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Waiting for a compensatory mutation: phase zero of the
shifting-balance process
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Summary

In highly integrated genetic systems, changes in any one component may have a deleterious effect
on fitness, but coordinated, or compensatory, change in these components could lead to an overall
increase in fitness compared with the current state. Wright designed his shifting-balance theory to
account for evolutionary change in such systems, since natural selection alone can not lead to the
new optimal state. A largely untreated aspect of the shifting-balance theory, that of the limiting
impact of waiting for the production of new mutations, is analysed here. It is shown that the
average time to double fixation of compensatory mutations is extremely long (of the order of tens
or hundreds of thousands of generations), because selection is too effective in large populations,
and mutations are too rare in small populations. Further, the probability that a new mutant will
arise and undergo fixation quickly is extremely small. Tight linkage can reduce the time to fixation
somewhat, but only in models in which the double heterozygote does not have reduced fitness. It is
argued that the only reasonable way for compensatory mutations to become fixed in a population
is if the new mutants are first allowed to achieve a moderate frequency through the relaxation of
selection. Under these conditions, the time required to reach fixation is reasonably low, although
the probability of being fixed is still small when the initial allele frequencies are low. It is likely
that the waiting time for fixation of new mutants, which is here called phase zero, is the major
limiting factor for the success of the shifting-balance process.

1. Introduction

The notion that organisms are highly integrated
functional systems has long held intuitive appeal to
biologists. The existence of gene regulation and
developmental interactions certainly support this view.
One consequence of functional integration is that
changes in one component of the system can lead to
degradation of the system as a whole without
simultaneous changes in other interacting com-
ponents. For example, at the molecular level, an
amino acid change in a regulatory protein might
disrupt a regulatory pathway without a compensatory
change in the promoter region of the gene being
regulated (Tjian, 1995). There is some evidence that
change of this type has led to correlated evolution at
the nucleotide level (e.g. Stephan & Kirby, 1993). The
difficulty of evolution in a system in which change in
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individual components is separately deleterious but
jointly advantageous, is that natural selection can
never lead to the new advantageous state because this
would necessitate that populations first move through
deleterious states.

Sewall Wright created his famous shifting-balance
theory of evolution in large part to deal with this
problem (Wright, 1931, 1932). Wright's study of
physiological and developmental genetics led him to
conclude that gene interaction should be the norm in
biological systems, and he felt that evolutionary
change would be severely constrained if these inter-
acting systems were prevented from evolving because
of the limitations of deterministic selection. Popu-
lations would become stranded at a local optima or
peaks in fitness, and would never be able to reach
higher global optima. Wright's solution to this
problem involved three phases. First, genetic drift
would lead to a random increase in allele frequencies
that would initially overcome the counterbalancing
force of selection. Secondly, once the new interacting
alleles became relatively more common than the
original alleles, mass selection would push the popu-
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lation towards the new peak. Thirdly, populations
that had successfully undergone the peak shift would
then send migrants to other populations, thereby
upgrading them in fitness. Various studies have
investigated one aspect of the theory or another
(Rutledge, 1970; Wright, 1977; Lande, 1985; Crower
al. 1992; Kondrashov, 1992; Phillips, 1993; Barton &
Rouhani, 1993; Rouhani & Barton, 1993; Moore &
Tonsor, 1994), but none have asked the seemingly
fundamental question of where the variation necessary
for starting the shifting-balance process comes from
the in the first place. The shifting-balance theory,
therefore, requires another phase, phase zero, that
consists of the generation of the mutations responsible
for initiating the process.

Wright usually began his discussions of the shifting-
balance theory at the migration-selection-drift equi-
librium (e.g. Wright, 1977). He tended not to consider
the time required to reach that equilibrium, pre-
sumably because dynamic solutions to his equations
are much more difficult to come by, and, somewhat
paradoxically, because Wright did not believe in strict
equilibria; he felt that there would always be some
genetic variation available to migrate into a population
(J. F. Crow, personal communication). This is not
really a paradox because Wright believed in the power
of a dynamic equilibrium, such as that described by
the equilibrium distribution of gene frequencies, more
than the static equilibrium implied by all populations
being fixed for a particular gene. Nonetheless, genetic
variation must come from somewhere, and before the
dynamic equilibrium can be achieved, the static
equilibrium must be broken. In the shifting-balance
theory, this means that at least one population must
make the transition between peaks before the other
phases can proceed, and this population can not
undergo such a transition until mutations for the new
advantageous alleles arise within it. Waiting for these
mutations could take a long time.

The new variation for the advantageous genotype
can enter the population in three ways. First, double
mutation could lead to the de novo creation of the new
gamete. This should be a very rare event (of the order
of the square of the mutation rate) that would not be
expected to be very important in most circumstances.
Secondly, populations could reach fixation for each
new allele sequentially. As discussed below, this
involves the fixation of a temporarily deleterious
allele, and would not be expected to be important
unless population sizes are very small and/or selection
is very weak. Finally, new deleterious mutations could
simply segregate in a population via mutation pressure
and drift until a mutation at the other locus allows
both new alleles to come into contact in the same
gamete. The alleles would then drift together across
the valley until being driven by both drift and selection
towards fixation at the new peak.

Here I will first outline two fitness models that can
be used to depict multiple-peak gene interactions at

two loci. I will then present several methods for
solving the two-locus drift problem inherent in the
shifting-balance process. Two basic scenarios will be
addressed. First, it will be assumed that a population
starts at complete fixation, and the time to fixation
under recurrent mutation will be studied. Secondly,
the probability that a shift will occur in the presence
of some initial variation, as might be expected after
period of relaxed selection, will be calculated. In the
end, it appears that initiating the shifting-balance
process is difficult and time consuming, and is likely to
be a major impediment to the applicability of the
shifting-balance theory to natural populations.

2. The model

Two qualitatively different kinds of fitness models will
be used (Table 1). Both models are based on a diploid
gene interaction system with two loci, each with two
alleles, but display different types of epistasis. In
the first, the 'deleterious intermediates' model,
any genotype composed of mismatched alleles at the
two loci has reduced fitness, \—s (Haldane, 1931;
Kondrashov, 1992). In the second, the 'metabolic
pathway' model, the double heterozygote does not
suffer from reduced fitness, as might be the case if the
genes were sequentially involved in a metabolic
pathway or when stabilizing selection acts on an
additive character (for a general argument see Phillips,
1993). This model also allows for a range of dominance
relationships within a locus with complete multipeak
epistasis between loci (Table 1; Crow et al. 1990;
Phillips, 1993).

Evolutionary change is assessed by tracking the
frequencies of the four possible gametes, with xv x2, x3

and xt respectively representing the frequencies of
gametes AB,AB',A'B and A'B'. Under the assumption
of random mating, gamete frequency change is

Table 1. Genotypic fitnesses

AA

Deleterious intermediates model
BB
BB'
BE

\ + t
1 - 5
1 - 5

Metabolic pathway model
Dominant
BB
BB'
B'B'
Additive
BB
BB'
B'B'
Recessive
BB
BB'
B'B'

\+t
\+t
1 - 5

\ + t
\+{t-s)/2
1 - 5

\+t
1 - 5
1 - 5

AA'

1 - 5
1 - 5
1 - 5

\+t
\+t
1 - 5

\+{ts)/2
l+t/2
1-5/2

1 - 5
1
1

A'A'

1 - 5
1 - 5
1

1 - 5
1 - 5
1

1 - 5
1-5/2
1

1 - 5
1
1
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governed by the standard two-locus equations
(Kimura & Ohta, 1971):

Ax( = xt'—x(

(1)

where the sign is positive when i = 1 or 2 and negative
when i = 1 or 2 and negative when / = 3 or 4, w( =
^.ixiwn'r *s ^ e recombination rate, D = x1x2 — x3

x4 is the linkage disequilibrium parameter, and w =

(i) Mutation and initial variation

Populations begin in one of two possible states. In
the first case examined, populations are assumed to be
fixed for the A'B' gamete, with any variation in the
population being generated by spontaneous mutation
(this is the 'dynamic' case of Michalakis & Slatkin,
1996). In the second case, populations will be assumed
to have some initial genetic variation, and mutation
will not be included in the model (v = 0; this is akin to
the 'static' case of Michalakis & Slatkin, 1996).

Mutation is assumed to be unidirectional, with
change from A' to A and B' to B occurring at rate v.
Studying unidirectional mutation has the advantage
that in a finite population there is no question of
whether the new mutant will be fixed, but only of how
long it will take. Since the focus of the paper is the
fixation of new mutants within a single population,
the existence of back-mutations only serves to make
present results more conservative. As outlined below,
however, unidirectional mutation can generate po-
tentially misleading results if the relative magnitudes
of mutation and selection are not accounted for. The
life-cycle takes the order:

mutation -> random sampling of gametes ->
recombination -> selection.

Gamete frequency change and the time to fixation are
assessed using three separate methods: two-dimen-
sional Kolmogorov backward equations, a two-locus
Fisher-Wright Markov model, and simulations of
finite populations.

(ii) Diffusion approach

The effects of both selection and drift on the
probability of and time to fixation can be most
precisely described for moderately large populations
using the two-locus Kolmogorov backward diffusion
equations first presented by Kimura (1955; Crow &
Kimura, 1956), although I will be following the
treatment of Takahata (1982), throughout. In prin-
ciple, it is possible to construct set of diffusion
equations for the two-locus case with arbitrary degrees
of recombination, but this would unfortunately
necessitate solving the equations in three dimensions.
By analysing only the special cases of free recom-
bination (r = 0-5) and no recombination (r = 0) the

solution can be reduced to a two-dimensional problem,
but even here no general analytical solution exists. We
are therefore forced into numerical solutions of the
partial differential equations. For the case of free
recombination, the equation becomes (Kimura, 1964):

du _p(\-p)dtu q(l-q)d*u 8u Bu
df~ 4Ne dp*+ 4Ne dq2+ Spdp+ SQdq' ( )

where Tis a measure of generations, u is the probability
of fixation as a function of p and q, Ne is the effective
population size, p = xx +x2, q = x1 +x3, MSp = v(\ —
p) + Ax1 + Ax2, and MSq = v{\ -q) + Ax1 + Ax3 (muta-
tional effects of the order of v* are ignored here).
Equation (2) neglects the effects of linkage disequi-
librium, including that which might be generated
directly by selection. These effects can be included in
the diffusion model (Ohta & Kimura, 1969; Fu &
Arnold, 1992), but the equation is much more difficult
to solve. In practice, ignoring linkage disequilibrium
yields results that are very similar to the exact Markov
and simulation approaches described below (see also
Littler, 1973), so this assumption does not appear to
be too severe. As selection becomes very strong, we
would expect the generation of linkage disequilibrium,
and there is evidence from the simulations that the
diffusion equation begins to underestimate the time to
fixation for the deleterious intermediates model and to
overestimate it for the metabolic pathway model (Fig.

1).
For complete linkage and a symmetrical fitness

model, the frequencies of gametes AB' and A'B
change in concert, which after defining a new
parameter y = x2 + x3, yields the diffusion equation
(Takahata, 1982)

— xx) d2u x1y

4Ne

du

dx2
y{\-y)d2u

2NedXldy 4Ne dy* **>

(3)

du_

du_
dxx

where

MSx = uy + Axx and MSy =
v(2 — 2x1 — 3y) + Ax2 + Ax3.

Equations (2) and (3) were solved numerically by
approximating them with difference equations and
solving them respectively on a square and a triangular
gene frequency grid as described in Takahata (1982).
For eqn (2), minimum grid size was 40 x 40. The
equation was solved by successive iterations with
initial conditions p = q=\ and «(1,1) = 1, until
fixation probabilities over the grid were stable to 10"4

over successive iterations. Minimum grid size was
(50 x 50)/2 over a triangle for eqn (3), with initial
conditions xl = \, y = 0, and K(1,0) = 1. Average
time to fixation was determined by using the same
difference method to approximate the integral

' = "(0,
Jo

0)dT. (4)
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Fig. 1. Mean time to double fixation (a peak shift) as a
function of the strength of selection. Lines show results
from a diffusion approximation, points are from the mean
of 500 simulation runs, (a) Deleterious intermediates
model (2Ne v = 1). Time to fixation increases rapidly as
selection increases, although recombination rate has little
influence until selection is very strong. Continuous line
and circles, r = 0-5; dashed line and crosses, r = 0. (b)
Metabolic pathway model. Time to fixation again
increases with selection, although dominant mutations
become fixed more quickly than recessive ones. Recessive:
dot-dashed line, r = 0-5; dotted line, r = 0. Dominant:
continuous line, r = 0-5; dashed line, r = 0. Strength of
selection, mutation pressure and time to fixation are all
expressed relative to the effective population size. This is
a neutral compensatory model in which Net = 0.

A similar approach using exact Fisher-Wright
Markov equations is presented in the Appendix.

(iii) Simulation approach

The accuracy of the approximations and assumptions
used above were verified using Monte Carlo simu-
lations. The simulations were semi-deterministic in
that gamete frequency change generated by selection
and mutation were determined using eqs (1) and
(A 2). Sampling of gametes in the drift process was
performed by individual sampling whenever Ne < 20,
xt Ne < 3, or (1 —xf) Ne < 3. In other cases, however, a
pseudo-sampling method (Kimura, 1980; Kimura &

Takahata, 1983) was used to simulate drift at
intermediate gamete frequencies. This involves draw-
ing a random number once for each gametic type
rather than once for each individual in the population,
and provides an excellent approximation to the full
sampling method as long as full sampling is used
under the conditions described above (Kimura &
Takahata, 1983). The accuracy of these simulations
was in turn checked by a completely stochastic
simulation of the entire process, but this took several
orders of magnitude longer to complete. Simulation
results obtained here agree almost exactly with the
analytical methods described above, as well as the
results obtained by a different simulation method in
Michalakis & Slatkin (1996).

3. The waiting time for compensatory mutations

I will first present results for the time to fixation while
waiting for recurrent mutations, and then analyse the
probability of a peak shift when starting in a
population with some initial genetic variation.

We will first envision a population that is completely
fixed for alleles at two loci that put it at the top of one
fitness peak. One-way mutation then introduces
variation into the population, genetic drift eventually
moves the population through the adaptive valley,
and selection finally pushes the population to the
other peak. Under recurrent one-way mutation in a
finite population, it is not a question of whether a
population will eventually go to fixation at the new
peak, but only of how long it will take. The most
obvious measure of this is the mean time to double
fixation (eqn 4).

One nice attribute of using the diffusion approach
to solving these problems is the realization that by
multiplying both sides of eqns (2) and (3) by the
effective population size, fixation time, mutation
pressure and selection can all be scaled in units of Ne.
A solution in this form is presented in Fig. 1. Here the
mutation rate is assumed to be 2Nev = 1, which
means that there is on average one new mutation
entering the population every generation. (This is
probably a very high mutation rate, but it is used for
comparison with Kimura (1985a, b). As will be shown
below, lower mutation rates lead to much longer times
to fixation.) With weak selection, the average time to
a peak shift is less than l(We. As selection increases in
strength, the average time to a shift increases
exponentially, although the relative rate depends on
both the fitness model and the recombination rate. As
might be predicted, the deleterious intermediates
model leads to much longer shift times than the
metabolic pathway models, but surprisingly the effect
of recombination is much different in the two models.
In the deleterious intermediates model, recombination
rate has little effect until selection is quite strong,
whereas reduced recombination greatly reduces the
peak shift time for the metabolic pathway models.

https://doi.org/10.1017/S0016672300033759 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300033759


Initiating the shifting-balance process 275

This is caused by a difference in the fitness of double
heterozygotes in the two models. In the deleterious
intermediates model, even if an AB gamete is created
via mutation and that gamete can not be broken down
by recombination, selection will still act against the
gamete because it will mostly be combining with A'B'
gametes, yielding a fitness of 1 — s. Under the metabolic
pathway model, however, an unrecombining AB
gamete will also be primarily paired with A'B' gametes,
but since in this model double heterozygotes have
fitness greater than or equal to 1, they will eventually
be selected for. In the latter model, then, movement to
the new peak is deterministic and does not require
restricted population sizes when there is tight linkage.
The distinction between these two types of models
only appears in the diploid case, and has not been
noted before in previous treatments, which have been
based exclusively on haploid models (Takahata, 1983;
Kimura, 1985 a, b; Michalakis & Slatkin, 1996).

(i) Effects of mutation pressure

The fact that fixation under the metabolic pathway
model with restricted recombination is essentially
deterministic raises the concern that we might not
really be studying true peak-shift models in these
cases. The problem arises when the mutation rate is
large relative to the strength of selection, literally
pushing the population across the adaptive valley via
mutation pressure. Much the same thing can occur
when migration rates overcome the effects of selection
during phase three of the shifting-balance process
(Crow et al. 1990; Barton, 1992; Kondrashov, 1992;
Phillips, 1993). Indeed, the effects of dominance
shown in Fig. 2 b are the result of the same phenomena
that allow more dominant gametes to invade during
phase three of the shifting-balance process (Barton,
1992; Phillips, 1993).

I investigated the problem of deterministic trans-
itions by calculating the critical mutation rate such
that iterating eqn (A 2) leads to a direct traversal of
the adaptive valley in the absence of drift. As was
previously found in the case of migration (Crow et al.
1990; Barton, 1992), this rate is roughly one-tenth the
strength of selection (results not shown). Under the
mutation pressure present in Fig. 1, this would imply
a critical selection threshold of roughly Nes = 5-
exactly the point at which the curve moves pre-
cipitously towards longer fixation times.

I consider the lower fixation times achieved when
the mutation rate is high relative to the strength of
selection to be an artifact of the one-way mutation
model, which does not adequately reflect the peak
shift problem at hand. In this light, Kimura's
(1985a, b) conclusion that compensatory neutral
mutations can evolve via drift in a reasonable amount
of time when recombination is restricted must be re-
evaluated, since Kimura based his conclusions on
results that are essentially identical to those presented
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Fig. 2. Average time to double fixation for the deleterious
intermediates model. The mutation rate is 10~4, r = 05,
and t = 0. (a) Large population results using the diffusion
approximation. Note the large upswing in fixation times
as selection exceeds the critical value, s = 0001, for this
case, (b) Small population results using the exact Markov
model. Selection has little effect unless it is very strong.
Time to fixation is mostly constrained by waiting for
mutations to arise.

in Fig. 1 (but for a haploid model). Compensatory
mutations can evolve quickly under these conditions,
but drift has nothing to do with it. The root of this
problem is that selection and generation time scale
well with population size, but mutation rates are more
naturally considered to be fixed at a particular value.
Therefore, in the following results, I will fix the
mutation rate, and scale the results in terms of the
absolute number of individuals and the actual number
of generations.

(ii) Fixation time and population size

Moderately large populations on average take a very
long time to make the peak shift (Fig. 2). As one
moves even slightly away from the critical selection
rate (s = 0001 in this case), the average time to double
fixation becomes extremely long (Fig. 2a). There is a
monotonic increase in the time to fixation with
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Fig. 3. Distributions of the time to double fixation for the
deleterious intermediates model. The mutation rate is
10'4, r = 05 and t = 0. Note that the right tail of the
distribution becomes very skewed as selection increases,
but the left tail reveals that some populations will still
reach fixation in a much shorter time than an average
population.
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population size, but even in very small populations
the fixation times are very long relative to the expected
demographic persistence of a population that small
(Lande, 1988; Fig. 2 b).

Very small populations tend to be mutation bound,
such that only very strong selection has much of an
effect on the time to fixation (Fig. 2 b). Very small
populations often undergo sequential fixation of the
advantageous alleles (Markov results not shown),
while larger populations (Ne > 20) primarily undergo
joint drift through the adaptive valley (simulation and
diffusion results not shown). At the appropriate critical
strength of selection, the time to fixation increases
approximately one order of magnitude for each order
of magnitude drop in the mutation rate (results not
shown). For a fixed amount of selection, we would
expect the time to fixation to be proportional to v'2

(Gillespie, 1984). Thus, with a mutation rate of 10~5,
we would expect the fixation times to be more of the
order of 2 x 10° to 2 x 106 generations rather than the
2 x 104 generations shown in Fig. 2. Clearly, peak

(c)

N =\00

e
o.

t=0l

N =100
.5 = 001

500 1000 1500 2000 0 500 1000 1500 2000

Generations

Fig. 4. Cumulative probabilities of fixation for the deleterious intermediates model. Mutation rate is 10~6 and t = 0
except where noted. Curves are the integral from time zero to the time on the x-axis of distributions such as that shown
in Fig. 3, and show the probability of achieving a peak shift on or before a given time. Curves were calculated using the
diffusion approximation, except where noted, (a) Effects of variation in mutation rate for a completely neutral model.
Inset shows a region of the curve reconstructed from 107 simulation runs. Decreased mutation rates greatly lessen the
chance that a peak shift will occur in a reasonable amount of time, {b) Effects of increasing population size in a neutral
model. Rapid drift is most important for quick fixation, so the probability of fixation decreases with increasing
population size. Cases for one and ten individuals were calculated using the Markov model, (c) Effects of increasing
selection against intermediates. Again, since drift dominates the early part of the process, selection has little effect unless
it is very strong, {d) Effects of increased selection favouring the new genotype. Increasing the height of one peak relative
to the other increases the probability of undergoing a shift, but again, only when selection is very strong. In all, the
probability of achieving a peak shift in a short time is very low.
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shifts are not occurring very often, and the expec-
tations is that they will be very rare and unimportant
relative to demographic considerations (Lande, 1988)
for most populations. It is conceivable, however, that
they could still be important for a few rare populations.

(iii) Fixation time distributions

Distributions of the time to double fixation tend to
have extremely long tails (Fig. 3). Thus, even as the
average time to fixation grows very long when selection
intensity increases, there is a certain proportion of the
tail of the distribution that makes the transition
relatively more quickly. Since Fig. 2 shows that quick
transition times are only likely to be found in small
populations, I will concentrate on the extreme left tail
of the distribution. Fig. 4 shows the cumulative
probability of making the peak shift within a few
thousand generations. Peak shifts at this end of the
distribution are definitely dominated by the waiting
time to mutation, as selection has little effect unless it
is very strong (Fig. 4c). Increasing the selective
advantage of the new peak does increase the peak shift
probability, but still does not make it large on an
absolute scale (Fig. Ad). Overall, the cumulative
probabilities are quite small, not exceeding 10"5 for
reasonable parameter values.

5. Peak shifts after periods of relaxed selection

Since waiting for the appropriate mutations makes
peak shifts starting from a fixed equilibrium take so
long, it is of interest to see how likely a peak shift is
and how long one might take if there is some initial
variation in the population. This might be the case

Fig. 5. Probability of double fixation with initial variation
for the deleterious intermediates model. The x and y axes
give the starting frequency of the alleles at the new peak
under the assumption of free recombination and no
linkage disequilibrium. The z-axis gives the probability of
fixation based on starting at these initial allele
frequencies. Probabilities are low at one side of the
adaptive valley, but increase sharply when starting near
the new peak. The diagonal describes the line depicting
the probability of fixation as a function of the line pA =
pB. Here, Nes = 2 and / = 0.

100 -,

0-75 -

0-25 0-50 0-75
Initial frequency (p = q)

100

Fig. 6. Probability of double fixation with initial variation
along the line pA = pB (see Fig. 5). (a) Deleterious
intermediates model. Continuous lines show effects of
increasing amounts of selection in increments of 2Ne 5. (b)
Additive metabolic pathway model. Continuous lines
show selection increments of 57Ve.?. In both cases,
solutions are based on the diffusion approximation with
/ = 0.

after periods of relaxed selection or when variation is
maintained via mutation-selection balance in a large
population, for example. Here the primary question is
whether the population will drift across the valley and
reach the new peak, or become fixed at the original

peak. There are again I e different possible

states in which the population could start. One possible
representation of the probability of ultimate fixation
at the new peak is to plot the probability surface as a
function of initial gene frequency, as is done in Fig. 5.
For the models used here, these surfaces tend to be
completely symmetrical, and so can be fairly well
described by the height of the surface at the diagonal
described by the line pA = pB (Fig. 5).

As might be expected, the probability of a peak
shift is low when the population starts on the far side
of the valley, but very high when starting near the new
peak (Fig. 6). Weak selection yields a moderate chance
of ultimate fixation, even when initial gene frequency
is low, but as selection increases, the probability of
fixation is greatly diminished when the population
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Fig. 7. The extreme left-hand tail of Fig. 6. (a)
Deleterious intermediates model. Lines are in steps of 2Ne
s. (b) Additive metabolic pathway model. Lines are in
steps of 5Nes. Note the log scale.

starts on the wrong side of the valley. This decrease is
particularly pronounced when the initial frequency is
low, say less than 01 (Fig. 7). Increasing the selective
difference between the peaks (t) shifts the minimum
point of the valley towards the original peak, thereby
increasing the probability of a peak shift for lower
initial gene frequencies, but this does not greatly affect
the probabilities at the far left of the figures (results
not shown). Thus, the probability of a population
undergoing a peak shift remains extremely small
unless the new alleles at both loci have managed to
accumulate to moderately high frequencies before
selection is initiated. It should also be pointed out that
the probabilities shown in Figs. 6 and 7 are the
maximum values obtained when pA = pB. In general,
the overall probability of a shift will be much lower if
one or the other of the alleles is not present at an
equivalently high frequency.

If the populations do ultimately manage to make
the shift, they do so quite quickly, regardless of the
initial frequency or strength of selection (Fig. 8). In
fact, strong selection is expected to yield very fast
transition times. This is because, although the prob-
ability of actually making a shift is quite low with
strong selection, those populations that do make the
shift must move across the valley quickly, and once

(b)

0-25 0-50 0-75

Initial frequency (p = <?)

100

Fig. 8. Mean time to double fixation scaled in terms of Ne
generations, (a) Deleterious intermediates model, (b)
Additive metabolic pathway model. Notation as in Fig. 6.
Peak shifts, when they occur, take place fairly rapidly.

there are rapidly fixed by selection. A similar effect of
strong selection has been found in phenotypic models
of peak shifts (Newman et al. 1985; Lande, 1986;
Rouhani & Barton, 1987).

Tight linkage might be expected to aid in the shift
process, but whether or not it does depends on the
amount of linkage on the amount of linkage dis-
equilibrium initially found in the population. If there
is no linkage disequilibrium in the initial population,
then strong linkage results in essentially the same
probabilities as no linkage (Fig. 9). A population that
starts out with a large negative linkage disequilibrium
has few advantageous gametes present, and therefore
is very unlikely to undergo a peak shift. A large
positive linkage disequilibrium can increase the chance
of ultimate fixation if there is reduced recombination.
How much the probability is increased depends on the
fitness model. In the metabolic model, tight linkage
means that AB gametes are not broken up by
recombination. Since these gametes are advantageous
against a A'B' background, they will be directly
selected for when there is positive linkage disequili-
brium. The metabolic model is very similar to a
haploid model in this respect. Under the deleterious
intermediates model, however, tight linkage does not
really benefit the AB gamete since it is deleterious
against all but another AB background (Fig. 9). The
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Fig. 9. Effects of limited recombination and initial linkage
disequilibrium on the probability of double fixation. Each
line represents an exact solution to the Markov model
(eqn 8) with Ne = 9, r = 0, Nes = 2 and t = 0. Line for
D = 0 means that the population was started with no
linkage disequilibrium. Max +D means that populations
were started with the maximum amount of positive
linkage disequilibrium possible for that set of allele
frequencies. Max — D means that populations were
started with the maximum amount of negative linkage
disequilibrium (or the minimum achievable linkage
disequilibrium) possible for that set of allele frequencies.
The effect of initial positive disequilibrium is much more
pronounced in the additive metabolic pathway model (b)
than in the deleterious intermediates model (a). Effects in
populations with free recombination are negligible.

effect of the fitness model found here parallels that
found using the directional mutation approach (Fig.
1). Michalakis & Slatkin (1996) have looked at the
relationship between recombination rate and selection
in much more detail. They have found that if the AB
gamete is present in the population at all, then the
probability of fixation is increased by reducing the
recombination rate as much as possible. In the
presence of negative (repulsion) linkage disequi-
librium, however, they found that there is actually an
intermediate amount of recombination that optimizes
the probability of fixation. Some recombination is
needed to create the beneficial gametic type, but too
much recombination leads to the eventual break-up of
that genotype.

6. Discussion

The observation that base-pair changes within genes
and interacting systems are often correlated at the
phylogenetic level (e.g. Fitch & Markowitz, 1970;
Tsukihara et al. 1982; Brimacombe, 1984; Stephan &
Kirby, 1993) has led to the speculation that this
correlated pattern might be driven by 'compensatory'
evolution (Kimura, 1985 a,*, 1990). If changes in
each separate component are individually deleterious,
then selection can not by itself lead to the joint
evolution of the components. This is essentially the
same type of situation that led Wright to propose his
shifting-balance theory of evolution (Wright, 1931,
1932). The results presented here show that the very
first step in this process, the generation of new
mutants necessary for the coordinate evolution of the
epistatic alleles, can take so long that the feasibility of
the process as a whole is questionable. It is really the
interaction between waiting for the new mutants and
the constant elimination of these mutants via natural
selection that leads to the extremely long times to
fixation.

It could be argued that studying phase zero in a
single population is unfair to the shifting balance
theory since Wright envisioned thousands, perhaps
tens of thousands, of subpopulations being subject to
drift. However, any mutational variation arising at a
single locus in another population would be extremely
unlikely to have much of an impact on another
population, since almost all migrants entering a
population will be of the fixed gametic type. Migration
would therefore tend to act analogously to an
extremely strong back-mutation rate. Thus the times
to fixation presented here, although extremely long,
are actually very favourable to the shifting-balance
process since any back mutation or migration would
extend the process even further. Even so, the cumu-
lative probability of achieving a peak shift in a
reasonable amount of time (say before the population
goes extinct or variation in migration destroys
population structure) is extremely small (Fig. 4).

The low probability of achieving a peak shift must
be weighed against several other factors before one
can determine whether it is reasonable to expect peak
shifts under this model. First, it matters whether one
is interested in a particular epistatic gene combination,
or whether a shift at any gene combination will do.
For example, in speciation, it is not any one epistatic
combination that matters, but the totality of all
combinations that lead to reproductive isolation (Orr,
1995). We really do not know how general epistatic
interactions of the type modelled here might be,
although there are reasons to believe that they could
be common (Whitlock et al. 1995). Secondly, the
number of populations in temporary isolation also
matters. If the overall population is being subdivided
into thousands of demes, then each deme has a
transient chance of undergoing a peak shift. Finally, if
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there are repeated cycles of population subdivision
and isolation, then the frequency of these cycles will
determine the likelihood that one of the populations
will undergo a peak shift within some finite period.
The number of populations expected to undergo a
peak shift within a specified time is then the product
of these three factors times the cumulative probability
that one of the populations will make it. This implies
that some combination of gene number, population
number and cycle rate must exceed 10000 (or perhaps
many orders of magnitude greater than that). Even
then, the rest of the shifting balance process would
have to proceed before the peak shift was fixed within
the population as a whole.

Phase zero would therefore seem to present a major
hurdle, if not the major hurdle, to initiating the
shifting-balance process in a population at a fixed
equilibrium. Allowing the populations to begin with
at least some initial variation can greatly speed up the
peak shift process, although peak shifts will still
usually be unlikely when the initial frequency is low.
The increase in initial frequency is probably going to
have to be caused by a relaxation of selection before
subdivision. In a very large population, the frequency
of the favourable alleles will be determined primarily
by a mutation-selection balance unless linkage is very
tight (Fig. 2). The expected allele frequencies before
subdivision would therefore be approximately v/hs
(or y/v/s when h = 0; Crow & Kimura, 1970), where
h is the dominance coefficient (h = 1 for the deleterious
intermediate model). This frequency will generally be
low unless selection is weak, so on average a
subpopulation derived from such a population would
have a small probability of undergoing a peak shift
(Fig. 7). This is only the expectation, and some
populations will drift to higher frequencies, but it is
still unlikely that a peak shift will occur unless the
frequency of the alleles in the large population is
reasonably high. This would only tend to happen if
the pattern of selection were relaxed, or perhaps even
reversed, prior to population subdivision.

Such a model is consistent with the verbal arguments
for ' founder-flush' speciation via the breakup of' co-
adapted gene complexes' (this is actually more akin to
a 'flush-founder' model; see Carson & Templeton,
1984; Provine, 1989). The 'flush' phase in this
situation would need to be much longer than those
usually proposed, however, as selection would need to
be relaxed long enough for new mutants to rise to
intermediate frequencies via drift. This could be a very
long time indeed. Charlesworth & Smith (1982) have
looked at this aspect of peak shifts in much more
detail using computer simulations. They similarly
concluded that such shifts must be proceeded by many
generations of relaxed selection, although peak shifts
of this type would be expected to be very rare.

Ohta (1988) has also shown that compensatory
mutations can arise in the case of gene duplication.
Relaxed selection on the duplicate locus allows the

evolution of compensatory interactions with other
such loci. Ohta's results are thus quite consistent with
the view presented here. Kimura (1985cr,b, 1990) also
felt that compensatory neutral mutations could play
an important role in the coordinated, but ultimately
neutral, evolution of many loci. The results of this
study suggest that this is unlikely to be true. Kimura
based his conclusions on models that are virtually
identical to those used here and in Takahata (1983)
and Michalakis & Slatkin (1996). Compensatory
neutral mutations evolve in realistic amounts of time
only when there is very tight linkage and selection is
not too strong. Under these conditions, however,
mutation pressure overwhelms selection and the drift
process, and drives the new mutations to fixation (Fig.
2). Here the unrealistic assumptions of the model
(unidirectional mutation) obscure the biological in-
terpretation of the results. Compensatory neutral
mutations may still evolve, but more careful models
explicitly considering the issue of mutation pressure
will be needed before the likelihood of this can be fully
evaluated. The results presented here suggest instead
that any 'compensatory' patterns that appear to exist
at the nucleotide level are more likely to be found
when changes in the individual components are not
actually deleterious. The fitness consequences of such
changes will need to be assessed experimentally.

Gillespie (1984) investigated a very similar model
for addressing the more general question of how the
spectrum of mutational variation might limit the
potential response to selection. He argued that alleles
that were two mutational steps from the current allele
would have a difficult time becoming fixed if there
were no intermediate advantageous allele one muta-
tional step away. If we view the nucleotides within an
allele as separate loci, then Gillespie's (1984) model is
nearly identical to the models with complete linkage
presented above. Using the present notation and
assuming a haploid model in an infinite population,
Gillespie showed that the rate of fixation of the double
mutant would be the product of the mutation-
selection balance frequency of the one-mutation-away
allele (v/hs), the mutation rate from this point to the
two-mutations-away allele (v), and the probability of
fixation of the new mutant (2t). The average time to
fixation is the inverse of this rate, or hs/2tv2. Because
of the dependence on v2, Gillespie argued that
evolution to the double mutant should be faster in
large populations than small populations. This contra-
dicts the results obtained here, in which small
populations reach fixation more quickly than large
populations (Fig. 2). This is because, with complete
linkage, double mutants will not be broken up by
recombination as they are in Fig. 2, as well as the fact
that the probability of fixation for a new advantageous
allele is higher in finite populations than it is in infinite
populations (2f/[l-exp{-4M}]; Fisher, 1930;
Wright, 1931; Crow & Kimura, 1970, p. 426). When
moving beyond complete linkage, the time to fixation
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is a complicated function of the strength of selection
and population size (Fig. 2). Nevertheless, the de-
pendence on IT2 still remains, and Gillespie's (1984)
argument that populations will become stuck on the
'mutational landscape' because of the long transition
times between peaks is supported by the current
results. The evolution of compensatory changes at
more than two loci becomes even more daunting
because the average time to fixation should be
proportional to v'n, where n is the number of loci (N.
Barton, personal communication).

It is possible that the addition of other populations
linked by low levels of migration to the existing model
might help overcome the limitations on the shifting-
balance process imposed by phase zero. For example,
Barton & Rouhani (1993) have shown that peak shifts
can occur at a reasonable rate in an infinite island
model, regardless of the strength of selection, as long
as the migration rate among populations remains
around a critical value of Nm « 1. Linking popula-
tions via migration overcomes the showdown in peak
shifts caused by increasing the strength of selection.
Nevertheless, Barton & Rouhani (1993) assume the
presence of some variation in the initial population,
and the time between peak shifts effectively goes to
infinity when there is no initial variation (cf. Barton &
Rouhani, 1993, figure 7). As mentioned above,
incoming migrants would be expected to overwhelm
new mutants and drive the population back towards
the initial peak. However, Moore & Tonsor (1994)
have simulated the entire shifting-balance process,
including requiring new mutations from an initially
fixed state, and found that a large proportion of runs
resulted in fixation of the new genotype within 12000
generations provided that the migration rate again fell
near a critical value (it should be noted that in their
simulation runs the new genotype had a very large
selective advantage relative to the depth of the adaptive
valley). The full integration of mutation into an
approach such as that presented by Barton & Rouhani
(1993) awaits further work.

In conclusion, as demonstrated here and by
Michalakis & Slatkin (1996), the shifting-balance
process is unlikely to proceed under equilibrium
conditions because mutations are unlikely to arise in
small populations and selection is too effective in large
populations. The time spent waiting for new mu-
tations, phase zero, dominates the time scale for the
completion of the shifting-balance process as a whole.
As has been shown by Barton & Rouhani (1993) and
by the results above, however, if populations start
with moderate amounts of variation, the shifting-
balance process can go forward. Thus, the non-
equilibrium condition that must exist for the shifting-
balance process to work is some relaxation of selection
so that variation can enter the population. Without
such fluctuations in the strength of selection, comp-
ensatory changes that involve individually deleterious
effects are unlikely to evolve.

Appendix. A Markov model

The diffusion approach described by eqns (2) and (3)
turns out to be a very general and powerful way of
solving these two-locus problems. The diffusion
approximation is based on the assumption that
population size is not too small and selection is not
too strong, such that gene frequency change is more
or less continuous (Crow & Kimura, 1970). Actually,
as has been frequently noted previously, the diffusion
approximation performs quite well for Ne as low as
10, even in the two-locus case. Nevertheless, an exact
solution to the mutation-selection—drift equations
can be obtained using a Markov transition matrix
formulation of gamete frequency change (e.g. Karlin
& McGregor, 1968). This is only possibly for fairly
small population sizes, because with four gametes

there are I e different states a diploid population

of size Ne can be in. For example, when 7Ve = 10, there
are 1771 states, and when 7Ve = 50 there are 176851
states. The memory required to keep track of all these
states (or, more precisely, the square of this number)
rapidly exceeds the capacity of modern computers. A
Markov approach also allows a continuous range of
recombination rates to be studied exactly.

Keeping track of the four gametic types is again a
three-dimensional problem, while keeping track of the
transitions between states is essentially a six-dimen-
sional problem. Letting t]x be the number of AB
gametes, ij2 be the number of AB' gametes, r/3 be the
number of A'B gametes, and ?/4 = (2Ne — t\x — TJ2 — y3)
be the number of A'B' gametes in the previous
generation, then the transition probability of moving
to KV K2, K3 and /c4 gametes in the next generation is
given by

(Al)

for K1 = 0,...,2Ne;
(2Ne — K1 — K2), and

= x4'[l-v(2 + u)

(A 2)

where xt' is defined by eqn (1) and is meant to imply
the gamete frequency after selection. Equation (A 1) is
somewhat awkward to work with, so the three-
dimensional tensor that keeps track of the probability
of being in a particularly gametic state was mapped to
a one-dimensional vector, <j>, by stacking all the
elements of the tensor on top of one another. This
allows the transition probabilities defined in eqn (A 1)
to be mapped onto a standard Markov transition
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matrix, M. The between-generation Fisher-Wright
equation is thus

<f>(t + 1) = M0(O- (A3)

Letting cf>A,B, be the vector defined by the probability
of being at fixation for the A'B' gamete to be 10, and
<j>AB be the vector defined by the probability of being
at fixation for the AB gamete to be 1-0, then the
calculations were started at 0(0) = tf>A.B. and continued
until ||0(O — 4>AB\\ < 10"4. When investigating the
static case without mutation, the probability of
fixation could be assessed directly by solving the
following equation for 0:

A

(j)AB = M 0 . (A 4)

The elements of 0 then contain the probability of
reaching fixation for gamete AB from the particular
state gametic state associated with that element
(Rutledge, 1970).
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