).

Surprisingly, the following sharpening of the Theorem seems to have
escaped attention.

THEOREM 1. Make the same assumptions as in Khintchine's Theorem. Let ¢ > 0
be arbitrary. Write N(h; 6y, ..., 6,) for the number of solutions of (1) with
1 = q= hand put

@) V(h) = Z; ¥(q)
h
(3) o = 2 vlag
Then
) N by, ..., 0,) = V(h) + O(FHh)Q(h) log*e ¥(h))
for almost all sets 6y, . .., 0,.

Note. In this paper, log « stands as an abbreviatson for
{logarithm o, iffa=e
1, fa<e.
Only log(14+1(1/¢—1)) in (10) means logarithm, in spite of 1+ (1/¢—1) <e.
Next, we generalize Khintchine's Theorem to linear forms. We use the
following notation. Throughout this paper, lower case italics denote rational
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integers. By Q,R,..., we denote lattice points Q(q1,...,qn) In Ry ©
denotes points (64, ...,0,) in R,. pQ, where p is real, is the point with
co-ordinates pqi, . . ., pgn, and QO is the scalar product ¢:0: + ... 4+ gubn.
We write d(Q) for the number of common divisors of ¢j,...,¢,. Finally, we
put Q = & if ¢ = max(q1, ..., qn) = %, and similarly 2 < Q.

THEOREM 2. Let ¢ > 0 be arbitrary. Let ¥1(Q), ..., ¥ (Q) be n bounded
non-negative functions. We introduce

40 = TT %0
¥ = T ¥(0

Q=
x(h) = ng:h ¥(Q)d(Q)

and write N(h; Oy, ..., 0,) for the number of simultaneous solutions Q = h,

b1, -« ., Pn Of the system

(5) 0<00;—p: <¥:i(Q) G=1,...,n).

Then for almost all n-tuples 64, ..., 06,

(6) N(h; 01, ..., 0,) = ¥(h) + O(x* (h)log*>*<x ().

Note. We need not assume ¢ (Q) to be monotonic in any co-ordinate.

This theorem can be interpreted as a generalization of the well-known fact
that the points (Q6y, ..., 006,) are uniformly distributed mod 1 for almost
all 8y, ..., 0,. (See, for instance, (3, chapter 1v).) Indeed, putting ¥;(Q) =a;,
o = Ila;, we have ¥ (k) = ah™ and

_ SO (hlogh),ifm = 1
x(h) =& 22 d(Q) =\ 00m) S > 1.

An interesting special case of Theorem 1 is when ¢ (Q) = ¢¥(¢), where
g = max(qi, ..., gn). Then

i =o(X T ¥ T va)

G1=h 92203 am=q

Thus we have
x(h) = O(¥(h))

if m = 3, or if m = 2 and gy (¢) is monotonically decreasing, because in the
latter case

qESh v(q)g: < A7 (k).

dl a1
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For example, if ¢.(Q) = v¥.(g9) = ¢™" ¥(Q) = ¢ ™ ¥(h) = mlogh +
O(1), then for almost all 6y, ..., 6,

N(h; 0y, ...,0,) = mlogh + O (log*h logloge*<h),

where we may take o = 2 for m = 1, according to Theorem 1, and « = 3/2
for m > 1, according to Theorem 2.

For the proof we have to modify the standard proof of Khintchine’'s Theorem
and use some ideas of (2). The new idea in Theorem 1 is to use fractions p/q
with g.cd.(p,q) = k where k is specified later, instead of p/gq with
g.cd.(p,q) = 1, as employed in (1; 3; 4). Theorems 1 and 2 should be com-
pared with similar results I proved recently in the geometry of numbers (5).

We give a detailed proof of Theorem 1 only. For convergent sums »_¢(g)
Theorem 1 follows from Khintchine's Theorem. Hence in §§ 1 to 4, which
deal with Theorem 1, we assume without explicit mention that ¥(q) is a
non-negative, monotonically decreasing function with divergent sum Y_y(g).
¥ (k) and Q(%) are defined by (2) and (3). The author is much indebted to
the referee who discovered a mistake in the original draft and made valuable
suggestions.

1. On certain intervals. Let w(#), # = 1, be a monotonically increasing
integral-valued function which tends to infinity. We write w(0) = 0 and
define S’ to be the set consisting of 0 and of all integers 2 > 0 such that
w(h — 1) < w(h). We define S to be the set of integers 2 = 0 having
w(h) < w(h + 1). Finally, S is the set of values of w(k), 2 = 0.

Next, we define for fixed ¢ > 0 intervals of order ¢ to be the half-open
intervals

@2 4+ v, (u 4+ 1)2¢ 4 23],

where u, v;, v, are non-negative integers such that v; < 2* and v, v, are the
smallest non-negative integers satisfying #2* 4+ v; € .S, (u + 1)2* 4+ v, € S.
(It is possible, of course, that for given u, ¢ there exists no such v;.) The
intervals of order ¢ cover the positive axis exactly once.

LeEmMA 1. Every interval (0, x], x € S, can be expressed as union of intervals
UI; of the type described above, where no two of the intervals I, are of the same
order.

Proof. Write x in the binary scale,

v .
X = Z ti21
=0

where ¢; equals 0 or 1, but ¢, = 1. There exists an interval (0, j1] of order w
with j; < x. If j, = x, then we are through. If not, and if

w o
= 3 2

=0
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then ¢, = f, = 1 and there exists a largest integer w. having
19 < .
Hence there exists an interval (ji, jo] of order ws, j» < x. If j» = x, then
0, x] = (0, 1] Y (j1, j2). Otherwise, if
w
o= 2 120 P =t =1, =ty = 1,
i=0

then there exists a largest ws, w3 < ws, having
toy < tus.

We proceed as before. Since j; < j» < ..., we finally arrive at j, = x and
0,x] = (0,71]\YU...\U (jy—1,4s]. The orders of the intervals are w > w,

2. Sums involving a function ¢(k, g). Let %, ¢ be positive and write
¢ (k, g) for the number of integers x, 0 £ x < ¢, so that g.c.d.(x, ¢) =< k.

LEMMA 2.

> ok, ) =v+ 0@k + logv log k).
gq=1

Note. Here and throughout the paper, the inequality indicated by the
O-symbol holds for all values of all variables involved.

Proof. Clearly,

o(k,q) = th "’@

where ¢(x) is the Euler ¢-function. Using the well-known relation
$(x) =x 2 @)y
vz

we obtain

> Sk g)g

=20 X oqw X )y
¢= wlq !

viqu~
w=k
min (%, ») [(v/w)] [(v/yw)]
1 -1
=2 w2 ey X1,
w=1 y=1 g=1

where [a] is the integral part of «. Thus
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21 o(k, 9)g”"
Z

min (k, 2) [(v/w)]

=v > w’ Zl p(3)y~* + O(log v log k)
P

w=1

min(k, v) min(k, v)
=0 >, w g2+ 0( > w-‘) + O(log v log &)
w=1 w=1

=9+ 0@k " + logv log k).

LEMMaA 3.

Y @) 6k ) = ¥() + OF@E" + 20) log £).

¢=1

Proof. Put (k,0) = 0 and

Ok, r) = 2, ¢k q)q "

q=1

for r 2 1. Lemma 2 yields
) II(k,r) =r+ Ok~ + log r log k).
Using partial summation we obtain

qZ; V(g ok, )"

v

Il

V(@ ULk, q) — I(k, ¢ — 1))

=
—1

(8) = Ik, ¢)(¥(g) — ¥(g+ 1)) + (&, 2)¢(v)

q=
K

|
S

~ S (@) — ¥(g+ 1)) + ov(o) + R, v)

¢

Il
-

= ¥(v) + R(k,v),

where, according to (7),

R(k, )
= 0<§ (k™" + log g log k) (¥(9) — ¥(g + 1>>

+ Ok " 4 log v log k) ¢/(v)

(9)

= 0<‘I'(v)lf1 + log k Z:, ¥(q)(log g — log (g — 1)) + log k¢(1)> .
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Now
Z ¥(g) (log ¢ — log (g — 1))

10) = o % v os 1+ 1))
- 0Q®)).

Lemma 3 is a consequence of (8), (9), and (10).

3. Bounds for certain integrals. We introduce the following functions
and integrals.

80, ) = {1, 10 <0< ¥

0 otherwise,
v(g,0) = 2 B(g, 0 — p),
D

'Y(k!gv 0) = Z 5(9»90“P),

Y4
g.c.d.(p.9)Sk

1@ = [ (.00,
I5g) = | (b g,0)05
I#50,7) = | 10k 0. 0v(k 7,000,

V) = 390,

We observe

N(‘Z), 0) = Z::l ’Y(Q» 0)

and put
N(k;u,v;0) = _v v(k, ¢, 0).
LEMMA 4. o
(11) I(q) =¥(@; Ik q) =¥ (@Qe(k a)q!
(12) I(k; q,7) = ¥ (¥ (r) + Aks g, W (g™

where A (k; q, r) is the number of solutions p, s of
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(13) gs—rp=0 0=p<yg

having
g.cd.(p, q) = &, g.cd.(s,7) < k.

Proof. I(g) = ¢(q) is rather trivial, while the second half of (11) follows
from

Iko = T [ 80— pa

g.c.d. (0, )=k

= ok 0g™ [ Bl 0)as.

As for I(k;q,r), we have

1
ka0 = 3| 500~ p)ar.0r — 515

)
(s.7)

po
TAIA

We split this sum into two parts,
I(k; q,7) = Io(k; q,7) + Ii(k; g, 1),

where I, consists of the terms with gs — 7p = 0.

19 Lkigns X [ 80— 0)80,0r = )as

qs—'rp’;éo
1-(p/q) _
=2 f B(q, q0')6<r, 8’ — u) as'.
D.s —(p/9) q
q¢s—rp#0

To find an estimate for this sum, write ¢ = ¢'d, r = ¢'d, ¢gs — rp = hd, where
d =Tg.c.d.(g, r}.g‘For given h, p is determined modulo ¢’. Hence

Io(k; q,7)

@ ' ' _ @ ’
=d ;0 ‘[mﬁ(q, q ),8<r, 70 q) db

<d fm f N B(g, q0’)[3<1', 79’ — )\dg_l> dg'dx

= Y(Q¥(r).

In changing from the summation over % to the continuous parameter A we
used the fact that the function

| 80 0080, 10" ~ g™ av

is monotonically decreasing in A when A 2 0, and monotonically increasing
when A < 0.
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To prove Lemma 4 it remains to give an upper bound for I,(k; ¢, 7). In
analogy to (14), we find

1-(p/q)
L= 3 [ s 0080, 0w
< Ak g, Y@

LEmmaA 5.

le(v, 0)do = ¥ ()
fo Nk, vi0)d0 = 3 ¥(g) ok, )™

1 v
[ V(e w0000 < ¥2(0) +2 3 v@)dilg),
J0 g=u+1
where dy(q) is the number of divisors of q not exceeding k.

Proof. The first two assertions follow from (11). As an immediate conse-
quence of (12) we have

1
N*(k;u,v;0)d8 £ ¥ (u,v) + 2 Z Ak q, N (q)g .
0

u<lr<qgsv
Now
q
2 Alk;g, )

r=1
is equal to the number of solutions 7, p, s of
gs —rp =0, 0=p<yq, 1=r=gq
g.cd.(p, q) = &, g.cd.(s,7) < k.
Define a, b by

q_zfzf, ged. (a,b) = 1.

Then b/¢ and g.c.d.(p, ¢) < k implies ¢gb~! < k. Thus the number of possible
choices for b is d(g). Furthermore, there are ¢(d) < b possibilities for ¢ and
gb~! possibilities for 7, once & is given. Hence

,Z; A(k;q,r) = qdi(q)

and

v

> Akig, NY(@g ' = L V@) d@).

ulrSq=w =
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4. Proof of Theorem 1 (» = 1). Write w(h) = [¥(h)Q(h)] and define
S, S, 8" asin § 1. Let L; be the set of all pairs («,v), u € S’, v € §, so that
(w(#), w(v)] is an interval of any order ¢ with respect to w (see § 1), and
w(v) = 2% From now on, the numbers k, s are always connected by the
relation

(15) k= 25

From here on, we make heavy use of the methods developed in (2). Write
h* = h*(s) for the largest integer #* having w(h*) < 2°.

LEMMA 6.
(16) 0= fl(N(h*, 0) — N(k;0, k*;0))d = O(s 2°'%)
(17) ( > J;I(N(k;u,v;ﬁ) — W(u,0))’do = 0(s* 2%).

Proof. The first two equations of Lemma 5 give

J:(N(h*, 6) — N(k;0, k*, 0))do

= V(¥ — ;1 v(q) bk, 9)g

= O (k™ + Q(h*) log &
according to Lemma 3. Since
Q) = 0@,
(16) follows.
Using Lemma 5 again we see that a single integral in (17) does not exceed

23 @)d(q) + 29, ) (¥, 0) — S V@8l ™).

q=u+1 q=U

We first take the sum over those pairs (#,v) € L; where (w(#), w(v)] is an
interval of fixed order t. Since intervals of order ¢ cover the positive axis
exactly once, we obtain the upper bound

%

2 é; Y(q)di(q) + 2% (h*) (¥ (h*) — j’; V() ok, g Y).
We observe
54; ¥(9)di(q) = 2° ?; = 0(2 log k)
and using Lemma 3 we find the upper bound

O2¢log k) + O(¥2(h*)e~' + ¥ (*)Q(h*) log k) = O(s2%).

Summing over ¢ and observing ¢ £ s we obtain (17).
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LEMMA 7. There is a sequence of subsets a1, oo, ... of the unit-interval with
measures

we= [ an =06

such that
N(h, 8) = ¥(h) + O(28/25%F¢)
for any h with w(h) = 2%, h € S, and any 0 in 0 < 0 < 1, but not in o,.

Proof. We define o to be the set of all § in 0 = 6 < 1, for which not both
of the following two inequalities hold:

(18) 0 < N(i*,0) — N(E; 0, k*;0) < 5™ 2%
(19) Z (N(k;u,'v;O) - \I/<u’ 7)))2 < sieos
(u,v)eLs

As a consequence of Lemma 6,
us = O(s7179).
If h < h* h € 5, then the interval (0, w(%)] is the union of at most s intervals
(w(n), w(v)], where (u,v) € L.
N(&;0,1;6) — ¥(h) = 25 (N(k;u,036) — ¥(u,0)),

where the sum is over at most s pairs (%, v) € L. This fact, together with
(19) and Cauchy's inequality yields for 0 <60 < 1, 64 o,

(N(k;0,k;60) — ¥(h)? < stte2e,
The last equation together with (18) gives Lemma 7.

Proof of Theorem 1 (n = 1). Since D_s~—¢ is convergent, there exists for
almost all §, 0 < 6 < 1, an so = s0(f) such that 6 ¢ o, for s = 5. Assume 6
has such an s¢(6) and assume % to be so large that w(%) = 2%. Choose s so
that 271 < w(h) < 2°.

Suppose & € S’. Then we have with Lemma 7

N(h, 6) = W(h) + O(2kss2+e)
W (k) + O(¥*(h)QE(h) log?+<¥ (1)).

|

Hence Theorem 1 holds for 2 € S’. By the same argument we can prove
the Theorem for # € S”.
To any & there exist #’, A’ with ' € S', "’ € §” and

w(t') = wh) = o).
[ O (R)QR) — T(HHQR)| £ 1.

Then
[W(h) — ¥R QR =)t =y¢1)7Y
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and similarly for ¥(4"’). Since
N(,0) = N(h,0) < N&", 8),

the case # = 1 of Theorem 1 follows.
5. The case » = 2. Using

v = Zl d’n(ky Q)g—n
=

?‘:1 ¢ — ¢"(k, )g™"

IIA

"3 @ ok

= n(v - ;1 ¢(k, q)q“‘)

we easily generalize Lemmas 2, 3 to

> ¢"(k,q)g " =v+ O@k™" + log klogv),
¢=1

é¢@¢%®ﬂ=W@+O@MVWm@mMy

In analogy to B(q, 6) of § 3 we define (g, 01, . . ., 6,) to be the characteristic
function of the rectangle

0=0;,<vyq G=1,...,n)
and put

'Y(gr 017 o e 10n) =p Zp B(gy gol - Ply .. vqon - Pn)
1 n

"/(k;gyol""’on) = Z B(q:qal_Plv---vqon-Pn)'

pi.g.c.d.(pi, )=k
i=1,..., n

I(q), I(k,q), I(k;q,r) are now n-dimensional integrals. To find an upper
bound for

1 1
I(k;q,7) = > f'--fﬁ(q,qﬁl—m---,)
pi.g.c.d. (pi, )=k YO 0

s;.8.¢.d.(s:, T)=k
i=1,..., n

,8(7’, 76, — S1y « v o ,)dﬁl e dﬁn,
we split this sum into #» + 1 parts,
I(k;q,7r) =TI+ ...+ I,

where I; consists of the terms with exactly j indices 4i,...,7, having
gs: — rp; = 0. We find
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Io(k;q,7r) = ¥(Q¥(r)
and
Ii(k;q,r) < cPA%(k; q, ¥ (g)g™’
S DAk q, ¥ (@g "

There are no other modifications of any depth.

6. On the proof of Theorem 2. For simplicity assume » = 1. We put

8(0,0) = {1,if0§0< ¥(Q)

0 otherwise
and define v(Q, 6), I(Q) in an obvious way. Further
1

10,R) = [ v(0,01v(R 03,
¥ (u, ) =u<§sv¢(Q).

We observe

N(v,0) = Z< v(Q, 9)

Q=0
and put
N(u,v,0) = Z v(Q, 0).

u<Q=0

We do not need the parameter 2 now, which was essential in Theorem 1.
Lemma 4 now reads

LEMMA 4a.
(20) 1(Q) = ¢(0Q)
(21) I(Q, R) = ¥ (Q(R),
if Q, R are linearly independent (there exists no p having Q = pR).
(22) I(Q, R) = y(Q¥(R) + ¢ A(qy, m)¥(Q)ar’,

if Q, R are linearly dependent. Here ¢1, r1 are the first co-ordinates of Q, R and
A(qy, 1) is the number of solutions p, s of

gis —rip =0 0=p<aqg.

(20) and (21) are proved like (11), while the proof of (22) is like the one given
for (12). Lemma 5 becomes

LEMMA ba.

f N(u,v,0)do = v(Q) = ¥(u,v)
0 u< Q.

EY)

J;Ng(u,v, 0)do £ V(u,v) + ¢ gsfp(Q)d(Q).
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All the other changes in the proof are obvious, except perhaps the definition of
w(h), namely w(k) = [x(h)].
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