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P-ADIC METHODS IN THE STUDY OF

TAYLOR COEFFICIENTS OF RATIONAL FUNCTIONS*

A. J. VAN DER POORTEN

I sketch the proof of the so-called Hadamard Quotient Theorem:

If the Hadamard quotient of two rational functions is a Taylor

series with integer coefficients (more generally: with

coefficients in some finitely generated subring of a field)

then it is a rational function.

1. Introduction

Let K be a field of characteristic zero, and r}s polynomials

defined over M with s(0) ̂  0. A rational function is a quotient

r(X)/s(X) and we have a Taylor expansion

r(X) _ I a.X11 .
s(X) h>_0

We lose no generality in setting

s(X) = 1-8^X - ... - ŝ x" = T T (1 ~ aiX)
nU)

where the a. are distinct elements of ! • It is then easy to see that
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110 A. J . van der Poorten

we have

ah+n=slah+n-l + ••• +snah

so (a-,) is a so-called recurrence sequence of order n, and, by

expanding in partial fractions.

for polynomials A. of degree respectively n.-l. These assertions hold

for integers h j> maxfOjdeg r - n+1). The various descriptions of (a-,)

are equivalent.

2. p-adification

To study the sequence (a-,) it is convenient to have h a

continuous parameter. Cassels [2] shows there are infinitely many

rational primes p so that the field M. may be embedded in the field

Q-p of p-adic rationals whilst for each a = a.

cP~ = l(mo& p) j

ord (cP'1 - 1) >_

equivalently:

Then

is well-defined p-adically, and a " is given by the power series

exp(£loga )

which converges for t with ord t > -1 + 1/p-l. Thus a recurrence

sequence (ay) p-adifies to yield p-1 p-adic power series:

a (t) = a(t(p-l)+r) = I A.(t(p-l)+r)a.Vexp(t log a.P~ ) J 0<r<p-l.p3r ^_j T, i. -u —
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It is now easy to prove the wonderful Skolem-Mahler-Lech-Mahler Theorem:

If {h : a, = 0} is infinite then it is a union of finitely many

arithmetic progressions (and finitely many isolated points). Indeed if

the set is infinite then for some r the p-adic analytic function a

vanishes infinitely often on the compact set Z5 . Hence a vanishes
P P>v

identically, so a(h(p-l)+r) = 0 for h in 7L . We proceed similarly

for each remaining a . It is interesting to notice that in the

situation just described it follows from a theorem of Ritt that

sin -n(z-r)
p-1

T A .(z)exp(z log a.)
If U

in the ring of exponential polynomials. Thus the Lech-Mahler theorem

implies that an exponential polynomial with infinitely many integer zeros

is sinful.

Some technical remarks. It can be shown by means of specialisation

(see [5]) that here and in the sequel there is no loss of generality nor

any introduced degeneracy in supposing K to be an algebraic number field

of degree d, say, over Q. In that case the embedding into Q is

successful for primes p of a set P satisfying

1

T T I?'1 > Cx1/d with C > 0.
p<, x

A major benefit of p-adification is obtained from the following fact:

If g(t) = Ixit converges for ord t > -s, say, and Ag(i) =:g(i+l)-g(i)

then

limk'1 ord bkg(O) > s + 1/p-l .
P ~~

Indeed we are given limh ord x, > e. But
p h -

= L . x,bkth and ord AV* I « k/p-1
n p *n
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We use this basic result as follows: it is not terribly difficult to see

that (a,) is a recurrence sequence if and only if its Hankel-Kronecker

determinants

K,a ••= a.
0<iJ<h

vanish for all sufficiently large h. But from elementary row and column

operations one sees that

A a-Kd* =

So if a, , 7 . is given by p-adic power series converging beyond the

p-adic unit disc we can show that K^a is divisible by a high power of p

(that is, is of high p-adic order) .

3. Hadamard division

If \ajr 3 £
&/z a r e r a t i o n a l t h e n their 'child's product1

\ (a-ibyJ'A is again rational; for (a^),(b,) are given by generalised

power sums whence so is (°i)> °-L. = axPv,m T^e Pr°duct above is frequently

spoken of as the hadamard product of the power series. We wish to consider

the hadamard quotient of rational functions. Polya [4] showed that if

\ha-Ji% is rational, and the a, all are integers (more generally,

elements of a finitely generated subring R of JK) then \ a-Ji is

rational. Ultimately we have the theorem of Polya-Cantor [3] ; if f is

a polynomial and \f(h)a-jX is rational with the a-, all in R, then

\o-if is rational. The integrality condition is necessary: \ (h+1) A

is not rational, but it is the hadamard quotient of £ X = X(l-X) by

I (h+DX*1*1 = X(l-X)~2.

We sketch a proof of the:

HADAMARD QUOTIENT THEOREM. Suppose 1 % ) ^ , Ib^ are Taylor

expansions of functions rational over M and that there is a sequence
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(a,1) of elements of R so that a^bh = c^ h >_ 0. Then there is a

rational function \ ayf with a-J}., = c,a h >_ 0.

Proof. we p-adify and consider quotients

a(t(p-l)+r) = c(t(p-l)+r)/b(t(p-l)+r)

of p-adic exponential polynomials. If b is of order n then b has at

most n zeros in the disc with ord t > -1/n. Hence for each
P

r : 0 <_r < p-1 there is a polynomial f of degree at most n so that

/ (t(p-l)+r)a(t(p-l)+r) converges for t with ord t _> -1/n. The same

holds for f (t(p-l)+r)a(t(p-l)+r) if / is the lowest common multiple

of the / ; we note that / has degree at most n(p-l).

Consider

We have shown that

UmH-2oraKH(fa) > i1- + ̂ j)/p-1
p' H 'p

so, say with H sufficiently large:

H2

But to obtain this result we use only that

ord hkf (o(p-l)+r)aCo(p-l)+r) >_ k(- + -lj.

with k(p-l)+r <_ 2H. Thus if we were to have truncated the coefficients cf

the / modulo

M(piH) = p2H(n + p~-

we would obtain the desired inequality for ord Ku(f a).
p ti p
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However once coefficients are so truncated the f become elements of

7Z[X] with coefficients not exceeding M(p;H). By the Chinese Remainder

Theorem we may construct a polynomial f in 2L[X] with coefficients not

exceeding

M :=M(H) =~[~[M(p;H)
PCP

so that f plays the role of f t each p £ P. The degree of / is at

most

max n(p-l) .
p£P

To avoid the somewhat clumsy and naive notion of 'truncation' we can

equivalently describe / as being so constructed as to satisfy

n ii - 1\\f - f || <_ M(p;H) 3

p £ Ps thereby transforming our appeal to the Chinese Remainder Theorem

to an appeal to the approximation theorem; here || || is the valuation

of the maximum of the coefficients.

As constructed, the polynomial f has coefficients that are far too

large and degree that is uneconomically small. Fortunately the following

is plain: if fQ be any non-zero polynomial in 2L[X] then the remarks

above, to wit that

ord Kh(fa) > h
2/n(p-l) , HQ < h <_H, p £P

remain true with / replaced by F = f'jf. Accordingly we now appeal to

the box-principle to choose fQ so as to obtain F with reasonably small

coefficients and degree not too large. To see that we may replace / by

F we need only recall that each / might have been replaced by a

multiple of itself.

Select /_ of degree N = c-H2(log H)~B . Here and in the immediate

sequel c.,0-,... denote positive constants and H is supposed large with

respect to the prevailing parameters n and p £ P. Modulo M there are
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some M possibilities to choose /.,. We want F = f~f to have

coefficients no larger in absolute value than n° , modulo M of course.

Accordingly our 'boxes' each contain polynomials F with coefficients

differing modulo M by no more than n° . With a appropriately large

(not depending on H) there are fewer than M such boxes. Hence our

construction succeeds and we have

ord Kh(Fa) > H
2/n(p-l) HQ < h <, #, p € p

1 _i
with F of degree cH2(log H) 2 and with coefficients not exceeding

M° in absolute value. A priori ff_ need only be large enough to

validate the p-adic inequalities. It certainly suffices to set

HQ = H
2 log H.

We now need a suitable archimedean upper bound for the algebraic

numbers K, (Fa).

Technical remark. The correct measure of the size of a sequence of

algebraic numbers is provided by Bombieri [7] p. 37 in his discussion

of G-functions. Since the a, belong to a finitely generated subring

R of K the sequence ^-L) ^a s finite size p, say. For us it is

convenient to define

oh(a) = I J

with the sum the appropriately normalised valuations V of M. Then

a (a) = l i n u j T log a, (a) = log p .

It then follows that

log a, (K(a)) = log p

Then with the F chosen as above we obtain

(K(Fa)) < h log p + cjill2ClogH)z

But for H. < h <_ H and p
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ord K,(Fa) > h2/n(p-l) .
p n r

Hence i f HQ = B2 log H then for HQ < h < H we have

h~2 log ah(K(Fa)) < log p + e ^ l o g f f j " 5

But by the product formula K,(Fa) vanishes if

\(\ogp) ord Kh(Fa) > d log a^fX(Fa)) .
V

Indeed it is this formula that justifies the measure a, we have

introduced above.

We can now return to the main argument. From the remarks above we

see that \(Fa) = 0 for Hs log H < h < H if

We note that though e, depends on P it remains bounded if P grows,
o

hence since the sum over p € P is unbounded as P grows we can certainly
achieve the condition above for a suitably large choice of the set P.

i
The vanishing of K,(Fa) for R2 log H < h < H implies readily that

there is a recurrence sequence (d.y) °f order at most H2 log H so that

dh = F(h)ah = F(h)ch/bh

for H2logH < h < H. But the recurrence sequences (bjd,) and (F(h)c,)

then coincide over a range considerably greater than is their order.

Hence they coincide for all h . It follows that F divides bd in the

ring of exponential polynomials. By the Polya-Cantor lemma we lose no

generality in assuming that b has no polynomial factor; for any such

factor must also be a factor of o and so we may suppose it to have been

removed. Hence F divides d in the ring of exponential polynomials,

for the quotient satisfies the conditions of the Polya-Cantor lemma.

Hence, as we wished to show, (<hJ is indeed a recurrence sequence.

To complete the proof we should deal with the case where some i>,

vanish and with the general case where (aij is n o t defined over an
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algebraic number field. These technicalities seem inappropriate to this

summary.

4. Concluding Remarks

The p-adic methods employed above were either introduced or flowered

in the work of Kurt Mahler. It seems especially appropriate to describe

a recent application of his ideas on this the occasion of his 80th

birthday.
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