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Abstract
We hypothesize that spatial spillovers among neighboring farms are not only driven by
spatial proximity, but also by farm profitability considerations. This hypothesis is tested
by examining the role of spatial spillovers in shaping somatic cell counts (SCC) on
Wisconsin dairy farms. Results show that neighborhood links defined both in terms of
geographic proximity and farm profitability give rise to spatial spillovers that affect
SCC. Significant differences in the estimated spatial spillovers are observed when defining
the neighborhood space in terms of both farm profitability and geographic proximity as
opposed to geographic proximity alone, with the data favoring the former specification.
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Introduction

Spatial spillovers are defined as the impact that a characteristic or action of a unit i has
on the outcomes, decisions, or actions of other units j (Halleck Vega and Elhorst
2015).1 The role of spatial spillovers on farm-level behavior and performance is a
topic of increasing interest in agricultural economics research. Empirical studies in
this area focus on technology adoption (Läpple et al. 2017; Skevas, Skevas, and
Swinton 2018), farm survival (Storm, Mittenzwei, and Heckelei 2014), market partici-
pation (Holloway and Lapar 2007), and farm efficiency (Areal, Balcombe, and Tiffin
2012; Skevas 2020), and provide evidence of the importance of considering spatial spill-
overs when modeling farm-level behavior and performance.

To account for spatial spillovers in decision-making models, one must first define
the neighborhood space and specify the strength of interaction between neighboring
units. In the context of farming, living near another farmer is known to increase the

© The Author(s) 2021. This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1Depending on the nature of the study, units can be households, firms, regions, countries and so on.
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likelihood of a social link (Maertens and Barrett 2012), implying that geographic
proximity should be taken into account when specifying neighborhood relations.
Geographic proximity, although important, may not be the only driver of spatial inter-
action among neighboring farms. For instance, farmers may choose other farmers to
mimic with whom they share common personal or professional characteristics
(e.g., education, membership in a professional association); the latter can be referred
to as homophilic neighbors, using the terminology of Rogers (2010). Another possibil-
ity is that farmers adjust their practices to align with those of their economically suc-
cessful neighbors, as previous empirical studies have shown to be the case in both
developing (Conley and Udry 2010) and developed countries (Chatzimichael, Genius,
and Tzouvelekas 2014). However, despite the obvious role that socioeconomic factors
can play in giving rise to spatial spillovers in farming, past spatial econometric studies
of farm behavior and performance have largely ignored such effects and mainly used
geographic criteria to define the neighborhood space. One notable exception is the
study by Läpple et al. (2017) who, in an effort to overcome a missing neighbor problem,
constructed a spatial weight matrix using census data on dairy livestock intensity at the
electoral division level and geographic proximity among the sample farms.

Against this background, the main objective of this article is to assess the importance
and role of economic factors, and more specifically farm profitability, in giving rise to
spatial spillovers. More precisely, we examine whether spatial spillovers are driven by
physical proximity to farms of a higher profit level. Our interest in this research ques-
tion is driven by the fact that farmers tend to imitate the practices of their economically
successful neighbors (Chatzimichael, Genius, and Tzouvelekas 2014; Conley and Udry
2010). We apply our modeling framework to examine the role of spatial spillovers in
shaping somatic cell counts (SCC) of dairy farms. SCC, which is the number of leuko-
cytes in milk, is an indicator of subclinical mastitis in dairy cattle (Hogeveen,
Steeneveld, and Wolf 2019). Mastitis (clinical or subclinical) is the most economically
important disease in the dairy industry, causing, among others, milk yield losses, higher
workload for the producers, involuntary culling of cows, and increased veterinary and
medical expenses (Halasa et al. 2007). Moreover, milk buyers often impose price pen-
alties to farmers failing to meet imposed milk quality standards, including standards on
SCC levels (Volpe et al. 2015). Therefore farmers, have several reasons to decrease the
incidence of mastitis on their farms.

In the context of mastitis, spatial spillovers are important for the following reasons.
First, some farmers may lack the knowledge to effectively prevent and control mastitis
(Kuiper et al. 2005). Such farmers are potentially inclined to seek technical information
from neighboring farmers that are more successful in improving udder health. Second,
when the cost of veterinary intervention is high, as might be the case with mastitis con-
trol, some farmers are shown to consider their peers’ experiences when deciding how to
control animal diseases (Alarcon et al. 2014). Therefore, it is important to account for
spatial spillovers when modeling the incidence of mastitis at the farm-level.

This article makes two contributions to the literature. First, we are the first to exam-
ine the role of farm profitability as a driver of spatial spillovers between neighboring
farms. Second, this article extends previous studies on the determinants of SCC
(Dong, Hennessy, and Jensen 2012; Haskell et al. 2009; Volpe et al. 2015) by investigat-
ing the role of spatial spillovers in shaping SCC. The rest of the paper is organized as
follows. Section “Methodology” presents the methodology employed, while section
“Data and Empirical Issues” describes the data used in the present analysis. Results
are presented in Section “Results”, and Section “Conclusions” concludes.
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Methodology

We employ a spatial lag of X model (SLX) to assess the existence and role of spatial spill-
overs in shaping SCC of dairy farms. We choose the SLX model because it is the simplest
and most straightforward way (both in terms of estimation and interpretation) of produc-
ing such spillovers without imposing a priori restrictions on the magnitude of spillover
effects (Halleck Vega and Elhorst 2015).2 The SLX model can be written as follows:

SCCt = Xtb+WXtg+ a+ et (1)
where SCC is an N × 1 vector of log-transformed farm-specific somatic cell count scores
observed in period t (with N being the number of observations), X is an N × K matrix of
K farm-specific characteristics that may affect SCC, W is an N ×N spatial weighting
matrix (defined below), β and γ are the associated K × 1 vectors of parameters to be
estimated, α is an N × 1 vector of unobserved farm-specific heterogeneity effects, and
ϵ is an N × 1 vector of disturbance terms. The WX term, which is referred to in spatial
econometrics as “the spatial lags of the explanatory variables”, represents the character-
istics and production decisions of neighboring farms. Therefore, γ, which is known in
spatial econometrics as the “indirect or spillover effect”, captures how a farm’s level of
mastitis changes when a particular explanatory variable in neighboring farms increases.
On the other hand, β captures the so-called “direct effect”, i.e. the change in a farm’s
level of mastitis attributable to an increase in an explanatory variable of that farm itself.
Note that if γ = 0, the model in (equation 1) reduces to a non-spatial regression model
that does not allow any spatial spillovers to affect a farm’s SCC level. Such a model is
also estimated for comparison purposes. Finally, the Hausman test is used to check
whether α represents a fixed or a random effect.

We note here that more spatial econometric models are able to produce spatial spill-
over effects without imposing restrictions on the magnitude of these effects in advance.
As mentioned above, the SLX model is the simplest of these flexible models (Halleck
Vega and Elhorst 2015). A comparison of different spatial econometric models is out
of the scope of the current study and is left for future research.

Spatial Weight Matrix Specifications

In order to estimate the SLX model we need to specify a spatial weighting matrix W,
whose elements reflect the intensity of the interdependence between neighboring
farms. Two different spatial weight matrix specifications are considered in this article.

The first specification is one in which neighborhood is defined only in the dimen-
sion of geographic space. More specifically, we use an inverse distance matrix Winv that
takes the following form:

(Winv)ij =
{
1/dij, if i = j, and dij ≤ d∗

0, otherwise
(2)

where dij is the Eucledian distance between two farms i and j and d* is the minimum
distance requirement or cut-off. Following Skevas and Grashuis (2020) and Marasteanu

2In contrast to other studies (e.g., Volpe et al. (2015)), we do not use a quantile regression to model SCC.
This is because (a) SCC consists of continuous values (not count data) and follows approximately a normal
distribution, and (b) this article’s goal is to examine whether spatial spillovers affect SCC and not whether
they affect SCC differently for farms with different SCC levels.
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and Jaenicke (2016), we set d* to the minimum distance that guarantees at least one
neighbour to each farmer. The diagonal elements of the inverse distance matrix are
set equal to zero since no farm can be viewed as its own neighbor. Finally, following
common practice, the inverse distance matrix is scaled by dividing it by its maximum
eigenvalue (Elhorst 2001; Kelejian and Prucha 2010). Note that the inverse distance
matrix places a higher weight on closer than more distant neighbors, it is in line
with Tobler’s First Law of Geography that near units are more likely to be related
than distant ones (Tobler 1970), and it is commonly used in studies that examine
the role of peer effects in farm decision-making and performance (e.g., Läpple et al.
2017; Skevas, Skevas, and Swinton 2018).

The second spatial weights matrix specification, assumes that farmers follow other
farmers close to them both geographically and with higher farm profit levels. This
matrix is constructed as the Hadamard product3 of the inverse distance matrix (before
normalization) defined in equation 2 and a time-varying matrix that reflects the eco-
nomic distance between a given farmer and his/her more economically successful
neighbors4: Winv s

t = Winv ◦Ws
t , where

(Ws
t )ij =

{ |P̃it−P̃jt |
Max{|P̃it−P̃1t |,|P̃it−P̃2t |,...,|P̃it−P̃Jt |} if i = j and P̃it,P̃ jt, j = 1, .., J

0, otherwise
(3)

where P̃it is the inverse hyperbolic sine transformation of profit per cow of farmer i at
time t (see section “Results” for the reasoning behind this transformation), | ⋅ | denotes
absolute value, and J is the number of observations in the sample less the farm under
investigation (i.e., i). In Ws

t , the absolute difference in profit levels between two farmers
i and j is divided by the maximum absolute difference in profit between farmer i and all
other farmers in the sample. This procedure allows weights inWs

t to range from close to
zero (little interaction or influence between two farmers) to one (maximum interaction
or influence between two farmers), facilitating influence contrasts between farmer i and
his/her more economically successful neighbors. This matrix was then multiplied (in a
Hadamard way) by the inverse distance matrix to assure that a higher weight is assigned
to the closest (in distance terms) more profitable neighbors. Hence, the final matrix
Winv s

t assumes that farmers follow other farmers close to them both geographically
and with higher profit levels. The latter assumption is motivated by the finding that
farmers, both in developing (Conley and Udry 2010) and developed countries
(Chatzimichael, Genius, and Tzouvelekas 2014), tend to imitate the behavior of more
successful farmers. Following Elhorst (2001) and Kelejian and Prucha (2010), each ele-
ment of Winv s

t is divided by its largest characteristic root. An example showing how the
Winv s

t matrix works is provided in the supplementary material.
To the best of our knowledge, the employed approach to construct a spatial weight

matrix that captures decision makers’ proximity to more economically successful peers
(i.e., Winv s

t ) is novel and no implementations of such a matrix have been identified pre-
viously. We note, however, that the use of spatial weights that are based on both geo-
graphic contiguity and economic distance (using different economic variables and

3The Hadamard product is an element-by-element product of two matrices.
4In their study examining the spillover effects of government spending among 30 Chinese provinces, Qu,

Wang, and Lee (2016) also combine a time-varying matrix based on economic linkages and a time-
invariant matrix based on geographic distance.
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applied to non-agricultural settings) is not uncommon in applied spatial econometrics
analysis (see for e.g., Delgado, Lago-Peñas, and Mayor 2018; Qu, Wang, and Lee 2016).

Endogeneity of the Spatial Economic Weight Matrix

Spatial weight matrices that are based on a theory of distance, such as our inverse dis-
tance matrix above, are considered exogenous to any system (Getis 2009). When spatial
weights are determined by economic variables, such as the profit variable in the case of
Winv s

t above, then the exogeneity assumption of the spatial weight matrix will likely be
violated (Qu, Wang, and Lee 2016). In our case, farm profitability and SCC might be
affected by the same time-varying factors, such as hired labor quality, and cleanliness
of the housing, bedding, and milking equipment, which are hard to observe or measure.
As a result, it is very likely thatWinv s

t is correlated with the error term in the SCC model,
leading to endogeneity bias.5

To deal with the potential endogeneity problem, we use a two-stage instrumental
variables (2SIV) approach, which was developed by Qu, Wang, and Lee (2016). In
the first step, we estimate the following regression model:

P̃t = Ztd+ h+ jt (4)

where P̃ is an N × 1 vector of the inverse hyperbolic sine transformation of profits per
cow observed in period t, Z is an N × L matrix of instruments, η is an N-dimensional
vector of unobserved farm-specific heterogeneity effects,6 and ξ is a N-dimensional vec-
tor of disturbance terms. The residuals from estimating equation 4 are then included in
the following SLX model:

SCCt = Xtb+Winv s
t Xtg+ jtf+ a+ ut (5)

where ϕ is a parameter to be estimated, ut is an N × 1 vector of disturbances, and all
other variables are as previously defined. Once ξ has been added in equation 5, the spa-
tial weight matrix could be treated as exogenous (Qu, Wang, and Lee 2016). This is
because the unobserved factors that may affect both the spatial weight matrix and
SCC are now captured by ξ, implying that the spatial weight matrix is not anymore cor-
related with ut. Therefore, we would expect that ξ significantly affects SCC.

Data and Empirical Issues

The data set used in this study was drawn from the Agricultural Financial Advisor
(AgFA) database managed by the University of Wisconsin—Madison Center for
Dairy Profitability. It is a balanced7 panel of 83 specialized dairy farms for the period

5In technical terms, ϵt from equation 1 is correlated with ξt from equation 4. For a formal exposition of
the endogeneity problem of spatial weight matrices that are specified in terms of economic variables and the
way to solve for such endogeneity, see Qu, Wang, and Lee (2016).

6As in equation 1, the Hausman test is used to check whether η represents a fixed or a random effect.
7Balanced panels are almost exclusively used in spatial econometric studies analyzing panel data sets. In

this way, restrictive assumptions on why data are missing and debatable methods for recovering them (e.g.,
data imputation) can be avoided.
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2014–2017. These farms are operating in three contiguous counties, namely Sheboygan,
Manitowoc, and Kewaunee, which stand out as having by far the highest proportion of
farms in the database. Focusing on these counties ensures that each sample farmer has a
considerable number of neighboring farmers.8

Data available include financial and production information as well as information
on the exact location of the dairy farms in the form of farm coordinates. Information on
SCC is available at the herd level (herd average) and measured in cells per ml. As
explained earlier, SCC is an indicator of mastitis. It is widely accepted that most con-
tagious mastitis is transmitted by fomites (e.g., milkers’ hands, the milking unit, and
udder wash cloths) from infected to non-infected animals during the milking process.
The recommendations to decrease/control mastitis normally include management prac-
tices within the farm such as equipment cleaning, proper milking procedure, good beds
for the cows, cleanliness of facilities, etc. Our selection of factors (X ) that may influence
SCC is based on data availability and previous research on determinants of SCC (Dong,
Hennessy, and Jensen 2012; Volpe et al. 2015). These factors include the following: herd
size, summer precipitation and temperature, debt-to-asset ratio, non-farm income, and
farm subsidies. Herd size is measured by the number of cows in an operation. The sum-
mer temperature and precipitation variables were constructed using the
Parameter-Elevation Regressions on Independent Slopes Model (PRISM) maps
(http://www.prism.oregonstate.edu/). Following Qi, Bravo-Ureta, and Cabrera (2015),
summer in Wisconsin was defined as the months of June through September. Farm
coordinates were then used to generate farm-specific average temperature and precipi-
tation for the summer months that a farm is present in the panel. Debt-to-asset ratio is
measured as the total debt a farm holds divided by its total assets. Non-farm income is a
dummy variable assigned a value of one if the farmer earned income from non-
agricultural activities, and zero otherwise. Finally, subsidies include all government pay-
ments received by farmers, including those relating to crop and livestock production
and conservation. All SCC determinants (X) are used in logarithmic form in equations
1 and 5, except for non-farm income.

The profit per cow variable that is used in the construction of Winv s
t and in the

instrumental variable approach (equation 4) is defined as the value of production
less total operating costs and is expressed per livestock unit. Twenty two percent of
the observations in our sample have negative profit per cow. To avoid deleting these
observations from the analysis, the inverse hyperbolic sine transformation (arcsinh)

is used: P̃it = arcsinh(Pit) = ln Pit +
��������
P2

it + 1
√( )

.9 The instruments used in equation

4 are the natural logarithm of the farm-level milk price and the use of a total mixed
ration (TMR) feeding system. Milk price is measured in dollars per hundredweight.
TMR is a dummy variable that takes the value of one if a farmer uses TMR to feed
his/her cows, and zero otherwise. TMR is normally a long-standing farm decision.
Farmers who elected it, will go with it for the foreseeable future. Simple descriptive sta-
tistics shows that farmers using TMR do not switch to a non-TMR feeding strategy dur-
ing the sample period. Therefore, the use of TMR appears unaffected by unobserved

8See the results section for a discussion of neighborhood links.
9This transformation is often used in the literature to consider the logarithm of zero or negative values

(see for e.g., Minviel and Sipiläinen 2018).
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factors and stochastic shocks. The employed instruments are assumed to determine
farm profitability and, at the same time, have no direct impact on SCC.10,11

Milk price is a valid instrument because (a) it is not a choice variable and therefore
unambiguously exogenous, (b) has a strong and statistically significant effect on farm
profitability (Table A1), and (c) it does not have a direct effect on SCC (i.e., it affects
SCC only through its effect on farm profitability (e.g., higher milk prices may lead to
greater profitability which, in turn, increases a farmer’s ability to invest in technologies
and practices that reduce SCC)). While SCC levels can affect milk price through premi-
ums and penalties imposed by milk buyers, such an effect is not confirmed in the pre-
sent study. Correlation analysis revealed an insignificant relationship between SCC and
milk price (r =−0.026, p = 0.633). Consistently, linear regression did not show an influ-
ence of SCC on milk price (β =−1.408 × 10−6, p = 0.633).

Note that the employed estimation technique that corrects for the potential endoge-
neity of Winv s

t is not a conventional two-stage least squares (2SLS) approach, where the
predicted value of the endogenous variable is used in the second-stage model. Under
such an approach, and in the event that SCC affects milk price, the predicted value
of profit from equation 4 (which would contain the milk price variable) could cause
a simultaneity problem when included in equation 5 as an additional explanatory var-
iable. In the contrary, the error term of the first-stage equation (equation 4) is used as
an additional explanatory variable in the second-stage model (equation 5) to account
for unobserved time-varying factors that might affect both SCC and farm profitability.
Hence this procedure as described in Qu, Wang, and Lee (2016) provides a valid way of
correcting for endogeneity.

Concerning the Winv matrix, the distance cut-off d* was set to 25 km which is the
minimum distance that guarantees at least one neighbor to each farmer. To address
concerns about the robustness of our results to changes in d*, we estimate models
with 35, 45, and 55 km cut-off.

Table 1 presents a summary statistics of the variables used in the analysis. All mon-
etary variables were deflated to 2014 $ using appropriate price indices retrieved from
the National Agricultural Statistics Service database.

Results

Before we start discussing the results of the empirical models considered in this article,
we discuss neighborhood links. Sample farmers have, on average, 29 neighbors within a
25 km radius. On average, the minimum distance to neighboring farmers is 4.2 km, with
the shortest distance being 1.1 km. Moving to the results of the estimated models,
Table A1 in the appendix reports the first-step estimation results for the 2SIV model.
All variables are highly significant with expected signs.12 The F-statistic for the joint sig-
nificance of explanatory variables is greater than 10, confirming that the selected

10We avoid using a typical profit function (as for instance in Skevas, Wu, and Guan (2018)) for equation
4, since profit determinants such as the value of farm machinery and equipment can have a direct impact
on SCC.

11In their study examining the effect of different concentrate allocation strategies on the metabolic,
inflammatory and immune profiles of cows, Little et al. (2018) found no relationship between feeding
cows a TMR and the incidence of mastitis.

12We note that since a non-linear transformation of the dependent variable was used in the first stage of
the 2SIV approach, the reported coefficients do not represent true marginal effects (Bellemare and
Wichman 2020). The goal of this study is not to properly interpret the determinants of farm profit.
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instruments are sufficiently strong (Stock and Watson 2015). Table 2 presents the esti-
mation results from modeling the determinants of SCC. To recall, we estimate and com-
pare three models: (a) a non-spatial OLS model, (b) an SLX model where neighborhood
is defined in the dimension of geographic space (hereafter referred to as the SLX-inverse
distance), and (c) an SLX model where physical proximity to more profitable farmers is
used to capture potential linkages between neighboring farmers (hereafter referred to as
the 2SIV-Winv s). Since using spatial weight matrices based on different cut-off dis-
tances did not change our findings significantly, we present the results from the differ-
ent spatial models with a 25 km distance cut-off (the remaining results are available
from the authors upon request). The results of the Hausman tests suggest that fixed
effects estimates are preferred to random effect estimates. Therefore, the results pre-
sented in Table 2 are those of the fixed effects models.

Notice that the estimated coefficients and their significance levels of the non-
spatially lagged variables (upper half of Table 2) do not differ significantly across the
different model specifications. Hence, the interpretation of these coefficients applies
to all models that are presented in Table 2.

SCC is related significantly to two variables: herd size, and summer precipitation.
Larger farms in terms of herd size are found to have lower SCC. More specifically, a
1 percent increase in herd size leads, on average, to a decrease in SCC between 0.33
to 0.39 percent. A reason for this finding may be that larger farms have more expertise
in detecting, preventing, and controlling mastitis than smaller farms. Large farms may
also have more financial resources to adopt new technologies and farm management
practices that can reduce SCC (e.g., milk recording). This result is in line with the stud-
ies by Volpe et al. (2015) and Oleggini, Ely, and Smith (2001) who found a negative
relationship between herd size and SCC in U.S. dairy farming. An increase in precipi-
tation during the summer months is found to increase SCC. Increased summer rainfall
contributes to high humidity which is known to be related to mastitis infection (Morse
et al. 1988).

Table 1. Summary Statistics of the Variables Used in the Analysis

Variable Unit Mean Std. Dev

Somatic cell count cells/mL 192,738.60 81,063.15

Herd size count 235.99 310.92

Summer precipitation inches 3.82 0.49

Summer temperature °F 66.75 1.49

Debt-to-asset ratio ratio 0.25 0.20

Non-farm income (0/1) 0.61 0.49

Subsidies $/hundredweight (cwt) 0.25 0.41

Profit $/cow 582.99 858.38

Milk price $/cwt 19.47 4.34

Total mixed ration (0/1) 0.43 0.50

Rather we want to use the residuals of the profit function to address endogeneity in the second stage of the
2SIV approach.
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Table 2. Regression Results for the Non-spatial and SLX Models

Non-spatial model SLX-inverse distance 2SIV-Winv s

Coef. p-value Coef. p-value Coef. p-value

Herd size −0.350 0.002 −0.331 0.004 −0.392 0.001

Summer precipitation 0.331 0.001 0.362 0.000 0.304 0.003

Summer temperature −0.201 0.180 −0.151 0.622 −0.144 0.410

Debt-to-asset ratio −0.214 0.505 −0.193 0.559 −0.253 0.458

Non-farm income −0.004 0.384 −0.003 0.447 −0.004 0.356

Subsidies 0.058 0.265 0.012 0.840 0.035 0.537

W_Herd size — — −0.036 0.175 −0.093 0.079

W_Debt-to-asset ratio — — −0.097 0.003 −0.038 0.366

W_Non-farm income — — −0.003 0.355 0.014 0.349

W_Subsidies — — −0.008 0.432 0.022 0.082

Residuals — — — — 0.122 0.000

AIC −254.63 — −256.01 — −260.84 —

Note: Bold font denotes statistically significant variables. AIC stands for Akaike’s Information Criterion. Spatially lagged variables are denoted with a leading “W_”. All continuous variables are in
logs.
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We now turn to the interpretation of the effect of the spatially lagged explanatory
variables on SCC (lower half of Table 2).13 Both spatial models include statistically sig-
nificant spatially lagged covariates, implying that peer effects do play a role in explain-
ing farm-level SCC. There are, however, differences across the employed spatial models
in terms of the significance of peer effects. As expected, and in line with previous
research (Läpple and Kelley 2015; Mourao 2019) indirect effects (i.e., the coefficients
of the spatially lagged variables) are smaller in magnitude than the respective direct
effect estimates. This is because they reflect cumulative spillovers from all farmers
within the distance cut-off.14

Of the spatially lagged variables included in the SLX-inverse distance model, only
debt-to-asset ratio is found to be a statistically significant predictor of SCC. More spe-
cifically, a (cumulative) 1 percent increase in neighboring farmers’ debt-to-asset ratio
decreases SCC by about 0.1 percent. This implies that farmers that have more indebted
neighbors have cows with lower SCC. Highly indebted farms may have recently invested
in management practices and technologies that decrease SCC. Nearby farmers may
learn from these investments, and adopt similar technologies on their own farms.

Regarding the spatially lagged variables of the 2SIV-Winv s model, two were found to
be significant predictors of SCC: herd size, and subsidies. The spatial lag of the herd size
variable has a negative effect on SCC. More specifically, a (cumulative) 1 percent
increase in neighbors’ herd size decreases SCC by about 0.1 percent, likely pointing
to the existence of a learning effect between large farms and their neighbors. Large
farms have more resources at their disposal to invest in new technologies and manage-
ment practices that reduce SCC. Nearby farmers could learn about the effectiveness of
these new technologies and practices in reducing SCC, for example, by communicating
with their neighbors, and modifying their strategies accordingly to better deal with mas-
titis prevention and control. More studies in the literature report the existence of spatial
spillovers between large farmers and their neighbors (Läpple et al. 2017; Storm,
Mittenzwei, and Heckelei 2014). Note that unlike in the 2SIV-Winv s model, the spa-
tially lagged herd size variable is statistically insignificant in the SLX-inverse distance
model. An explanation for this difference may be that neighboring large farmers (in
terms of herd size) are not necessarily the most efficient ones in reducing mastitis.
Reduced mastitis incidence should be reflected in higher farm profitability as it often
entails lower production costs and milk price bonuses. Therefore, the largest and at
the same time more profitable farms are expected to have lower SCC and exert a greater
influence on neighboring farms than large farms alone. Indeed, a closer look of the data
shows that the top 25 percent of the largest farms (in terms of herd size) in our sample
have, on average, 10 percent higher SCC scores than the top 25 percent of the most
profitable farms in the same subset of largest farms. Moving to the interpretation of
the spatially lagged subsidy variable, farmers surrounded by neighboring peers that
receive high subsidy income are found to have cows with higher SCC. High subsidies
may induce farmers to substitute farm income with subsidy income and expend less
effort in implementing management practices that lower the incidence and severity
of mastitis. Nearby farmers may mimic their neighbors’ behavior and experience
increases in mastitis incidence. Finally, the residuals from the first-step estimation are

13The spatially lagged precipitation and temperature variables are excluded from the model specification
because climatic conditions are relatively homogeneous within a 25 km radius.

14These spillovers depend on the number of farmers within the distance cut-off and decline with
distance.
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significant at the 1 percent level, giving strong support that farm profitability is the
source of the endogeneity of the Winv s

t matrix.
Finally, among all the employed models, the AIC (bottom of Table 2) favors the

2SIV-Winv s model. That is, the data favor the model in which spatial effects are defined
in terms of both geographic proximity and farm profitability.

Conclusions

Using a panel dataset of 83 Wisconsin dairy farms over the period 2014–2017, this arti-
cle examines the factors influencing average herd somatic cell count (SCC). We specif-
ically explore whether and to what extent spatial spillovers affect SCC, making it the first
article to link SCC with peer influence. Moreover, unlike previous studies that examine
the role of spatial spillovers on farm decision-making and performance, we examine
whether defining the neighborhood space both in terms of physical proximity and
farm profitability gives rise to spatial spillovers.

The findings from this article indicate that SCC is not only affected by own-farm
decisions and characteristics but also by those of neighboring farms. This result implies
that future work aiming at exploring the determinants of SCC should test for and, if
necessary, account for peer effects to make accurate inferences. We also find that
farm profitability is an important driver of spatial spillovers among neighboring
farms. Significant differences in the estimated spatial spillovers are observed when
using farm profitability as well as physical proximity to define the neighborhood
links, as opposed to using just physical proximity. Model comparison results show
that defining the neighborhood space in terms of proximity to more profitable peers
(as compared to physical proximity alone) improves model fit. One should keep in
mind, however, that this result is case-specific. The construction of spatial weight matri-
ces is an open and debatable question, and must be guided by theoretical considerations
and represent as far as possible real social and economic phenomena (Corrado and
Fingleton 2012). What can be learned from this article is that researchers should be
aware that the choice of the spatial weight matrix can have a strong effect on the infer-
ences made in regard to the effect of spatial spillovers on the variable of interest.

Results also provide useful clues about the channels through which spatial spillovers
operate. These channels are: (a) neighboring large farmers, and (b) indirect effects of
neighboring farmers’ financial characteristics such as subsidies received. It is likely
that these channels arise as a result of direct communication or influence between
neighboring farmers on farm practices and decision-making. For example larger
farms are often more likely to adopt agricultural innovations in order to reduce the
occurrence of mastitis. Neighboring farmers may adopt similar technologies either
because they interact with, and learn from large neighbors or from a desire to conform
with peers’ choices. Previous studies indeed show that Wisconsin dairy farms influence
each other in decisions to adopt new practices (Lewis, Barham, and Robinson 2011).

Apart from spatial spillovers, this article also shows that direct (i.e., own-farm)
effects affect SCC. More specifically, farmers operating large farms (in terms of herd
size) are found to have cows with lower SCC. On the other hand, higher summer pre-
cipitation leads to an increase in SCC.

Considered together, these results provide direct and indirect paths for lowering
farm-level SCC. In relation to direct paths, the presence of peer effects in the context
of mastitis management imply potentially large social multiplier effects and economic
gains related to reduced SCC through exchange of information between neighboring
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farmers on good management practices to control and prevent mastitis. Hence, strate-
gies that promote peer interactions and learning effects might prove efficacious in
reducing farm-level SCC. Such strategies may include field days, farm walks on farms
that are efficient in reducing SCC, and discussion meetings. Regarding indirect paths,
the fact that larger farms have lower SCC, and this positively impacts neighboring
farms efforts to reduce SCC, implies that the generally observed trend in U.S. dairy sec-
tor of expanding and intensifying production may trigger further decreases in mastitis
incidence and related economic losses.

Finally, while our findings provide quantitative support for the presence of spatial
spillovers on neighboring farms’ SCC and allow for judgments to be made regarding
the channels through which these effects operate, further work is needed to provide
behavioral insights of how these spillovers arise and if farmer-to-farmer information
transfers and exchanges do happen in practice. Further work could also examine
whether spatial spillovers arise as result of physical proximity to farmers of a similar
income level. Such farmers may influence each other’s behavior because they are likely
to face comparable budget constraints and tackle similar problems.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/age.2020.22
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Appendix

Table A1. Empirical Results for the First Stage of the 2SIV Approach

Variable Coef. p-value

Constant −6.655 0.000

Milk price 2.608 0.016

Total mixed ration 0.495 0.000

F-statistic 17.60 0.000

Note: The Hausman test favors the fixed effect model. Milk price squared was initially tested for but was found
insignificant and therefore excluded from the final model.

Cite this article: Skevas T, Skevas I, Cabrera VE (2021). Farm Profitability as a Driver of Spatial Spillovers:
The Case of Somatic Cell Counts on Wisconsin Dairies. Agricultural and Resource Economics Review 50,
187–200. https://doi.org/10.1017/age.2020.22
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