BULL. AUSTRAL. MATH. SOC. VOL. 29 (1984), 109-117.

P-ADIC METHODS IN THE STUDY OF TAYLOR COEFFICIENTS OF RATIONAL FUNCTIONS*

A. J. VAN DER POORTEN

I sketch the proof of the so-called Hadamard Quotient Theorem: If the Hadamard quotient of two rational functions is a Taylor series with integer coefficients (more generally: with coefficients in some finitely generated subring of a field) then it is a rational function.

1. Introduction

Let K be a field of characteristic zero, and r,s polynomials defined over K with $s(0) \neq 0$. A rational function is a quotient r(X)/s(X) and we have a Taylor expansion

$$\frac{r(X)}{s(X)} = \sum_{h>0} a_h X^h .$$

We lose no generality in setting

$$s(X) = 1 - s_1 X - \dots - s_n X^n = \prod_{i=1}^m (1 - \alpha_i X)^{n(i)}$$

where the α_i are distinct elements of K. It is then easy to see that

Received 12 September 1983.

^{*} This is a lecture delivered at the Special Meeting of the Australian Mathematical Society "Celebration of the 80th Birthday of Kurt Mahler", Canberra, July 26, 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00

we have

$$a_{h+n} = s_1 a_{h+n-1} + \dots + s_n a_h$$
,

so (a_h) is a so-called recurrence sequence of order n, and, by expanding in partial fractions,

$$a_h = \sum_{i=1}^m A_i(h) \alpha_i^h$$

for polynomials A_i of degree respectively n_i -1. These assertions hold for integers $h \ge \max(0, \deg r - n+1)$. The various descriptions of (a_h) are equivalent.

2. p-adification

To study the sequence (a_h) it is convenient to have h a continuous parameter. Cassels [2] shows there are infinitely many rational primes p so that the field $\mathbb K$ may be embedded in the field Q_p of p-adic rationals whilst for each $\alpha=\alpha_1$.

$$\alpha^{p-1} \equiv 1 \pmod{p} .$$

equivalently:

$$\operatorname{ord}_p(\alpha^{p-1}-1)\geq 1.$$

Then

$$\log \alpha^{p-1} = \log(1 - (1 - \alpha^{p-1}))$$

is well-defined p-adically, and $lpha^{t(p-1)}$ is given by the power series

$$\exp(t \log \alpha^{p-1})$$

which converges for t with ord p t > -1 + 1/p - 1. Thus a recurrence sequence (a_h) p-adifies to yield p-1 p-adic power series:

$$a_{p,r}(t) = a(t(p-1)+r) = \sum_{i=1}^{m} A_i(t(p-1)+r) \alpha_i^r exp(t \log \alpha_i^{p-1}), 0 \le r < p-1.$$

It is now easy to prove the wonderful Skolem-Mahler-Lech-Mahler Theorem: If $\{h: a_h = 0\}$ is infinite then it is a union of finitely many arithmetic progressions (and finitely many isolated points). Indeed if the set is infinite then for some r the p-adic analytic function $a_{p,r}$ vanishes infinitely often on the compact set \mathbb{Z}_p . Hence $a_{p,r}$ vanishes identically, so a(h(p-1)+r) = 0 for h in \mathbb{Z} . We proceed similarly for each remaining $a_{p,r}$. It is interesting to notice that in the situation just described it follows from a theorem of Ritt that

$$\sin \frac{\pi(z-r)}{p-1} \mid \sum A_i(z) \exp(z \log \alpha_i)$$

in the ring of exponential polynomials. Thus the Lech-Mahler theorem implies that an exponential polynomial with infinitely many integer zeros is sinful.

Some technical remarks. It can be shown by means of specialisation (see [5]) that here and in the sequel there is no loss of generality nor any introduced degeneracy in supposing $\mathbb K$ to be an algebraic number field of degree d, say, over Q. In that case the embedding into Q_p is successful for primes p of a set P satisfying

$$\prod_{\substack{p \le x \\ p \in P}} p^{\frac{1}{p-1}} \ge Cx^{1/d} \quad \text{with} \quad C > 0.$$

A major benefit of p-adification is obtained from the following fact: If $g(t) = \sum x_h t^h$ converges for $ord_p t > -s$, say, and $\Delta g(i) = :g(i+1)-g(i)$ then

$$\underline{\lim} \, k^{-1} \operatorname{ord}_{p} \Delta^{k} g(0) \geq s + 1/p - 1.$$

Indeed we are given $\lim_{n \to \infty} h^{-1} \operatorname{ord}_n x_h \geq s$. But

$$\Delta^{k} f(t) = \sum_{h \geq k} x_{h} \Delta^{k} t^{h} \quad \text{and} \quad \operatorname{ord}_{p} \Delta^{k} t^{h} \Big|_{t=0} \approx k/p-1$$

We use this basic result as follows: it is not terribly difficult to see that (a_h) is a recurrence sequence if and only if its Hankel-Kronecker determinants

$$K_h a := \left| a_{i+j} \right|_{0 \le i, j \le h}$$

vanish for all sufficiently large h. But from elementary row and column operations one sees that

$$\kappa_h a = \left| \Delta^k a_{\overline{o}(p-1)+r} \right|_{i+j=k(p-1)+r} .$$

So if $a_{t(p-1)+r}$ is given by p-adic power series converging beyond the p-adic unit disc we can show that K_h^a is divisible by a high power of p (that is, is of high p-adic order).

3. Hadamard division

If $\sum a_h x^h$, $\sum b_h x^h$ are rational then their 'child's product' $\sum (a_h b_h) x^h$ is again rational; for (a_h) , (b_h) are given by generalised power sums whence so is (c_h) , $c_h = a_h b_h$. The product above is frequently spoken of as the hadamard product of the power series. We wish to consider the hadamard quotient of rational functions. Polya [4] showed that if $\sum ha_h x^h$ is rational, and the a_h all are integers (more generally, elements of a finitely generated subring R of K) then $\sum a_h x^h$ is rational. Ultimately we have the theorem of Polya-Cantor [3]: if f is a polynomial and $\sum f(h)a_h x^h$ is rational with the a_h all in R, then $\sum a_h x^h$ is rational. The integrality condition is necessary: $\sum (h+1)^{-1} x^{h+1}$ is not rational, but it is the hadamard quotient of $\sum x^{h+1} = x(1-x)^{-1}$ by $\sum (h+1)x^{h+1} = x(1-x)^{-2}$.

We sketch a proof of the:

HADAMARD QUOTIENT THEOREM. Suppose $\sum c_h x^h$, $\sum b_h x^h$ are Taylor expansions of functions rational over $\mathbb K$ and that there is a sequence

 (a_h') of elements of R so that $a_h'b_h=c_h$, $h\geq 0$. Then there is a rational function $\sum a_h x^h$ with $a_h b_h=c_h$, $h\geq 0$.

Proof. We p-adify and consider quotients

$$a(t(p-1)+r) = c(t(p-1)+r)/b(t(p-1)+r)$$

of p-adic exponential polynomials. If b is of order n then b has at most n zeros in the disc with ord t > -1/n. Hence for each $r: 0 \le r < p-1$ there is a polynomial $f_{p,r}$ of degree at most n so that $f_{p,r}(t(p-1)+r)a(t(p-1)+r)$ converges for t with $\operatorname{ord}_p t \ge -1/n$. The same holds for $f_p(t(p-1)+r)a(t(p-1)+r)$ if f_p is the lowest common multiple of the $f_{p,r}$; we note that f_p has degree at most n(p-1).

Consider

$$K_H(f_p a) = \left| f_p(i+j)a(i+j) \right|_{0 \le i, j \le H}$$

We have shown that

$$\frac{\lim}{p} H^{-2} \operatorname{ord}_{p} K_{H}(f_{p}a) \geq (\frac{1}{n} + \frac{1}{p-1})/p-1$$

so, say with H sufficiently large:

$$\operatorname{ord}_{p} K_{H}(f_{p}a) > \frac{H^{2}}{n(p-1)} .$$

But to obtain this result we use only that

$$\operatorname{ord}_p \Delta^k f_p(\overline{o}(p-1)+r) a(\overline{o}(p-1)+r) \geq k(\frac{1}{n} + \frac{1}{p-1})/p-1$$

with $k(p-1)+r \leq 2H$. Thus if we were to have truncated the coefficients of the f_p modulo

$$M(p;H) = p^{2H}(\frac{1}{n} + \frac{1}{p-1})/(p-1)^2$$

we would obtain the desired inequality for $\operatorname{ord}_{p} K_{H}(f_{p}a)$.

However once coefficients are so truncated the f_p become elements of $\mathbb{Z}[X]$ with coefficients not exceeding M(p;H). By the Chinese Remainder Theorem we may construct a polynomial f in $\mathbb{Z}[X]$ with coefficients not exceeding

$$M := M(H) = \prod_{p \in P} M(p; H)$$

so that f plays the role of f_p , each $p \in P$. The degree of f is at most

$$\max_{p \in P} n(p-1) .$$

To avoid the somewhat clumsy and naive notion of 'truncation' we can equivalently describe f as being so constructed as to satisfy

$$||f - f_p||_p \le M(p; H)^{-1}$$
,

 $p \in P$, thereby transforming our appeal to the Chinese Remainder Theorem to an appeal to the approximation theorem; here $\|\cdot\|_p$ is the valuation of the maximum of the coefficients.

As constructed, the polynomial f has coefficients that are far too large and degree that is uneconomically small. Fortunately the following is plain: if f_{θ} be any non-zero polynomial in $\mathbb{Z}[X]$ then the remarks above, to wit that

ord_p
$$K_h(fa) > h^2/n(p-1)$$
, $H_0 < h \le H$, $p \in P$

remain true with f replaced by $F=f_0f$. Accordingly we now appeal to the box-principle to choose f_0 so as to obtain F with reasonably small coefficients and degree not too large. To see that we may replace f by F we need only recall that each f_p might have been replaced by a multiple of itself.

Select f_0 of degree $N = c_1 H^{\frac{1}{2}} (\log H)^{-\frac{1}{2}}$. Here and in the immediate sequel c_0, c_1, \ldots denote positive constants and H is supposed large with respect to the prevailing parameters n and $p \in P$. Modulo M there are

some M^N possibilities to choose f_0 . We want $F = f_0 f$ to have coefficients no larger in absolute value than $M^{C_0/N}$, modulo M of course. Accordingly our 'boxes' each contain polynomials F with coefficients differing modulo M by no more than $M^{C_0/N}$. With C_0 appropriately large (not depending on H) there are fewer than M^N such boxes. Hence our construction succeeds and we have

$$\operatorname{ord}_{p} K_{h}(Fa) > h^{2}/n(p-1) \qquad H_{0} < h \leq H, p \in P$$

with F of degree $cH^{\frac{1}{2}}(\log H)^{-\frac{1}{2}}$ and with coefficients not exceeding $M^{2o/N}$ in absolute value. A priori H_0 need only be large enough to validate the p-adic inequalities. It certainly suffices to set $H_0 = H^{\frac{1}{2}}\log H$.

We now need a suitable archimedean upper bound for the algebraic numbers $K_h\left(Fa\right)$.

Technical remark. The correct measure of the size of a sequence of algebraic numbers is provided by Bombieri [1] p. 37 in his discussion of G-functions. Since the a_h belong to a finitely generated subring R of K the sequence (a_h) has finite size ρ , say. For us it is convenient to define

$$\sigma_h(a) = \sum_{v} \max_{j \le h} |a_j|_v$$

with the sum the appropriately normalised valuations v of ${\mathbb K}$. Then

$$\sigma(a) = \overline{\lim}_{h\to\infty} h^{-1} \log \sigma_h(a) = \log \rho$$
.

It then follows that

$$\overline{\lim}_{h\to\infty}h^{-2}\log\sigma_h(K(a))=\log\rho.$$

Then with the F chosen as above we obtain

$$\log \sigma_h (K(Fa)) < h^2 \log \rho + c_2 h^{\frac{1}{2}} (\log H)^{\frac{1}{2}}$$

But for $H_0 < h \le H$ and $p \in P$

$$\operatorname{ord}_{p} K_{h}(Fa) > h^{2}/n(p-1) .$$

Hence if $H_0 = H^{\frac{1}{2}} \log H$ then for $H_0 < h < H$ we have

$$h^{-2} \log \sigma_h(K(Fa)) < \log \rho + c_3(\log H)^{-\frac{1}{2}}$$

But by the product formula $K_h(Fa)$ vanishes if

$$\sum_{p} (\log p) \operatorname{ord}_{p} K_{h}(Fa) > d \log \sigma_{h}(K(Fa)) .$$

Indeed it is this formula that justifies the measure σ_h we have introduced above.

We can now return to the main argument. From the remarks above we see that $K_h(F\alpha) = 0$ for $H^{\frac{1}{2}}\log H < h < H$ if

$$\sum_{p \in P} \frac{\log p}{n(p-1)} > d \log \rho + dc_3 (\log H)^{-\frac{1}{2}} .$$

We note that though c_3 depends on P it remains bounded if P grows, hence since the sum over $p \in P$ is unbounded as P grows we can certainly achieve the condition above for a suitably large choice of the set P.

The vanishing of $K_h(Fa)$ for $H^{\frac{1}{2}}\log H < h < H$ implies readily that there is a recurrence sequence (d_h) of order at most $H^{\frac{1}{2}}\log H$ so that

$$d_h = F(h)a_h = F(h)c_h/b_h$$

for $H^{\frac{1}{2}}\log H < h < H$. But the recurrence sequences $(b_h d_h)$ and $(F(h)c_h)$ then coincide over a range considerably greater than is their order. Hence they coincide for all h. It follows that F divides bd in the ring of exponential polynomials. By the Polya-Cantor lemma we lose no generality in assuming that b has no polynomial factor; for any such factor must also be a factor of c and so we may suppose it to have been removed. Hence F divides d in the ring of exponential polynomials, for the quotient satisfies the conditions of the Polya-Cantor lemma. Hence, as we wished to show, (a_h) is indeed a recurrence sequence.

To complete the proof we should deal with the case where some $\,b_h^{}$ vanish and with the general case where $\,(a_h^{})\,$ is not defined over an

algebraic number field. These technicalities seem inappropriate to this summary.

4. Concluding Remarks

The p-adic methods employed above were either introduced or flowered in the work of Kurt Mahler. It seems especially appropriate to describe a recent application of his ideas on this the occasion of his 80th birthday.

References

- [1] E. Bombieri, "On G-functions", in H. Halberstam and C. Hooley (eds.)

 *Recent Progress in Analytic Number Theory (Academic Press, 2,

 1981 , 1-67).
- [2] J.W.S. Cassels, "An embedding theorem for fields", Bull. Austral.

 Math. Soc. 14 (1976), 193-198. Addendum, ibid. 14 (1976),

 479-480.
- [3] D.G. Cantor, "On arithmetic properties of the Taylor series of rational functions II", Pacific J. Math. 41 (1972), 329-334.
- [4] G. Polya, "Arithmetische Eigenschaften der Reihenentwicklungen rationaler Functionen", J. für die reine u. angew Math. 151 (1920), 1-31.
- [5] A.J. van der Poorten and H.P. Schlickewei, "The growth conditions for recurrence sequences", *Invent. Math.*, to appear.

School of Mathematics and Physics,
Macquarie University,
North Ryde,
New South Wales 2113,
Australia.